Identifying and Controlling Risky Contingencies of Transmission Systems

Daniel Bienstock and Sean Harnett, Columbia University Taedong Kim and Steve Wright, U. of Wisconsin

FERC Software conference, 2015

N-K criterion revisited

Previous work: Salmeron and Wood, Donde et al, Turitsyin, Hines

N-K criterion revisited

- N-1 criterion widely used.

N-K criterion revisited

- N-1 criterion widely used. But is it enough?
- How about N - K, for K "larger"? Everybody knows that:
- It is too slow. A very difficult combinatorial problem.

N - K criterion revisited

- N-1 criterion widely used. But is it enough?
- How about N-K, for K "larger"? Everybody knows that:
- It is too slow. A very difficult combinatorial problem.

Table 1: $\binom{N}{K}$				
N	$K=2$	$K=3$	$K=4$	
1000	499500	166167000	41417124750	
4000	7998000	10658668000	10650673999000	
8000	31996000	85301336000	170538695998000	
10000	49995000	166616670000	416416712497500	

N - K criterion revisited

- N-1 criterion widely used. But is it enough?
- How about N - K, for K "larger"? Everybody knows that:
- It is too slow. A very difficult combinatorial problem.

Table 2: $\binom{N}{K}$				
N	$K=2$	$K=3$	$K=4$	
1000	499500	166167000	41417124750	
4000	7998000	10658668000	10650673999000	
8000	31996000	85301336000	170538695998000	
10000	49995000	166616670000	416416712497500	

- It is too conservative. It is not conservative enough.

N - K criterion revisited

- N-1 criterion widely used. But is it enough?
- How about N - K, for K "larger"? Everybody knows that:
- It is too slow. A very difficult combinatorial problem.

Table 3: $\binom{N}{K}$				
N	$K=2$	$K=3$	$K=4$	
1000	499500	166167000	41417124750	
4000	7998000	10658668000	10650673999000	
8000	31996000	85301336000	170538695998000	
10000	49995000	166616670000	416416712497500	

- It is too conservative. It is not conservative enough. (T. Boston) during Hurricane Sandy, N - 142 was observed.

N - K criterion revisited

- N-1 criterion widely used. But is it enough?
- How about N - K, for K "larger"? Everybody knows that:
- It is too slow. A very difficult combinatorial problem.

Table 4: $\binom{N}{K}$				
N	$K=2$	$K=3$	$K=4$	
1000	499500	166167000	41417124750	
4000	7998000	10658668000	10650673999000	
8000	31996000	85301336000	170538695998000	
10000	49995000	166616670000	416416712497500	

- It is too conservative. It is not conservative enough. (T. Boston) during Hurricane Sandy, N - 142 was observed.
- Perhaps N - K does not necessarily capture all interesting events?

Example: August 142003

U.S. - Canada report on blackout:
"Because it had been hot for several days in the Cleveland-Akron area, more air conditioners were running to overcome the persistent heat, and consuming relatively high levels of reactive power - further straining the area's limited reactive generation capabilities."
\rightarrow A system-wide condition that impedes the system
\rightarrow Not a cause, but a contributor
\rightarrow Look for combined events ?

N-K criterion revisited

- N-1 criterion widely used. But is it enough?
- How about N - K, for K "larger"? Everybody knows that:
- It is too slow. A very difficult combinatorial problem.

Table 5: $\binom{N}{K}$			
N	$K=2$	$K=3$	$K=4$
1000	499500	166167000	41417124750
4000	7998000	10658668000	10650673999000
8000	31996000	85301336000	170538695998000
10000	49995000	166616670000	416416712497500

- It is too conservative. It is not conservative enough. (T. Boston) during Hurricane Sandy, N - 142 was observed.
- Perhaps N - K does not necessarily capture all interesting events?
- How can we deal with both types of problems?

