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N - K criterion revisited

Previous work: Salmeron and Wood, Donde et al, Turitsyin, Hines



N - K criterion revisited

•N - 1 criterion widely used.



N - K criterion revisited

•N - 1 criterion widely used. But is it enough?

• How about N - K, for K “larger”? Everybody knows that:

– It is too slow. A very difficult combinatorial problem.



N - K criterion revisited

•N - 1 criterion widely used. But is it enough?

• How about N - K, for K “larger”? Everybody knows that:

– It is too slow. A very difficult combinatorial problem.

Table 1:
(
N
K

)
N K = 2 K = 3 K = 4

1000 499500 166167000 41417124750
4000 7998000 10658668000 10650673999000
8000 31996000 85301336000 170538695998000
10000 49995000 166616670000 416416712497500



N - K criterion revisited

•N - 1 criterion widely used. But is it enough?

• How about N - K, for K “larger”? Everybody knows that:

– It is too slow. A very difficult combinatorial problem.

Table 2:
(
N
K

)
N K = 2 K = 3 K = 4

1000 499500 166167000 41417124750
4000 7998000 10658668000 10650673999000
8000 31996000 85301336000 170538695998000
10000 49995000 166616670000 416416712497500

– It is too conservative. It is not conservative enough.



N - K criterion revisited

•N - 1 criterion widely used. But is it enough?

• How about N - K, for K “larger”? Everybody knows that:

– It is too slow. A very difficult combinatorial problem.

Table 3:
(
N
K

)
N K = 2 K = 3 K = 4

1000 499500 166167000 41417124750
4000 7998000 10658668000 10650673999000
8000 31996000 85301336000 170538695998000
10000 49995000 166616670000 416416712497500

– It is too conservative. It is not conservative enough.
(T. Boston) during Hurricane Sandy, N - 142 was observed.
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•N - 1 criterion widely used. But is it enough?

• How about N - K, for K “larger”? Everybody knows that:

– It is too slow. A very difficult combinatorial problem.

Table 4:
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N
K
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(T. Boston) during Hurricane Sandy, N - 142 was observed.

– Perhaps N - K does not necessarily capture all interesting events?



Example: August 14 2003

U.S. - Canada report on blackout:

“Because it had been hot for several days in the Cleveland-Akron area,
more air conditioners were running to overcome the persistent heat, and
consuming relatively high levels of reactive power – further straining the
area’s limited reactive generation capabilities.”

→ A system-wide condition that impedes the system

→ Not a cause, but a contributor

→ Look for combined events ?



N - K criterion revisited

•N - 1 criterion widely used. But is it enough?

• How about N - K, for K “larger”? Everybody knows that:

– It is too slow. A very difficult combinatorial problem.

Table 5:
(
N
K

)
N K = 2 K = 3 K = 4

1000 499500 166167000 41417124750
4000 7998000 10658668000 10650673999000
8000 31996000 85301336000 170538695998000
10000 49995000 166616670000 416416712497500

– It is too conservative. It is not conservative enough.
(T. Boston) during Hurricane Sandy, N - 142 was observed.

– Perhaps N - K does not necessarily capture all interesting events?

• How can we deal with both types of problems?
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A continuous interdiction model

•A fictitious adversary is trying to interdict the transmission
system.

• This adversary negatively alters the physical parameters of
equipment, e.g. transmission lines, so as to impede transmis-
sion.

• The adversary has a budget available (both system-wide and
per-line).

•Adversary maximizes the impact (e.g. voltage loss) over the
available budget.

•A continuous, non-convex optimization problem with sim-
ple constraints.
No emumeration!



A blast from the past: Bienstock and Verma, 2007

•DC approximation to power flows.

•Adversary increases reactances of lines.

•Limit on total percentage-increase of reactances, and on per-
line increase.

