

Optimizing Primary Frequency Response

Daniel Kirschen, Yury Dvorkin, Pierre Henneaux, Hrvoje Pandzic

UNIVERSITY of WASHINGTON

Primary frequency response

- Background:
 - Compulsory provision
 - Fixed droop for all conventional generators
 - Response characteristic has drastically decreased over the past decades:
 - 37.5 MW/mHz → 30.7 MW/mHz
 - Increasing penetration of renewable generation will further decrease this response

Objectives

- Improve reliability by accurately assessing the needs for primary frequency response
- Reduce the cost of providing primary reserve
 - Significant cost savings even for moderate wind penetration levels

Approach

- Optimally allocate primary reserve between all generating units
 - Optimize individual droop coefficients
 - Co-optimize each generator's contribution to primary reserve with its energy production
 - No generator contingency should:
 - Cause an excessive frequency deviation
 - Overload a line or transformer
- Preventive Security Constrained OPF (PSCOPF)
 Consider generator contingencies

Example

All generators have the same rating

OPF without generator contingency constraints

Output of G₃ is limited by continuous rating of line A-B:

State	G1	G ₂	G ₃
Pre-contingency dispatch (MW)	115	115	100

Generator contingency with identical droops

If G_2 and G_3 have the same droop and the same size:

State	G ₁	G ₂	G₃
Pre-contingency dispatch (MW)	115	115	100
Response (MW)		57.5	57.5
Post-contingency dispatch (MW)		172.5	157.5

Exceeds the emergency rating of line A-B

PSCOPF with generator contingency constraints

The dispatch takes into account the emergency rating of line A-B:

State	G ₁	G ₂	G ₃
Pre-contingency dispatch (MW)	140	140	50

Generator contingency with identical droops

Security constrained dispatch with identical droops:

State	G1	G ₂	G ₃
Pre-contingency dispatch (MW)	140	140	50
Response (MW)		70	70
Post-contingency dispatch (MW)		210	120
			•

OPF vs. PSCOPF

State	G ₁	G ₂	G ₃	Cost (\$/h)
OPF dispatch (MW)	115	115	100	5,600
PSCOPF dispatch (MW)	140	140	50	6,100

Cost of security: \$6,100 - \$5,600 = \$500

Reducing the security cost

- Increase the output of G_3 in the pre-contingency state
- Decrease the output of G₃ in the post-contingency state
 Avoid exceeding the emergency rating of the line
- Increase the primary response of $G_1 \, \text{and} \, G_2$
 - Avoid excessive frequency drop
- Optimize the droop of each generator

PSCOPF with droop optimization

State	G1	G ₂	G ₃
Pre-contingency dispatch (MW)	120	120	90
Droop	2%	2%	6%

PSCOPF with droop optimization

State	G1	G ₂	G ₃
Pre-contingency dispatch (MW)	120	120	90
Droop	2%	2%	6%
Response (MW)		90	30
Post-contingency dispatch (MW)		210	120

Large pre-contingency output but low response from G_3

Comparison

Case	State	G ₁	G ₂	G ₃	Cost	
Without droop optimization	Pre-contingency	140	140	50	\$ 6,100	
	Response		70	70		
With droop optimization	Pre-contingency	120	120	90	ć r 700	
	Response		90	30	Ş 5,700	

Droop optimization reduces the total cost while ensuring the same level of security as PSCOPF with fixed droops

Cost savings

The savings depend on the load, but are limited by the acceptable range of droop coefficients: 2 to 6%

PSCOPF formulation

$$\begin{split} \min_{P_{g_0}} \sum_g C_g(P_{g_0}) & \text{Objective function} \\ \sum_g \mathbbm{1}_{ng} P_{gc} + P_n^w + \sum_k \mathbbm{1}_{nk} P_{kc} = P_n^d, \ \forall n, c \\ \mathbbm{1}_{gc} P_g^{\min} \leq P_{gc} \leq \mathbbm{1}_{gc} P_g^{\max}, \ \forall g, c \\ 0 \leq P_n^w \leq P_n^{f_w}, \ \forall n \\ P_{kc} = B_k \sum_n \mathbbm{1}_{nk} \theta_{nc}, \ \forall k, c \\ -P_{kc}^{\max} \leq P_{kc} \leq P_{kc}^{\max}, \ \forall k, c \\ \theta^{\min} \leq \theta_{nc} \leq \theta^{\max}, \ \forall n > 1, c \\ \theta_{1c} = 0, \ \forall c \\ P_{gc_g} \geq \mathbbm{1}_{gc_g} (P_{g0} - D_g \Delta f_{c_g}), \ \forall g, c_g \\ P_{gc_g} \geq \mathbbm{1}_{gc_g} (P_{g0} - D_g \Delta f_{c_g}) - M_{\mathbbm} \mathbbm{1}_{gc_g} \ \forall g, c_g \\ \end{split}$$