A continuous interdiction model

- A fictitious adversary is trying to interdict the transmission system.
- This adversary negatively alters the physical parameters of equipment, e.g. transmission lines, so as to impede transmission.
- The adversary has a budget available (both system-wide and per-line).
- On line $k m$, reactance $\boldsymbol{x}_{\boldsymbol{k} \boldsymbol{m}}$ increased to $\left(\mathbf{1}+\boldsymbol{\lambda}_{\boldsymbol{k m}}\right) \boldsymbol{x}_{\boldsymbol{k m}}$

A continuous interdiction model

- A fictitious adversary is trying to interdict the transmission system.
- This adversary negatively alters the physical parameters of equipment, e.g. transmission lines, so as to impede transmission.
- The adversary has a budget available (both system-wide and per-line).
- On line $k m$, reactance $\boldsymbol{x}_{\boldsymbol{k} \boldsymbol{m}}$ increased to $\left(\mathbf{1}+\boldsymbol{\lambda}_{\boldsymbol{k} \boldsymbol{m}}\right) \boldsymbol{x}_{\boldsymbol{k} \boldsymbol{m}}$,
$-0 \leq \lambda_{k m} \leq \lambda_{k m}^{\max }$ (per line limit)

A continuous interdiction model

- A fictitious adversary is trying to interdict the transmission system.
- This adversary negatively alters the physical parameters of equipment, e.g. transmission lines, so as to impede transmission.
- The adversary has a budget available (both system-wide and per-line).
- On line $k m$, reactance $\boldsymbol{x}_{\boldsymbol{k} \boldsymbol{m}}$ increased to $\left(\mathbf{1}+\boldsymbol{\lambda}_{\boldsymbol{k} \boldsymbol{m}}\right) \boldsymbol{x}_{\boldsymbol{k} \boldsymbol{m}}$,
$-0 \leq \lambda_{k m} \leq \lambda_{k m}^{\max }$ (per line limit)
$-\sum_{k m} \boldsymbol{\lambda}_{\boldsymbol{k m}} \leq \boldsymbol{\Lambda}$ (global limit)

A continuous interdiction model

- A fictitious adversary is trying to interdict the transmission system.
- This adversary negatively alters the physical parameters of equipment, e.g. transmission lines, so as to impede transmission.
- The adversary has a budget available (both system-wide and per-line).
- Adversary maximizes the impact (e.g. voltage loss) over the available budget.
- A continuous, non-convex optimization problem with simple constraints.
No emumeration!

A blast from the past: Bienstock and Verma, 2007

- DC approximation to power flows.
- Adversary increases reactances of lines.
- Limit on total percentage-increase of reactances, and on perline increase.
- Adversary maximizes the maximum line overload:

$$
\begin{aligned}
\max _{\boldsymbol{x}, \boldsymbol{\theta}} & \max _{k m}\left\{\frac{\left|\theta_{k}-\theta_{m}\right|}{u_{k m} x_{k m}}\right\} \\
\text { s.t. } & \boldsymbol{B}_{x} \theta=d \\
& \boldsymbol{x} \text { within budget }
\end{aligned}
$$

- Variables: reactances x, phase angles π
$-x_{k m}=$ reactance of $\boldsymbol{k m}, \boldsymbol{u}_{\boldsymbol{k m}}=$ limit of $\boldsymbol{k m}, \quad \boldsymbol{B}_{x}=$ bus susceptance matrix, $\boldsymbol{d}=$ net injections (given)
- Continuous, but non-smooth problem.

A blast from the past: Bienstock and Verma, 2007

- DC approximation to power flows.
- Adversary increases reactances of lines.
- Limit on total percentage-increase of reactances, and on perline increase.
- Adversary maximizes the maximum line overload:

$$
\begin{aligned}
\max _{\boldsymbol{x}, \boldsymbol{\theta}} & \sum_{k m}\left(\alpha_{k m}^{+}-\alpha_{k m}^{-}\right) \frac{\left(\theta_{k}-\theta_{m}\right)}{u_{k m} x_{k m}} \\
\text { s.t. } & \boldsymbol{B}_{x} \theta=d \\
& x \text { within budget } \\
& \sum_{k m}\left(\alpha_{k m}^{+}+\alpha_{k m}^{-}\right)=1, \quad \alpha^{+}, \alpha^{-} \geq 0 .
\end{aligned}
$$

