Decentralized Robust Optimization Algorithms for Tie-Line Scheduling of Multi-Area Grid with Variable Wind Energy

Dr. Bo Zeng, University of South Florida

Joint work with Zhigang Li, Dr. Wenchuan Wu, Dr. Boming Zhang, Tsinghua University, China Dr. Mohammad Shahidehpour, Illinois Institute of Technology

Outline

Background and Motivation

Robust Optimization Formulations and Properties

Distributed Computing Methods through Alternating Direction Method of Multipliers (ADMM)

□Numerical Study and Demonstrations

Conclusions

Part I: Background and Motivation

- Multi-area power system
 - Physically separated regions (China)
 - Different electricity market
- Intermittent renewable energy
- Random contingencies
- Aligned LMPs for boundary nodes

Challenges in Multi-Area Power Grids

- Systems are cooperative but operated independently
 - o Privacy
 - Commercial information
- Protocols between systems to support cooperation:
 - Coordinated Transaction Scheduling: NYISO and PJM
 - o Interchange Optimization: PJM and MISO
 - o Inter-Regional Interchange Scheduling: ISONE and NYISO
- Interfaces between multiple systems: tie-lines
 - Power flow decisions (day-ahead and intraday)
 - Unit commitment decisions (day-ahead)

Decision Models for Multi-Area Power Grids

Lagrangian relaxation

- Conejo and Aguado (1998), Multi-area coordinated decentralized DC optimal power flow
- Aguado, Quintana, and Conejo (1999), Optimal power flows of interconnected power systems
- Augmented Lagrangian decomposition
 - Kim and Baldick (1997)
 - Ahmadi-Khatir, Conejo, and Cherkaoui (2014)

Alternative Direction Method of Multiplers (ADMM)

- Kim and R. Baldick (2000)
- Zheng, Wu, Zhang, Sun, and Liu (2015)

Uncertainty Consideration in Power Grids

- Scenario based probabilistic models
 - Stochastic programming (SP) and chance constrained formulation
 - Explicit large-scale models but many existing computing methods: e.g., Ahmadi-Khatir, Conejo, and Cherkaoui (2013, 2014):
 - SP+ augmented Lagrangian relaxation
 - Issue: Inaccurate prediction of scenarios and probabilities -> infeasible solutions
- Robust optimization models
 - Uncertainty set based compact formulation
 - Produce highly feasible solutions by considering all possibilities inside uncertainty set
 - Two types of algorithms: Benders decomposition and *column-and-constraint generation*
 - Our aim: integration of decentralized computing scheme + robust optimization

Part II: Robust Optimization Formulations and Properties

Multi-Area Robust Tie-Line Scheduling

Two-stage decision making framework

$$\min_{\boldsymbol{\xi}^{f} \in \Omega^{f}} \sum_{a \in \mathcal{A}} \left\{ \max_{\tilde{\mathbf{P}}_{a}^{w} \in \mathbf{U}_{a}^{w}} \left[\min_{\boldsymbol{\xi}_{a}^{s} \in \Omega_{a}^{s}(\boldsymbol{\xi}_{a}^{f}, \tilde{\mathbf{P}}_{a}^{w})} C_{a}^{ED}(\boldsymbol{\xi}_{a}^{s}, \tilde{\mathbf{P}}_{a}^{w}) \right] \right\}$$

- Tie-line interchanges: the first-stage decisions before the availability of wind energy is known
 - Phase angles at boundary buses:

