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Part I: Background and Motivation
Multi-area power system
 Physically separated regions (China)

 Different electricity market

 Intermittent renewable energy

 Random contingencies

 Aligned LMPs for boundary 
nodes

Area 1

Area 2 Area 3



Challenges in Multi-Area Power Grids
 Systems are cooperative but operated independently
o Privacy

o Commercial information 

 Protocols between systems to support cooperation:
o Coordinated Transaction Scheduling: NYISO and PJM

o Interchange Optimization: PJM and MISO

o Inter-Regional Interchange Scheduling: ISONE and NYISO

 Interfaces between multiple systems: tie-lines 
 Power flow decisions (day-ahead and intraday)

 Unit commitment decisions (day-ahead)



Decision Models for Multi-Area Power Grids
 Lagrangian relaxation
 Conejo and Aguado (1998), Multi-area coordinated decentralized DC optimal power flow

 Aguado, Quintana, and Conejo (1999), Optimal power flows of interconnected power systems

 Augmented Lagrangian decomposition
 Kim and Baldick (1997)

 Ahmadi-Khatir, Conejo, and Cherkaoui (2014)

 Alternative Direction Method of Multiplers (ADMM)
 Kim and R. Baldick (2000)

 Zheng, Wu, Zhang, Sun, and Liu (2015)



Uncertainty Consideration in Power Grids
 Scenario based probabilistic models
 Stochastic programming (SP) and chance constrained formulation

 Explicit large-scale models but many existing computing methods: e.g., Ahmadi-Khatir, 
Conejo, and Cherkaoui (2013, 2014): 

 SP+ augmented Lagrangian relaxation

 Issue: Inaccurate prediction of scenarios and probabilities -> infeasible solutions

 Robust optimization models
 Uncertainty set based compact formulation 

 Produce highly feasible solutions by considering all possibilities inside uncertainty set

 Two types of algorithms: Benders decomposition and column-and-constraint generation

 Our aim: integration of decentralized computing scheme + robust optimization  



Part II: Robust Optimization Formulations 
and Properties



Multi-Area Robust Tie-Line Scheduling 
 Two-stage decision making framework 

 Tie-line interchanges: the first-stage decisions before the availability of wind 
energy is known
 Phase angles at boundary buses:

Economic dispatch: the second-stage decision after wind energy is revealed.
 Continuous model
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Inter-regional constraints
Region-coupling constraints - perceived phase angles are same at two ends of 

a tie-line
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Economic Dispatch of Each Area
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 Dispatch of conventional generation units, wind farms, and phase
angles of internal buses



Observation: 
 If the uncertainty sets are polyhedra, the robust multi-area tie-line 
schedule problem is a convex optimization (an extremely large-scale linear 
program)

 Idea: enumerating all extreme points of          to construct the equivalent 
formulation, which is an LP  
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Multi-Area Generation Unit and Tie-line 
Scheduling
 Two-stage decision making framework

 First-stage decisions: unit commitments and tie-line interchanges
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Multi-Area Generation Unit and Tie-line 
Scheduling (Cont’d)
 Second-stage decisions: economic dispatch after the available wind power is 
revealed and unit status are determined

Observation: 
 Due to binary variables for unit scheduling, the robust formulation is equivalent to a non-

convex and discrete mixed integer program

 Challenge: augmented Lagrangian methods typically do not converge



Part III: Distributed Computing Methods 
through ADMM



Augmented Lagrangian Relaxation
 Relaxing 

 Averaging 

 Augmented model 
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Overall Algorithm  Scheme
Using ADMM, each area can be computed independently 
 distributed computing and privacy protection

 For a single area problem: two-stage robust optimization 
 column and constraint generation method
 finitely convergent for a polyhedron uncertainty set

 Integrated ADMM+CCG (IAC) Solution Method
 Multi-area robust tie-line scheduling:  ADMM+CCG converges to optimal value
 Multi-area robust generation unit and tie-line scheduling: convergence is NOT guaranteed
 Computational enhancements? Speed and convergence



Fast Computing
Warm Start (WS): 
 select initial values of the first-stage variables  and dual variables using the deterministic 

version 

 Scenario Retaining (SR): 
 CCG is repeatedly called within ADMM framework

 Keep and re-use existing scenarios generated in previous CCG calls

 Scenario Discard (SD): 
 Remove non-critical scenarios to maintain a small pool

 Dynamically manage a scenario pool through a changing threshold 

 SR and SD are key steps in distributed computation of Robust Optimization



Convergence Issue from UC
Non-convergence due to non-convex 
structure from binary commitment 
decisions

Alternating optimization procedure to 
ensure convergence (heuristically)
 Alternatively computing with boundary phase 

angles or commitment status are fixed

 A repeated commitment status indicates 
termination

 Finitely converged 

 Initialization

Solve -fixed problem

(C&CG)

Solve binary-fixed problem

(ADMM+C&CG)

Check 

convergence?

Terminate

Yes

No



Part IV: Numerical Study and 
Demonstrations



Two-Area 12-Bus Interconnected System
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Tie-line Flows 
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IAC Performance for Tie-line Scheduling
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Computational Enhancement Strategies

*M0: IAC without enhancement



Coordination Effect with 
Unit Commitment

slightly higher than the
centralized solution by 0.11%



Performance in Large Systems 



IAC for Tie-line 
Scheduling



IAC for Generation 
Unit and Tie-line 
Scheduling



Part V: Conclusions



Observations and Conclusions
 An integrated ADMM+CCG computing method 
 Supporting information and privacy protection in handling uncertainties

 Advanced enhancement strategies for fast computation

 New strategies to ensure convergence in non-convex structures

 Coordination plays a critical role in multi-area grid performance
 For tie-line scheduling, IAC performs (almost) the same as centralized method

 For commitment and tie-line scheduling, IAC significantly outperforms non-coordinated 
control

 Future Improvement
 Economic implications from IAC computation

 Novel algorithmic improvement to support fast computing