A blast from the past: Bienstock and Verma, 2007

- DC approximation to power flows.
- Adversary increases reactances of lines.
- Limit on total percentage-increase of reactances, and on perline increase.
- Adversary maximizes the maximum line overload:

$$
\begin{aligned}
\max _{\boldsymbol{x}, \boldsymbol{\theta}, \boldsymbol{\alpha}} & \sum_{k m}\left(\alpha_{k m}^{+}-\alpha_{k m}^{-}\right) \frac{\left(\theta_{k}-\theta_{m}\right)}{u_{k m} x_{k m}} \\
\text { s.t. } & \boldsymbol{B}_{x} \theta=d \\
& \boldsymbol{x} \text { within budget } \\
& \sum_{k m}\left(\alpha_{k m}^{+}+\alpha_{k m}^{-}\right)=1, \quad \alpha^{+}, \alpha^{-} \geq 0 .
\end{aligned}
$$

- Continuous, smooth, nonconvex.

Technical point

$$
\begin{aligned}
\max _{\boldsymbol{x}, \boldsymbol{\theta}, \boldsymbol{\alpha}} & \sum_{k m}\left(\alpha_{k m}^{+}-\alpha_{k m}^{-}\right) \frac{\left(\theta_{k}-\theta_{m}\right)}{u_{k m} x_{k m}} \\
\text { s.t. } & \boldsymbol{B}_{x} \theta=d \\
& \boldsymbol{x} \text { within budget } \\
& \sum_{k m}\left(\alpha_{k m}^{+}+\alpha_{k m}^{-}\right)=1, \quad \alpha^{+}, \alpha^{-} \geq 0 .
\end{aligned}
$$

Function to maximize: $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{\alpha}) \doteq \sum_{k m}\left(\alpha_{k m}^{+}-\alpha_{k m}^{-}\right) \frac{\left(\theta_{k}-\theta_{m}\right)}{u_{k m} x_{k m}}$

Technical point

$$
\begin{aligned}
\max _{x, \boldsymbol{\alpha}} & \sum_{k m}\left(\alpha_{k m}^{+}-\alpha_{k m}^{-}\right) \frac{\left(\theta_{k}-\theta_{m}\right)}{u_{k m} \boldsymbol{x}_{k m}} \\
\text { s.t. } & \boldsymbol{B}_{x} \theta=d \\
& \boldsymbol{x} \text { within budget } \\
& \sum_{k m}\left(\alpha_{k m}^{+}+\alpha_{k m}^{-}\right)=1, \quad \alpha^{+}, \alpha^{-} \geq 0
\end{aligned}
$$

Function to maximize: $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{\alpha}) \doteq \sum_{k m}\left(\alpha_{k m}^{+}-\alpha_{k m}^{-}\right) \frac{\left(\theta_{k}-\theta_{m}\right)}{u_{k m} x_{k m}}$

- Fact: The gradient and the Hessian of $F(x, \alpha)$ can be efficiently computed
- Optimization problem solved using LOQO (IPOPT an option)

And what happens?

- Algorithm scales well (2007): CPU times of ~ 1 hour for studying systems with thousands of lines.

And what happens?

- Algorithm scales well (2007): CPU times of ~ 1 hour for studying systems with thousands of lines.
- Optimal * attack concentrated on a handful of lines

And what happens?