$$\begin{split} \boldsymbol{\xi}^{f} &= \{\boldsymbol{\xi}^{f}_{a}, \forall a \in \mathbf{A}\}, \boldsymbol{\xi}^{f}_{a} = \left\{\boldsymbol{\delta}_{a,i,t}, \forall g \in \mathbf{G}_{a}, i \in \mathbf{N} \left| {}^{BB}_{a} \cup \mathbf{N} \left| {}^{'BB}_{a}, t \in \mathbf{T} \right. \right\} \\ \Omega^{f} &= \left\{ \boldsymbol{\xi}^{f} \left| \boldsymbol{\delta}_{\phi(i),i,t} = \boldsymbol{\delta}_{\phi(j),i,t}, \right. \left| \boldsymbol{\delta}_{\phi(i),j,t} = \boldsymbol{\delta}_{\phi(j),j,t}, \left| \boldsymbol{\delta}_{\phi(i),i,t} - \boldsymbol{\delta}_{\phi(i),j,t} \right| \right| / X_{i,j} \leq \overline{F}_{i,j}, \forall (i,j) \in \mathbf{E}^{tie}, i > j, t \in \mathbf{T}, \\ \boldsymbol{\delta}_{a',ref,t} = 0, \forall a' \in \Phi(ref), t \in \mathbf{T} \right\} \end{split}$$

Economic dispatch: the second-stage decision after wind energy is revealed.
Continuous model

Inter-regional constraints

Region-coupling constraints - perceived phase angles are same at two ends of a tie-line

$$\delta_{a,i,t} = \delta_{b,i,t}, \, \delta_{a,j,t} = \delta_{b,j,t}, \, \forall t \in \mathbf{T}$$

Economic Dispatch of Each Area

- Dispatch of conventional generation units, wind farms, and phase angles of internal buses
- $\Omega_a^s(\boldsymbol{\xi}_a^f, \tilde{\mathbf{P}}_a^w) = \left\{\boldsymbol{\xi}_a^s\right\}$ $\sum_{i \in \Psi^{IB}(i)} (\theta_{i,t} - \theta_{j,t}) / X_{i,j} + \sum_{i \in \Psi^{BB}(i)} (\theta_{i,t} - \delta_{a,j,t}) / X_{i,j}$ $= \sum_{g \in \Psi_{a}^{G}(i)} p_{g,t}^{G} + \sum_{k \in \Psi_{a}^{W}(i)} p_{k,t}^{w} - \sum_{d \in \Psi^{D}(i)} p_{d,t}^{D}, \forall i \in \mathbb{N}_{a}^{B}, t,$ $\sum_{i \in \Psi^{IB}(i)} (\delta_{a,i,t} - \theta_{j,t}) / X_{i,j} + \sum_{i \in \Psi^{BB}(i)} (\delta_{a,i,t} - \delta_{a,j,t}) / X_{i,j}$ $=\sum_{g\in\Psi^G_+(i)}p^G_{g,t}+\sum_{k\in\Psi^W_+(i)}p^w_{k,t}-\sum_{d\in\Psi^D_+(i)}p^D_{d,t}, \forall i \in \mathbb{N}^{BB}_{a}, t,$ $-\overline{F}_{i,j} \leq (\theta_{i,t} - \theta_{j,t}) / X_{i,j} \leq \overline{F}_{i,j}, \forall i \in \mathbb{N}_{a}^{B}, j \in \Psi_{a}^{B}(i), j > i,$ $-\overline{F}_{i,i} \leq \left(\delta_{a,i,t} - \theta_{i,t}\right) / X_{i,j} \leq \overline{F}_{i,i}, \forall i \in \mathbb{N}_{a}^{BB}, j \in \Psi_{a}^{IB}(i),$

$$p_{g,t}^{G} + r_{g,t}^{G+} \leq P_{g}^{G}, \forall g \in \mathcal{G}_{a}, t \in \mathcal{T} ,$$

$$r_{g,t}^{G-} \ge p_{g,t}^G - \underline{P}_g, \forall g \in \mathbf{G}_a, t \in \mathbf{T}$$
,

$$\sum_{g \in \mathcal{G}_a} r_{g,t}^{G_+} \ge SR_{a,t}^+, \sum_{g \in \mathcal{G}_a} r_{g,t}^{G_-} \ge SR_{a,t}^-, \forall t \in \mathcal{T} ,$$

$$0 \leq r_{g,t}^{G_{+}} \leq RU_{g}^{G}, 0 \leq r_{g,t}^{G_{-}} \leq RD_{g}^{G}, \forall g \in G_{a}, t \in T,$$
$$0 \leq p_{k,t}^{w} \leq \tilde{P}_{k,t}^{w}, \forall k \in W_{a}, t \in T$$