$$\begin{aligned} \text{Primary response constraints} \\ \end{split}$$

PSCOPF formulation

$$\begin{split} \min_{P_{g0}} \sum_{g} C_g(P_{g0}) \\ \sum_{g} \mathbb{1}_{ng} P_{gc} + P_n^w + \sum_{k} \mathbb{1}_{nk} P_{kc} = P_n^d, \ \forall n, c \\ \mathbb{1}_{gc} P_g^{\min} \leq P_{gc} \leq \mathbb{1}_{gc} P_g^{\max}, \ \forall g, c \\ 0 \leq P_n^w \leq P_n^{f_w}, \ \forall n \\ P_{kc} = B_k \sum_{n} \mathbb{1}_{nk} \theta_{nc}, \ \forall k, c \\ \theta^{\min} \leq \theta_{nc} \leq \theta^{\max}, \ \forall n > 1, c \\ \theta_{1c} = 0, \ \forall c \\ P_{gc_g} \geq z_{gc_g} P_g^{\max}, \ \forall g, c_g \\ P_{gc_g} \geq \mathbb{1}_{gc_g} (P_{g0} - D_g) f_{c_g}), \ \forall g, c_g \\ P_{gc_g} \geq \mathbb{1}_{gc_g} (P_{g0} - D_g) f_{c_g}) - Mz_{gc_g} \ \forall g, c_g \end{split}$$
 Droop coefficients:
New discretized decision variables
Primary response constraints

© 2015 D. Kirschen, Y. Dvorkin, P. Henneaux, H. Pandzic

Solving this PSCOPF

- Non-linear problem because the droop coefficients are decision variables
 - Product of binary and continuous variables
- Non-convex problem
 - Use a Benders-like decomposition
 - No guarantee of optimality
 - Test results show that the loss of optimality is acceptable

Test System and Data

- Modified versions of the one- and three-area Reliability Test System
- Yearly load and simulated wind generation profiles
- Day-ahead UC decisions are optimized using a deterministic UC model
- Optimization is performed using the CPLEX 12.1 solver in GAMS 24.0.2 on a 2.5 GHz Intel Xeon processor with 16 GB RAM

Cases

- Case 0: PSC OPF with fixed droops
- Case I:PSC OPF with droops optimization but without Benders' decomposition
- Case II: PSC OPF with droops optimization but with Benders' decomposition
- Case III: Determine the optimal droops using Benders decomposition, then re-solve the PSC OPF with these droops fixed.

Computational performance

Tests performed on the one-area RTS

Cost of security

Tests performed on the one-area RTS

Cost savings over a year

- Three-area RTS
- Case III technique is used for year-long simulations
- Hourly and daily droop optimization
- Three wind penetration levels: 10, 20, 30%
- Two contingency reserve policies (CRP):
 - CRP1 (state-of-the-art): (N-1) reserve requirement is arbitrarily shared between three areas
 - CRP2 (potential policy): Each area provides a third of the (N-1) reserve requirement

Savings over a year

- Cost savings increase with the wind penetration
- Hourly variable droop optimization provides more flexibility for procuring primary response and achieves larger savings
- The proposed methodology is especially valuable for CRP2

Conclusions

- Optimizing droops enables more flexible allocation of primary response
- Cost savings achieved with the proposed methodology increase with wind penetration
- The proposed methodology is computationally tractable and compatible with PSCOPF

References

• Motivation for modelling generation contingencies in PSCOPF:

[1] Y. Wen and C. Guo, "Discussion on Solving Preventive-Corrective SCOPF by a Hybrid Computational Strategy," *IEEE Transactions on Power Systems,* Vol. 29, No. 6, pp. 3124, 2014.

[2] Y. Xu, Z. Y. Dong, R. Zhang, K. P. Wong, and M. Lai, "Closure to Discussion on Solving Preventive-Corrective SCOPF by a Hybrid Computational Strategy," *IEEE Trans. on Power Systems,* Vol. 29, No. 6, pp. 3125, 2014.

• Evidence of reducing primary response:

[3] J. W. Ingleson and D. M. Ellis, "Tracking the Eastern interconnection frequency governing characteristic," in *Proc. of the 2005 IEEE Power Engineering Society General Meeting*, pp. 1461-1466, 2005.

[4] H. F. Illian, "Relating Primary Governing Frequency Response to Future Operating Reliability," in *Proc. of the 2007 IEEE Power Engineering Society General Meeting*, pp. 1-5, 2007.

• Impact of renewable generation on primary response:

[5] P. Du and Y. Makarov, "Using Disturbance Data to Monitor Primary Frequency Response for Power System Interconnections," *IEEE Transactions on Power Systems,* Vol. 29, No., 3, pp. 1431-1432, 2014.

[6] R. Doherty, G. Lalor, and M. O'Malley, "Frequency Control in Competitive Electricity Market Dispatch," *IEEE Transactions on Power Systems,* Vol. 20, No. 3, pp. 1588-1596, 2005.