- Algorithm scales well (2007): CPU times of ~ 1 hour for studying systems with thousands of lines.
- Optimal * attack concentrated on a handful of lines
- Significant part of the budget expended on many lines, with visible impact

Table 6: Attack patterns

single $=20$								total $=\mathbf{6 0}$	single $=\mathbf{1 0}$		total $=\mathbf{3 0}$	single $=\mathbf{1 0}$	total $=\mathbf{4 0}$
Range	Count	Range	Count	Range	Count								
$[1,1]$	8	$[1,1]$	1	$[1,1]$	14								
$(1,2]$	72	$(1,2]$	405	$(1,2]$	970								
$(2,3]$	4	$(2,9]$	0	$(2,5]$	3								
$(5,6]$	1	$(9,10]$	3	$(5,6]$	0								
$(6,7]$	1			$(6,7]$	1								
$(7,8]$	4			$(7,9]$	0								
$(8,20]$	0												

"single" $=$ max multiplicative increase of a line's reactance
"total" = max total multiplicative increase of line reactances

Today: the AC power flows setting

As before, adversary increases impedances, subject to budgets
Adversary wants to maximize:

- Phase angle differences across ends of a lines
- Voltage deviations (loss)

Alternative version:

- There is a recourse action: shed load so as to maintain feasibility of all power flow constraints (limits)
- Adversary wants to maximize the amount of lost load

Generically:

$$
\begin{aligned}
\max & \mathcal{F}(x) \\
\text { s.t. } & x \in \mathcal{B}
\end{aligned}
$$

- $\boldsymbol{x}=$ impedances, $\boldsymbol{\mathcal { B }}=$ budget constraints
- $\mathcal{F}(x)=$ meausure of phase angle differences, voltage loss, load loss
- Challenge 1: $\mathcal{F}(x)$ is implicitly defined

Basic methodology: Frank-Wolfe

$$
\begin{aligned}
\max & \mathcal{F}(x) \\
\text { s.t. } & x \in \mathcal{B} \quad \text { (within budget) }
\end{aligned}
$$

Basic methodology: Frank-Wolfe

\max	$\mathcal{F}(x)$
s.t.	$x \in \mathcal{B} \quad$ (within budget)

Basic methodology: Frank-Wolfe

$$
\begin{aligned}
\max & \mathcal{F}(x) \\
\text { s.t. } & x \in \mathcal{B} \quad \text { (within budget) }
\end{aligned}
$$

Basic methodology: Frank-Wolfe

$$
\begin{aligned}
\max & \mathcal{F}(x) \\
\text { s.t. } & x \in \mathcal{B} \quad \text { (within budget) }
\end{aligned}
$$

Basic methodology: Frank-Wolfe

$$
\begin{aligned}
\max & \mathcal{F}(x) \\
\text { s.t. } & x \in \mathcal{B} \quad \text { (within budget) }
\end{aligned}
$$

$$
\begin{array}{rll}
\boldsymbol{y}^{k} \text { solves } & \max & {\left[\nabla \mathcal{F}\left(x^{k}\right)\right]^{T} y} \\
& \text { s.t. } & x^{k}+y \in \mathcal{B} \quad \text { (within budget) }
\end{array}
$$

Basic methodology: Frank-Wolfe

$$
\begin{aligned}
\max & \mathcal{F}(x) \\
\text { s.t. } & x \in \mathcal{B} \quad \text { (within budget) }
\end{aligned}
$$

$$
\begin{array}{rrl}
\boldsymbol{y}^{k} \text { solves } & \max & {\left[\nabla \mathcal{F}\left(x^{k}\right)\right]^{T} y} \\
& \text { s.t. } & x^{k}+y \in \mathcal{B} \quad \text { (within budget) }
\end{array}
$$

Final step is a line search: $x^{k+1}=x^{k}+\alpha y^{k}$, where $\mathbf{0} \leq \boldsymbol{\alpha} \leq \mathbf{1}$ is the stepsize.

Line searches

Challenge 2

- Recall: $\mathcal{F}(x)$ measures e.g. the largest phase angle difference using reactances \boldsymbol{x}
- Q: exactly how do we get $\nabla \mathcal{F}(x)$?