Observation:

If the uncertainty sets U^w_a are polyhedra, the robust multi-area tie-line schedule problem is a convex optimization (an extremely large-scale linear program)

Idea: enumerating all extreme points of U^w_a to construct the equivalent formulation, which is an LP

Multi-Area Generation Unit and Tie-line Scheduling

Two-stage decision making framework

$$\min_{\boldsymbol{\xi}^{f} \in \Omega^{f}} \sum_{a \in \mathbf{A}} \left\{ C_{a}^{UD} \left(\boldsymbol{\xi}_{a}^{f}\right) + \max_{\tilde{\mathbf{P}}_{a}^{W} \in \mathbf{U}_{a}^{W}} \left[\min_{\boldsymbol{\xi}_{a}^{s} \in \Omega_{a}^{s} \left(\boldsymbol{\xi}_{a}^{f}, \tilde{\mathbf{P}}_{a}^{W}\right)} C_{a}^{ED} \left(\boldsymbol{\xi}_{a}^{s}, \tilde{\mathbf{P}}_{a}^{W}\right) \right] \right\}$$

• First-stage decisions: unit commitments and tie-line interchanges

$$\begin{split} \boldsymbol{\xi}^{f} &= \{\boldsymbol{\xi}_{a}^{f}, \forall a \in \mathbf{A}\}, \boldsymbol{\xi}_{a}^{f} = \{\boldsymbol{u}_{g,t}^{G}, \boldsymbol{x}_{g,t}^{G}, \boldsymbol{y}_{g,t}^{G}, \boldsymbol{\delta}_{a,i,t}, \forall g \in \mathbf{G}_{a}, i \in \mathbf{N} \left| \overset{BB}{a} \cup \mathbf{N} \right|_{a}^{BB}, t \in \mathbf{T} \} \\ \Omega^{f} &= \{\boldsymbol{\xi}^{f} \left| \forall a \in \mathbf{A}, g \in \mathbf{G}_{a}, t \in \mathbf{T}, \boldsymbol{\delta}_{\phi(i),i,t} = \boldsymbol{\delta}_{\phi(j),i,t}, \left| \boldsymbol{\delta}_{\phi(i),j,t} \right| \left| \boldsymbol{\delta}_{\phi(i),i,t} - \boldsymbol{\delta}_{\phi(i),j,t} \right| \right| \left| \boldsymbol{X}_{i,j} \leq \overline{F}_{i,j}, \forall (i,j) \in \mathbf{E}^{tie}, i > j, \\ \boldsymbol{\delta}_{a',ref,t} = 0, \forall a' \in \Phi(ref), t \in \mathbf{T}, \\ \boldsymbol{u}_{g,t}^{G} - \boldsymbol{u}_{g,t-1}^{G} = \boldsymbol{x}_{g,t}^{G} - \boldsymbol{y}_{g,t}^{G}, \sum_{\tau = \max\left\{1, t - MU_{g}^{G} + 1\right\}}^{t} \boldsymbol{x}_{g,\tau}^{G} \leq \boldsymbol{u}_{g,t}^{G}, \sum_{\tau = \max\left\{1, t - MU_{g}^{G} + 1\right\}}^{t} \boldsymbol{y}_{g,\tau}^{G} \leq 1 - \boldsymbol{u}_{g,t}^{G}, \forall g, t \\ \boldsymbol{u}_{g,t}^{G} \in \{0,1\}, 0 \leq \boldsymbol{x}_{g,t}^{G} \leq 1, 0 \leq \boldsymbol{y}_{g,t}^{G} \leq 1 \end{split}$$

Multi-Area Generation Unit and Tie-line Scheduling (Cont'd)

 Second-stage decisions: economic dispatch after the available wind power is revealed and unit status are determined

Observation:

 Due to binary variables for unit scheduling, the robust formulation is equivalent to a nonconvex and discrete mixed integer program