•Adversary maximizes the maximum line overload:

max
x,θ

max
km

{ |θk − θm|
ukm xkm

}
s.t. Bxθ = d

x within budget

– Variables: reactances x, phase angles π

– xkm = reactance of km, ukm = limit of km, Bx = bus susceptance matrix,
d = net injections (given)

• Continuous, but non-smooth problem.
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A blast from the past: Bienstock and Verma, 2007

•DC approximation to power flows.

•Adversary increases reactances of lines.

•Limit on total percentage-increase of reactances, and on per-
line increase.

•Adversary maximizes the maximum line overload:

max
x,θ,α

∑
km

(α+
km − α

−
km)

(θk − θm)

ukm xkm

s.t. Bxθ = d

x within budget∑
km

(α+
km + α−km) = 1, α+, α− ≥ 0.

• Continuous, smooth, nonconvex.
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Technical point

max
x,α

∑
km

(α+
km − α−km)

(θk − θm)

ukm xkm

s.t. Bxθ = d

x within budget∑
km

(α+
km + α−km) = 1, α+, α− ≥ 0.

Function to maximize: F (x, α)
.
=
∑
km

(α+
km − α−km)(θk−θm)ukm xkm

• Fact: The gradient and the Hessian of F (x, α) can be efficiently com-
puted

• Optimization problem solved using LOQO ( IPOPT an option)



And what happens?

• Algorithm scales well (2007): CPU times of ∼ 1 hour for studying systems
with thousands of lines.



And what happens?

• Algorithm scales well (2007): CPU times of ∼ 1 hour for studying systems
with thousands of lines.

• Optimal * attack concentrated on a handful of lines



And what happens?

• Algorithm scales well (2007): CPU times of ∼ 1 hour for studying systems
with thousands of lines.

• Optimal * attack concentrated on a handful of lines

• Significant part of the budget expended on many lines, with visible impact

Table 6: Attack patterns

single = 20 total = 60 single = 10 total = 30 single = 10 total = 40

Range Count Range Count Range Count

[ 1, 1 ] 8 [ 1, 1 ] 1 [ 1, 1 ] 14
( 1, 2 ] 72 ( 1, 2 ] 405 ( 1, 2 ] 970
( 2, 3 ] 4 ( 2, 9 ] 0 ( 2, 5 ] 3
( 5, 6 ] 1 ( 9, 10 ] 3 ( 5, 6 ] 0
( 6, 7 ] 1 ( 6, 7 ] 1
( 7, 8 ] 4 ( 7, 9 ] 0
( 8, 20 ] 0 ( 9, 10 ] 2

“single” = max multiplicative increase of a line’s reactance

“total” = max total multiplicative increase of line reactances



Today: the AC power flows setting

As before, adversary increases impedances, subject to budgets

Adversary wants to maximize:

• Phase angle differences across ends of a lines

• Voltage deviations (loss)

Alternative version:

• There is a recourse action: shed load so as to maintain feasibility of all
power flow constraints (limits)

• Adversary wants to maximize the amount of lost load

Generically:

max F(x)

s.t. x ∈ B
• x = impedances, B = budget constraints

•F(x)= meausure of phase angle differences, voltage loss, load loss

• Challenge 1: F(x) is implicitly defined



Basic methodology: Frank-Wolfe

max F(x)

s.t. x ∈ B (within budget)

B



Basic methodology: Frank-Wolfe

max F(x)

s.t. x ∈ B (within budget)

x
k

B

(an iterative algorithm)



Basic methodology: Frank-Wolfe

max F(x)

s.t. x ∈ B (within budget)

x
k

x
k

B

(an iterative algorithm)

F( )



Basic methodology: Frank-Wolfe

max F(x)

s.t. x ∈ B (within budget)

x
k

x
k

y k

B

(an iterative algorithm)

F( )



Basic methodology: Frank-Wolfe

max F(x)

s.t. x ∈ B (within budget)

x
k

x
k

y k

B

(an iterative algorithm)

F( )

yk solves max [∇F(xk)]Ty

s.t. xk + y ∈ B (within budget)



Basic methodology: Frank-Wolfe

max F(x)

s.t. x ∈ B (within budget)

x
k

x
k

y k

B

(an iterative algorithm)

F( )

yk solves max [∇F(xk)]Ty

s.t. xk + y ∈ B (within budget)

Final step is a line search: xk+1 = xk + αyk, where 0 ≤ α ≤ 1 is the stepsize.



