Degradation Effects for Sodium Sulfur Batteries

Consider 5-year replacement strategy

Key Findings

- AS and RTM drive economics
- Only **10% NPV improvement** from technology breakthrough
- NPV is most sensitive to market participation mode

Degradation Effects for Sodium Sulfur Batteries

Consider 5-year replacement strategy

Observations

- Need larger battery for AS, RTM
- Low degradation (red): largest battery
- High degradation (green): 10% lower NPV, 2x smaller battery
- All cases: less than 1 hour of storage is optimal

When to Replace?

Observations:

- Replace current technology (med. case) after 6 to 8 years
- 10x slower degradation → increased profits of 20,000 \$ / MW / yr

Concentrated Solar Power Technologies

Power Tower

Ivanpah Solar, California

- Cost: \$2.2 billion
- 1,100 GWh / year (100,000 U.S. homes)
- Direct steam generation (1050 °F)
- Land use: 14 km²
- No Storage

Parabolic Trough

Shams I, United Arab Emirates

- Cost: \$600 million
- 210 GWh / year (20,000 U.S. homes)
- Organic heat transfer fluid (400 °F)
- Land use: 2.5 km²
- No Storage

Day-Ahead Energy Prices and Solar Irradiance

18