Challenge: augmented Lagrangian methods typically do not converge

Part III: Distributed Computing Methods through ADMM

Augmented Lagrangian Relaxation

C Relaxing
$$\delta_{a,i,t} = \delta_{b,i,t}, \delta_{a,j,t} = \delta_{b,j,t}, \forall t \in T$$

Averaging
$$\overline{\delta}_{i,t} = \sum_{a \in \Phi(i)} \delta_{a,i,t} / |\Phi(i)|$$

Augmented model

$$\begin{split} \min_{\boldsymbol{\xi}_{a}^{f}} \ L_{a}\left(\boldsymbol{\xi}_{a}^{f}, \boldsymbol{\lambda}_{a}, \overline{\boldsymbol{\delta}}\right) & L_{a}\left(\boldsymbol{\xi}_{a}^{f}, \boldsymbol{\lambda}_{a}, \overline{\boldsymbol{\delta}}\right) = \sum_{i \in \mathbb{N}_{a}^{BB} \cup \mathbb{N}_{a}^{BB}} \sum_{t \in \mathbb{T}} \left[\lambda_{a,i,t}\left(\delta_{a,i,t} - \overline{\delta_{i,t}}\right) + \frac{\rho}{2}\left(\delta_{a,i,t} - \overline{\delta_{i,t}}\right)^{2} \right] \\ & + \max_{\tilde{\mathbf{P}}_{a}^{w} \in \mathbb{U}_{a}^{w}} \left[\min_{\boldsymbol{\xi}_{a}^{s} \in \Omega_{a}^{s}\left(\boldsymbol{\xi}_{a}^{f}, \tilde{\mathbf{P}}_{a}^{w}\right)} C_{a}^{ED}\left(\boldsymbol{\xi}_{a}^{s}, \tilde{\mathbf{P}}_{a}^{w}\right) \right] \\ & = C_{a}'\left(\boldsymbol{\xi}_{a}^{f}, \boldsymbol{\lambda}_{a}, \overline{\boldsymbol{\delta}}\right) + \max_{\tilde{\mathbf{P}}_{a}^{w} \in \mathbb{U}_{a}^{w}} \left[\min_{\boldsymbol{\xi}_{a}^{s} \in \Omega_{a}^{s}\left(\boldsymbol{\xi}_{a}^{f}, \tilde{\mathbf{P}}_{a}^{w}\right)} C_{a}^{ED}\left(\boldsymbol{\xi}_{a}^{s}, \tilde{\mathbf{P}}_{a}^{w}\right) \right] \end{split}$$

Overall Algorithm Scheme

- Using ADMM, each area can be computed independently
 - distributed computing and privacy protection
- For a single area problem: two-stage robust optimization
 - column and constraint generation method
 - finitely convergent for a polyhedron uncertainty set
- Integrated ADMM+CCG (IAC) Solution Method
 - Multi-area robust tie-line scheduling: ADMM+CCG converges to optimal value
 - Multi-area robust generation unit and tie-line scheduling: convergence is NOT guaranteed
 - Computational enhancements? Speed and convergence

Fast Computing

- Warm Start (WS):
 - select initial values of the first-stage variables and dual variables using the deterministic version
- Scenario Retaining (SR):
 - CCG is repeatedly called within ADMM framework
 - Keep and re-use existing scenarios generated in previous CCG calls
- Scenario Discard (SD):
 - Remove non-critical scenarios to maintain a small pool
 - Dynamically manage a scenario pool through a changing threshold
- SR and SD are key steps in distributed computation of Robust Optimization

Convergence Issue from UC

 Non-convergence due to non-convex structure from binary commitment decisions

- Alternating optimization procedure to ensure convergence (heuristically)
 - Alternatively computing with boundary phase angles or commitment status are fixed
 - A repeated commitment status indicates termination
 - Finitely converged

