Energy Storage Investments in California

Mandate: procure 1,325 MW of storage by 2020

Utility	San Diego Gas & Electric
Opened	Feb. 2017
Storage Size	120 MWh
Power Rating	30 MW
Cost	Not Disclosed
Supplier	AES
Technology	Li-ion

San Diego Gas & Electric	
Feb. 2017	
30 MWh	
7.5 MW	
Not Disclosed	
AES	
Li-ion	

Southern California Edison Dec. 2016 80 MWh **20 MW** \$45 million (estimate) Tesla Li-ion

Battery Energy Storage System

Data from www.tesla.com/powerpack, accessed March 2017

Goal: Maximize Revenue

Decision Variables:

Market participation schedule

Constraints:

- California market rules
- Battery physics

Input Parameters:

- Which markets/products to transact?
- Location in CAISO
- Storage size (in hours)

Time horizon: 1 year

Tesla PowerPack System

- 88% to 89% round trip efficiency
- 50 kW to 2.5 MW
- 2 hr to 6 hr of storage
- 900 \$/kW to 2,700 \$/kW

What Size and How to Interact with Markets?

Where to Locate?

Full Market Participation DAM and RTM Energy and Ancillary Services

Storage Size: 1 hour

Investment: \$570,000 / MW

Revenue:

330,000 to 550,000 / MW / yr

Computational Stats:

- 6,600 nodes analyzed
- 10s to 24s per node (Gurobi 7.0)
- 200 CPU-hours (serial) for map

Is **central CA** optimal location for storage from **grid operator's perspective**? (e.g., maximize overall reliability, minimize overall system cost)

How important are degradation effects?

Sodium Sulfur Battery

69% round trip efficiency 4,000 cycles to *failure* (80% loss in capacity) \$370,000 investment for 1 MWh system

Degradation Model

Cycle Counter :
$$C_t = |S_t - S_{t-1}| + C_{t-1}$$
,

Max. Storage: $S_t \leq \bar{S} - \varepsilon_d C_t, \quad t \in \mathcal{T}.$

Goal: Maximize Net Present Value

Decision Variables:

- Market participation schedule
- Storage size (design)

Constraints:

- California market rules
- Battery physics

Input Parameters:

- Which markets/products to transact?
- Replacement horizon (N)
- Degradation rate (ϵ_d)

Problem Stats. (N = 5 yrs):

- Linear program
- 3 to 5 million variables
- 4 to 7 million constraints
- 2 CPU-hours (mean) per instance