Challenge 2

```
\(\max \mathcal{F}(x)\)
    s.t. \(\quad x \in \mathcal{B}\) (within budget)
```


- Recall: $\mathcal{F}(\boldsymbol{x})$ measures e.g. the largest phase angle difference using reactances \boldsymbol{x}
- Q: exactly how do we get $\nabla \mathcal{F}(x)$?
- A: We estimate $\nabla \mathcal{F}(\boldsymbol{x})$ using finite differences

Challenge 2

- Recall: $\mathcal{F}(\boldsymbol{x})$ measures e.g. the largest phase angle difference using reactances \boldsymbol{x}
- Q: exactly how do we get $\nabla \mathcal{F}(x)$?
- A: We estimate $\nabla \mathcal{F}(x)$ using finite differences
- But $\nabla \mathcal{F}(x)$ is a vector with an entry for each line of the transmission system - it is a big vector

Challenge 2

- Recall: $\mathcal{F}(\boldsymbol{x})$ measures e.g. the largest phase angle difference using reactances \boldsymbol{x}
- Q: exactly how do we get $\nabla \mathcal{F}(x)$?
- A: We estimate $\nabla \mathcal{F}(x)$ using finite differences
- But $\nabla \mathcal{F}(x)$ is a vector with an entry for each line of the transmission system - it is a big vector
- "Solution": Estimate $\boldsymbol{\nabla} \mathcal{F}(\boldsymbol{x})$ in parallel over several cores

Challenge 2

- Recall: $\mathcal{F}(x)$ measures e.g. the largest phase angle difference using reactances \boldsymbol{x}
- Q: exactly how do we get $\nabla \mathcal{F}(x)$?
- A: We estimate $\boldsymbol{\nabla} \mathcal{F}(x)$ using finite differences
- But $\nabla \mathcal{F}(x)$ is a vector with an entry for each line of the transmission system - it is a big vector
- "Solution": Estimate $\nabla \mathcal{F}(x)$ in parallel over several cores
- Alternative: only estimate some of the components of $\nabla \mathcal{F}(x)$:
- Random subset of small size
- Most promising subset

Challenge 3

- $\mathcal{F}(\boldsymbol{x})$ measures e.g. the sum of voltage losses with reactances \boldsymbol{x}
- And we estimate $\nabla \mathcal{F}(x)$ using finite differences
- Q: How do we compute $\mathcal{F}(\boldsymbol{x})$, for given reactances \boldsymbol{x} ?

Challenge 3

- $\mathcal{F}(\boldsymbol{x})$ measures e.g. the sum of voltage losses with reactances \boldsymbol{x}
- And we estimate $\nabla \mathcal{F}(x)$ using finite differences
- Q: How do we compute $\mathcal{F}(x)$, for given reactances \boldsymbol{x} ?
- A: Ideally, a PF (load flow) calculation

Challenge 3

- $\mathcal{F}(\boldsymbol{x})$ measures e.g. the sum of voltage losses with reactances \boldsymbol{x}
- And we estimate $\nabla \mathcal{F}(x)$ using finite differences
- Q: How do we compute $\mathcal{F}(x)$, for given reactances \boldsymbol{x} ?
- A: Ideally, a PF (load flow) calculation
- Challenge! PF often does not converge for interesting x

Challenge 3

- $\mathcal{F}(\boldsymbol{x})$ measures e.g. the sum of voltage losses with reactances \boldsymbol{x}
- And we estimate $\nabla \mathcal{F}(x)$ using finite differences
- Q: How do we compute $\mathcal{F}(\boldsymbol{x})$, for given reactances \boldsymbol{x} ?
- A: Ideally, a PF (load flow) calculation
- Challenge! PF often does not converge for interesting x
- solution: solution OPF-like problem:
minimize sum of square of all violations (load mismatch, line limits, etc)