Part IV: Numerical Study and Demonstrations

Two-Area 12-Bus Interconnected System

Tie-line Flows

IAC Performance for Tie-line Scheduling

Computational Enhancement Strategies

	Strategy			Initial	nitialization ADMM							
Case		SR			Time				C&CG			Total
	WS		SD	# iter.		# iter.	# solution		Time (s)			time (s)
					(s)		MP	SP	MP	SP	SD	
M0	-	-	-	-	-	120	516	469	20.1	33.3	-	53.4
M1	-	\checkmark	-	-	-	120	151	152	223.2	11.0	-	234.2
M2	-	\checkmark	\checkmark	-	-	120	179	179	16.6	13.7	5.8	36.1
M3	\checkmark	-	-	21	5.1	41	82	82	0.9	4.3	-	10.3
M4	\checkmark	\checkmark	\checkmark	21	5.2	41	41	41	0.5	1.5	0.5	7.7

*M0: IAC without enhancement

Coordination Effect with Unit Commitment

slightly higher than the centralized solution by 0.11%

SCHEDULING RESULTS ON 12-BUS SYSTEM

	Proposed IAC					Centralized C&CG				Non-coordinated								
Hour	A	rea	1	Are	ea 2	Tie	A	rea	1	Are	ea 2	Tie	A	rea	1	Are	ea 2	Tie
	G1	G2	G3	G4	G5	(MW)	G1	G2	G3	G4	G5	(MW)	G1	G2	G3	G4	G5	(MW)
1	1	0	0	1	0	-10.4	1	0	0	1	0	-7.9	1	0	0	1	0	0.0
2	1	0	0	1	0	-1.9	1	0	0	1	0	16.1	1	0	0	1	0	0.0
3	1	0	0	1	0	5.4	1	0	0	1	0	18.1	1	0	0	1	0	0.0
4	1	0	0	1	0	11.8	1	0	0	1	0	24.4	1	0	0	1	0	0.0
5	1	0	0	1	0	11.6	1	0	0	1	0	25.3	1	0	0	1	0	0.0
6	1	0	0	1	0	12.6	1	0	0	1	0	21.4	1	0	0	1	0	0.0
7	1	0	0	1	0	25.9	1	0	0	1	0	25.9	1	0	0	1	1	0.0
8	1	0	0	1	0	16.7	1	0	0	1	0	16.5	1	0	0	1	1	0.0
9	1	0	0	1	0	-0.3	1	0	0	1	0	19.9	1	0	0	1	1	0.0
10	1	0	0	1	0	-3.7	1	0	0	1	0	12.7	1	0	0	1	1	0.0
11	1	0	1	1	1	3.0	1	0	1	1	0	11.0	1	0	1	1	1	0.0
12	1	0	1	1	1	2.0	1	0	1	1	0	7.6	1	0	1	1	1	0.0
13	1	0	1	1	1	2.7	1	0	1	1	0	6.7	1	0	0	1	1	0.0
14	1	0	1	1	1	3.4	1	0	1	1	0	7.6	1	0	0	1	1	0.0
15	1	0	1	1	1	1.7	1	0	1	1	0	6.1	1	0	1	1	1	0.0
16	1	0	0	1	0	-8.4	1	0	0	1	0	-0.6	1	0	0	1	0	0.0
17	1	0	0	1	0	-11.4	1	0	0	1	0	-8.4	1	0	0	1	0	0.0
18	1	0	0	1	0	-2.7	1	0	0	1	0	-2.0	1	0	0	1	0	0.0
19	1	0	0	1	0	-5.2	1	0	0	1	0	-9.9	1	0	0	1	0	0.0
20	1	0	0	1	0	-2.5	1	0	0	1	0	-34.3	1	0	0	1	0	0.0
21	1	0	0	1	0	-6.8	1	0	0	1	0	-9.0	1	0	0	1	0	0.0
22	1	0	0	1	0	9.3	1	0	0	1	0	4.6	1	0	0	1	0	0.0
23	1	0	0	1	0	7.1	1	0	0	1	0	0.4	1	0	0	1	0	0.0
24	1	0	0	1	0	-2.0	1	0	0	1	0	4.4	1	0	0	1	0	0.0
Obj.	\$150,419					\$150,243			\$153,645									

