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Introduction

Introduction

@ Power systems are forever changing:
e Low production costs
e Reliable supply
e Green generation
@ Reliable supply: Contingencies are unforeseen events for which
historical data exists — probabilistic events

@ Green generation: As any weather-driven source the production from
these sources is stochastic
@ Need to develop tools that explicitly take into account the

probabilistic nature of the contingencies as well as the stochasticity of
renewable sources in the scheduling process:

e Optimal amounts of reserve in the system
e Optimal allocation of the reserve in the grid
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Existing Approaches

@ Typically reserve is scheduled using deterministic criteria e.g. N — 1,
and variants e.g. Wood 19961

'A. J. Wood and B. F. Wollenberg, Power Generation, Operation and Control, 2nd
ed. New York: Wiley, 1996.

°H. B. Gooi, D. P. Mendes, K. R. W. Bell, and D. S. Kirschen, “Optimal scheduling
of spinning reserve”, IEEE Trans. Power Syst., vol. 14, no. 4, pp. 1485-1490, Nov.
1999.

3D. Chattopadhyay and R. Baldick, “Unit commitment with probabilistic reserve,” in
Proc. IEEE Power Eng. Soc. Winter Meeting, New York, 2002, veol. 1,-pp.- 280-285.
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Existing Approaches

@ Some include a truncated COPT calculation in the scheduling process
e.g. Bouffard 2004*

*F. Bouffard and F. D. Galiana, "“An electricity market with a probabilistic spinning
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joint generation and transmission security criterion: An adjustable robust optimization
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Introduction

Consequences of non-optimized reserve procurement

@ Poor reserve quantification:

e Excessive or insufficient reserves

Unecessarily expensive system operation

High risk of system failures that could lead to blackouts
Inadequate resources when responding to unexpected situations
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Introduction

Consequences of non-optimized reserve procurement

@ Poor reserve quantification:

e Excessive or insufficient reserves

e Unecessarily expensive system operation

e High risk of system failures that could lead to blackouts

e Inadequate resources when responding to unexpected situations

@ Poor reserve allocation:

e Frequent congestion problems in real time
e Over-conservative operational limits
e Underutilization of transmission assets

@ Poor chronological quantification and allocation:
e Uneven “risk” accross time + all of the avobe

Ortega-Vazquez et al. (EE-UW) Probabilistic SCUC 22-24 June, 2015 6 /22



Deterministic Unit Commitment (DUC)

Unit Commitment (UC) is a cost-minimization problem that schedules and
dispatches the generation resources to meet the demand, while subject to
the generation and transmission constraints

mi[rjl B Z Z CfU- Yrit T : set of time intervals
YD Ge T teT B : set of buses
[Z Z CiNL' Vi + Z Z C; 'pt,i] 1 :. set of generators
iclier iclier I : set of generators at bus b
L : set of transmission lines
ChU. U CRD r )
+§ i Tt 2 Ly : set of TL connected at b

v € {0;1} : on/off status of
- Zpi —py — Z fi=0 Vb,vt geneEator}s /
el e p € R : output of generators
Req” = r; <0; Req” =) r{; <0 ©SU ONL and C start up,
el el no-load and incremental costs
h(v,p) <0
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DUC assumptions

Wind power generation and nodal demands are assumed to be known

@ The reserve is distributed among the cheapest units, regardless of
their individual reliability and location in the grid

@ The reserve allocation does not consider the contingency states;
therefore the feasibility of the energy re-distribution under
contingency states is not guaranteed

@ The reserve constraints do not take into account the probability of
the contingencies

@ The cost of the reserve is not compared against its benefits in terms
of reduced expected cost of interruptions
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Probabilistic Security-Constrained UC formulation

Probabilistic Generation and Transmission SCUC

Minimize the expected pre-contingency operating costs plus the expected
energy not served costs in post-contingency

minD - o Z Z CSU Yt, it

yu,p,r0 7

il teT
WU[ZZCZNL' vt7i+zzcz"pt,i}+ : :
il i pyer vt K : set of contingencies

RU. RD. VoLL : value of lost load
o ZEZI (CZ T“ +Ci ) * ENS : energy not served

7 : probability of
Z Tk Z Z VoLLy- EN Stk contingency k
k>0 teTbeB

S pi—p =S fi— ENSypx =0 WbVt Vk
i€l leLy

ENSipo=0; —R® <prir—prio < R™ Vi, Vt,Vk;  h(v,p) <0
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Probabilistic SCUC characteristics

@ Large-scale, non-linear, non-convex, MILP optimization problem

@ At each time period, for each of the schedules considered, the
post-contingency states are explicitly modeled

@ Transmission and power flow constraints are explicitly modeled

@ Reserve allocation is based on: reserve cost, generators and
transmission reliability, pre- and post-contingency energy distribution
on the grid

@ The probabilities of the contingencies are functions of the
commitment variables
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Probabilistic Security-Constrained UC formulation

Probabilities of the contingencies 7,

@ Dividing the set of contingencies K, in generation Kg and
transmission K ; the probabilities can be expressed as:

WOZH(l—UZ’-Fi)'H(l—AZ)

iel leL
T = Hvi(k)-Fi(k)-H(l—vi-I‘i)-H(l—Al) \V/k’GKG
i€l i€lli£k leL
Wk:HAl(k)H<1—’U,FZ)H(I—Al) Vk € Kp,
leLy, i€l leL|l#£k
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transmission K ; the probabilities can be expressed as:

WOZH(l—UZ’-Fi)'H(l—AZ)

iel leL
T = Hvi(k)-Fi(k)-H(l—vi-I‘i)-H(l—Al) \V/k’GKG
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@ Elements of the objective function:

e Products of binary variables
e Products of integer and continuous variables
e Products of continuous variables
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Probabilistic Security-Constrained UC formulation

Recourse

@ Additional constraints are enforced to ensure that sufficient recourse
is allocated to accommodate deviations from forecasted quantities
@ This is done via interval optimization’:

dn up
umax./.\. _Ri < Pt,iu,0 — Pt—1,i,u,0 < Ri )

Yu e U
pt_lalvumamo ptﬂvumimo = 1Y
Uy @——C&——0 up
_pt_laivumamo +ptviaucf70 S R’i
Unin @ dn
T Dt—1,iuer,0 — Pt,i umin,0 = I
t—1 t t+1

up
_pt_17i7ulllil’l70 +pt7i7ucf70 S R’L

Y. Dvorkin, H. Pand%i¢, M. Ortega-Vazquez, and D. S. Kirschen, “A hybrid

stocastic/interval approach to tranmission-constrained unit commitment,” |IEEE Trans.
Power Syst., vol. 30, no. 2, pp. 621-631, Mar. 2015.
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Solving the problem

@ Decompose the problem into subproblems

e Tackle each problem independently
e Determine the optimal reserve requirements
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Solving the problem

@ Decompose the problem into subproblems
e Tackle each problem independently
e Determine the optimal reserve requirements
@ Linearize terms of the objective function
e Replace products of variables by equivalent mixed-integer linear
expressions
o Apply special ordered sets 2 (SOS2) to the product of continuous
variables
e Additional variables required
e Accuracy is a function of the surfaces and grid points
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Solving the problem

@ Decompose the problem into subproblems
e Tackle each problem independently
e Determine the optimal reserve requirements
@ Linearize terms of the objective function
e Replace products of variables by equivalent mixed-integer linear

expressions
o Apply special ordered sets 2 (SOS2) to the product of continuous

variables
e Additional variables required
e Accuracy is a function of the surfaces and grid points
@ Enforce the reserve requirements in a complete problem with explicit
local reserve requirements and recourse
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Test System and Data

@ One-area |IEEE Reliability Test System:

24 buses and 38 transmission lines

32 controllable generators (3105 MW)

9 wind farms (780 MW approx. 25%)

Transmission limits are reduced by 15%

Positive and negative correlation of aggregated load/wind profiles

@ Deterministic Unit Commitment:

e Conventional reserve requirements
e (N —1) contingency reserve
o (3 +5) reserve policy for load and wind generation uncertainty
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Simulations

@ The DUC and the proposed approach are tested using Monte Carlo
(MC) simulations:

e Wind and load realizations are generated using multivariate
normal-distribution

e Transmission and generation contingencies are modeled using the state
sampling approach using a uniform distribution

e The minimum number of MC trials is calculated using the variance
reduction method

o Real-time commitment of flexible generators (U12, U20, U76) if
required to mimic SO’s reaction

Ortega-Vazquez et al. (EE-UW) Probabilistic SCUC 22-24 June, 2015 15 / 22



Test Results

Optimal reserve requirements

@ As the VoLL increases:

e The operat

ing costs increase

o The EENS cost “tends” to reduce

o The “sawtooth” shapes are due to changes in commitment decisions

x10°
3000f A 50% load 4 B)
-—-—70% load
@ 90% load @
2" 2000 100% load g~ 3
4 )
1000 2T
v o o
L.t _
2000 4000 6000 8000 2000 4000 6000 8000
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Test Results

Optimal reserve requirements

5 400f S —— n - —
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@ The reserve requirements increase as the VoL L increases:
e Higher VoLLs justify higher larger amounts of reserve
@ Two observations for all load levels:

e “Plateaus”: an incremental change in VoL L does not result in an
increment in the reserve requirement

e Saturation: the reserve requirement does not change for high VoLLs
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Test Results

Optimal Reserve Requirements & Allocation
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@ While the reserve procurement is the same in amount, its allocation is
different:
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DUC against the proposed approach
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@ DUC ignores the post-contingency power re-distribution
@ DUC is insensitive to the system's VoLL
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Test Results

Expected costs (no wind)

@ System with no wind power generation:
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@ The proposed approach (MPIUC) systematically outperforms DUC

Ortega-Vazquez et al. (EE-UW) Probabilistic SCUC 22-24 June, 2015 20 / 22



Expected costs (wind)

e System with wind: A) Positive correlation with the demand B)
Negative correlation with the demand

A) Positive correlation
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e Cost savings are larger for the case with the negative load/wind
correlation
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Conclusions

Conclusions

o Optimal reserve provision should take into account its three
fundamental dimensions: amount, location and timing
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Conclusions

Conclusions

o Optimal reserve provision should take into account its three
fundamental dimensions: amount, location and timing

@ The optimal amount of reserve can only be attained when its cost is
balanced against the benefits

@ The energy re-distribution and probabilities of contingencies must be
explicitly taken into account when performing the cost/benefit
analysis

@ The proposed methodology systematically outperforms approaches
based on deterministic criteria

o By allocating sufficient recourse, cost savings are attained even under
unfavorable wind materializations (negative correlation with demand)
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