Line searches
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• Recall: F(x) measures e.g. the largest phase angle difference using
reactances x

•Q: exactly how do we get ∇F(x)?

•A: We estimate ∇F(x) using finite differences

• But ∇F(x) is a vector with an entry for each line of the transmission
system – it is a big vector

• “Solution”: Estimate ∇F(x) in parallel over several cores

•Alternative: only estimate some of the components of ∇F(x):

– Random subset of small size

– Most promising subset
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Challenge 3

max F(x)

s.t. x ∈ B (within budget)

x
k

x
k

y k
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(an iterative algorithm)

F( )

•F(x) measures e.g. the sum of voltage losses with reactances x

• And we estimate ∇F(x) using finite differences

•Q: How do we compute F(x), for given reactances x?

•A: Ideally, a PF (load flow) calculation

•Challenge! PF often does not converge for interesting x

• solution: solution OPF-like problem:
minimize sum of square of all violations (load mismatch, line limits, etc)

• solution? violations still observed

• solution? Add to definition of F(x) sum of weighted square violations

→ Currently using IPOPT within Matpower (fastest for our purposes)
→ Infeasible cases verified using SDP relaxation



Example: phase angle attack on Polish grid (from Matpower)

1 obj=2620.72 step=1.00 [ 263 8.00; 300 8.00; 728 8.00; ]

2 obj=2641.52 step=1.00 [ 305 8.00; 306 8.00; 309 8.00; ]

3 obj=2649.34 step=1.00 [ 168 8.00; 263 8.00; 321 8.00; ]

5 obj=2765.47 step=0.50 [ 51 4.00; 261 4.00; 263 4.00; 300 4.00; 321 4.00; 322 4.00; ]

13 obj=2944.01 step=0.12 [ 305 2.60; 168 2.32; 322 2.17; 169 1.90; 321 1.85; 263 1.57; 309
1.50; 32 1.15; 51 1.08; 261 1.08; 170 1.00; 171 1.00; 306 0.85; 39 0.75; 281 0.75; 166 0.57;
310 0.57; 8 0.43; 264 0.43; 300 0.42; ]

20 obj=2950.54 step=0.03 [ 169 2.53; 305 2.38; 168 1.88; 322 1.77; 321 1.76; 309 1.74; 166
1.44; 170 1.28; 263 1.28; 261 1.14; 32 0.93; 51 0.88; 171 0.81; 306 0.69; 39 0.61; 281 0.61;
264 0.59; 260 0.51; 310 0.46; 8 0.35; 300 0.34; ]

27 obj=2958.08 step=0.00 [ 169 2.80; 305 2.53; 321 2.00; 309 1.97; 168 1.63; 263 1.58; 322
1.53; 166 1.38; 261 1.11; 170 1.11; 32 0.81; 51 0.76; 264 0.76; 281 0.75; 171 0.71; 306 0.60;
39 0.53; 260 0.44; 310 0.40; 8 0.30; 300 0.30; ]



Example: phase angle attack on 118-bus

Three top-attacked lines in red:
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Fact: phase angle attack cannot be isolated to a few lines

Experiment on 118-bus case:

(1) Take line most heavily interdicted: line 38

(2) Let the reactance of this line increase to infinity

(3) What happens? Phase angle difference → π/2 ? No.
From ≈ 10 to ≈ 40.

heavily interdicted line

lightly nor not interdicted



Voltage attack on 118-bus
“Triple the reactance of at most three lines”
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Voltage attack on 2383-bus Polish
“Double the reactance of at most three lines”
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→ Primarily 4 lines interdicted