Performance in Large Systems

System	Areas	Units	Buses	Int. Lines	Tie-lines
2A-RTS	2	66	48	76	3
3A-RTS	3	99	73	115	5
118-Bus	3	79	118	174	12

IAC for Tie-line Scheduling

SIMULATION RESULTS ON LARGE-SCALE TEST SYSTEMS										
Unc	ertainty l	Budget	$\Gamma = 0$	Γ=6	Γ = 12	Γ = 24				
	Contr	Obj. (\$)	5,982,249	6,104,215	6,182,390	6,203,326				
	Cenu.	Time (s)	2.4	15.2	24.0	9.8				
2A PTS		Obj. (\$)	5,982,497	6,118,620	6,198,730	6,226,089				
ZA-KIS	IAC	# iter.	101	103	103	107				
	IAC	Time (s)	17.9	92.1	79.4	98.7				
		Error (%)	0.00	0.24	0.26	0.37				
	Canta	Obj. (\$)	9,151,653	9,333,234	9,459,759	9,510,397				
	Cenu.	Time (s)	3.6	33.6	106.7	9.9				
2A DTS	IAC	Obj. (\$)	9,151,694	9,348,872	9,468,978	9,512,639				
JA-KIS		# iter.	226	320	316	339				
		Time (s)	34.4	830.4	501.9	676.5				
		Error (%)	0.00	0.17	0.10	0.02				
	Casta	Obj. (\$)	2,249,048	2,250,762	2,252,142	2,255,044				
118-Bus	Centr.	Time (s)	4.4	4.6	4.7	4.2				
		Obj. (\$)	2,249,120	2,251,392	2,253,339	2,257,712				
	TAC	# iter.	491	535	573	600				
	IAC	Time (s)	197.1	285.1	325.2	348.3				
		Error (%)	0.00	0.03	0.05	0.12				

IAC for Generation Unit and Tie-line Scheduling

SIMULATION RESULTS ON LARGE-SCALE TEST SYSTEMS										
Uncer	rtainty B	udget	$\Gamma = 0$	$\Gamma = 6$	$\Gamma = 12$	$\Gamma = 24$				
	Centr	Obj. (\$)	1,014,164	1,018,237	1,039,095	1,044,114				
	Cenu.	Time (s)	597	3,005	1,617	1,451				
2A-RTS		Obj. (\$)	1,019,117	1,034,468	1,055,462	1,061,706				
	IAC	Time (s)	127	3,642	4,186	788				
		Gap (%)	0.49	1.59	1.58	1.66				
	Centr.	Obj. (\$)	1,529,977	1,535,347	1,565,097	1,576,184				
		Time (s)	25	4,196	5,876	4,821				
3A-RTS	IAC	Obj. (\$)	1,541,769	1,562,666	1,583,698	1,591,784				
		Time (s)	125	2,360	1,757	3,486				
3A-RTS		Gap (%)	0.77	1.78	1.19	0.99				
	Contr	Obj. (\$)	1,101,662	1,111,969	1,112,181	1,112,431				
118-Bus	Centr.	Time (s)	19	922	316	867				
	IAC	Obj. (\$)	1,111,116	1,113,739	1,117,006	1,119,490				
		Time (s)	172	4,775	918	437				
3A-RTS		Gap (%)	0.85	1.06	1.34	1.54				

Part V: Conclusions

Observations and Conclusions

- An integrated ADMM+CCG computing method
 - Supporting information and privacy protection in handling uncertainties
 - Advanced enhancement strategies for fast computation
 - New strategies to ensure convergence in non-convex structures
- Coordination plays a critical role in multi-area grid performance
 - For tie-line scheduling, IAC performs (almost) the same as centralized method
 - For commitment and tie-line scheduling, IAC significantly outperforms non-coordinated control
- Future Improvement
 - Economic implications from IAC computation
 - Novel algorithmic improvement to support fast computing