

Pacific Northwest

Using High Performance Computing to Solve Unit Commitment Problem

STEPHEN ELBERT, FENG PAN, MATTHEW OSTER

Electricity Infrastructure – Analytics, Operation Research June 23, 2015

- Unit commitment problem define the trajectory for the daily operation in a power system
 - Ideally, smaller interval (5-minute). Currently, hourly interval.
 - Ideally, iterations between UC and other tools. Currently, a few iterations.
 - Ideally, incorporate uncertainties. Currently, maybe/some.
 - Ideally, AC power based. Currently, based on DC power flow.
 - Challenge Fast algorithms to solve deterministic UC.

- AC power flow model master equations of the power system
 - Individual voltage, current, power, angle at buses and their interdependence
 - Steady state
 - Frequency not included
- AC optimal power flow minimum feasible generation dispatch
 - Active research area, but not widely used in the industry
 - DCOPF is used with validation from AC power flow model
 - ACOPF is computationally hard and cannot be solved fast enough
- Value for industry replacing DC with fast ACOPF solvers

Research in ACOPF and Unit Commitment

Pacific Northwest NATIONAL LABORATORY Proudly Oberated by Battelle Since 1965

IEEE Publications

OPF (1968-) 2329

Top 25 most cited:

- Survey
- Software
- Newton, interior,
- Distributed
- Security constrained
- Stability
- Heuristic
- Zero duality
- Market product
- Real-time

Unit commitment (1966-) 1726

Top 25 most cited:

- Survey
- MIP formulation
- Renewable integration
- Lagrangian relaxation
- Decomposition
- Heuristics (genetic, SA, priority list)

Make Unit Commitment Decisions

- Making unit commitment decisions is more than solving UC as a MIP.
- System and business requirements and new technologies will affect the problem size, density of nonzeroes, even types of constraints.
 - Some can be solved by problem specifications
 - Some can be solved by using engineering and system knowledge
 - Some need advances in algorithms
- HPC enabled software connected with industry tool.
- Fast solution will enable better models.

Our Approach

Pacific Northwest NATIONAL LABORATORY Proudly Oberated by Battelle Since 1965

Engineer fast algorithms to solve UC with 5-minute interval

Optimization + System & Market Knowledge

Preliminary Study

- Understand characteristics of UC solutions.
- Large amount of time is spent at root node.
- Difference between a MIP solution and a LP solution.
- Understand the performance of heuristics.

Unit Commitment

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Complexity

11

MIP vs LP – State of Generators

period

MIP vs LP – Dispatch

Proudly Operated by **Battelle** Since 1965

elle Since 1965

NOR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 Deriod

LP Relaxation

MIP

June 23, 2015 12

MIP vs LP – State and Dispatch

Difference in dispatch

-50

NOR

MIP vs LP – State and Dispatch

Proudly Operated by Battelle Since 1965

Difference in states

Difference in dispatch

Proudly Operated by **Battelle** Since 1965

Pacific Northwest NATIONAL LABORATORY

Heuristics

Variable fixing

- Solving LP relaxation (easier to parallel than MIP)
- Fix a binary variable if fractional value is larger than a threshold
- Solve the modified UC

Randomized rounding

- Solving LP relaxation (easier to parallel than MIP)
- Fix a binary variable with probability proportional to its fractional value
- Solve modified UC problems (parallelize many instances of randomized rounding)

Variable Fixing – Computational Time

Pacific Northwest

Proudly Operated by **Baffelle** Since 1965

NOR

1965-20

UC Heuristics

Observations

- what made UC a hard problem low loads, large range between lower and upper generation capacities.
- "Similarity" between MIP and LP relaxation solutions.
- Fixing 80-90% binary variables helps, but reduction in computing time is less than expected. Is there "critical" subset of binary variables making the problem hard to solve?
- Next, we are going to explore the structure of LP solutions.

Thank you