Challenge 3

- $\mathcal{F}(\boldsymbol{x})$ measures e.g. the sum of voltage losses with reactances \boldsymbol{x}
- And we estimate $\nabla \mathcal{F}(x)$ using finite differences
- Q: How do we compute $\mathcal{F}(x)$, for given reactances \boldsymbol{x} ?
- A: Ideally, a PF (load flow) calculation
- Challenge! PF often does not converge for interesting x
- solution: solution OPF-like problem:
minimize sum of square of all violations (load mismatch, line limits, etc)
- solution? violations still observed
- solution? Add to definition of $\mathcal{F}(x)$ sum of weighted square violations \rightarrow Currently using IPOPT within Matpower (fastest for our purposes)
\rightarrow Infeasible cases verified using SDP relaxation

Example: phase angle attack on Polish grid (from Matpower)

```
1 obj=2620.72 step=1.00 [ 263 8.00; 300 8.00; 728 8.00; ]
2 obj=2641.52 step=1.00 [ 305 8.00; 306 8.00; 309 8.00; ]
3 obj=2649.34 step=1.00 [ 168 8.00; 263 8.00; 321 8.00; ]
5 obj=2765.47 step=0.50[51 4.00; 261 4.00; 263 4.00; 300 4.00; 321 4.00; 322 4.00;]
13 obj=2944.01 step=0.12 [ 305 2.60; 168 2.32; 322 2.17; 169 1.90; 321 1.85; 263 1.57; 309
1.50; 32 1.15; 51 1.08; 261 1.08; 170 1.00; 171 1.00; 306 0.85; 39 0.75; 281 0.75; 166 0.57;
310 0.57; 8 0.43; 264 0.43; 300 0.42; ]
20 obj=2950.54 step=0.03[169 2.53; 305 2.38; 168 1.88; 322 1.77; 321 1.76; 309 1.74; 166
1.44; 170 1.28; 263 1.28; 261 1.14; 32 0.93; 51 0.88; 171 0.81; 306 0.69; 39 0.61; 281 0.61;
264 0.59; 260 0.51; 310 0.46; 8 0.35; 300 0.34; ]
27 obj=2958.08 step=0.00 [ 169 2.80; 305 2.53; 321 2.00; 309 1.97; 168 1.63; 263 1.58; 322
1.53; 166 1.38; 261 1.11; 170 1.11; 32 0.81; 51 0.76; 264 0.76; 281 0.75; 171 0.71; 306 0.60;
39 0.53; 260 0.44; 310 0.40; 8 0.30; 300 0.30; ]
```


Example: phase angle attack on 118-bus

Three top-attacked lines in red:

Fact: phase angle attack cannot be isolated to a few lines

Fact: phase angle attack cannot be isolated to a few lines

Experiment on 118-bus case:
(1) Take line most heavily interdicted: line $\mathbf{3 8}$
(2) Let the reactance of this line increase to infinity
(3) What happens? Phase angle difference $\rightarrow \boldsymbol{\pi} / \mathbf{2}$?

Fact: phase angle attack cannot be isolated to a few lines

Experiment on 118-bus case:
(1) Take line most heavily interdicted: line $\mathbf{3 8}$
(2) Let the reactance of this line increase to infinity
(3) What happens? Phase angle difference $\rightarrow \pi / 2$? No.

Fact: phase angle attack cannot be isolated to a few lines

Experiment on 118-bus case:
(1) Take line most heavily interdicted: line $\mathbf{3 8}$
(2) Let the reactance of this line increase to infinity
(3) What happens? Phase angle difference $\rightarrow \pi / 2$? No.

From ≈ 10 to ≈ 40.

Fact: phase angle attack cannot be isolated to a few lines

Experiment on 118-bus case:
(1) Take line most heavily interdicted: line $\mathbf{3 8}$
(2) Let the reactance of this line increase to infinity
(3) What happens? Phase angle difference $\rightarrow \pi / 2$? No.

From ≈ 10 to ≈ 40.

Voltage attack on 118-bus

"Triple the reactance of at most three lines"
Voltage Magnitude

Changes in Voltage Magnitude

Voltage attack on 2383-bus Polish

"Double the reactance of at most three lines"

Changes in Voltage Magnitude

\rightarrow Primarily 4 lines interdicted

