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Primary frequency response

* Background:
— Compulsory provision
— Fixed droop for all conventional generators

— Response characteristic has drastically decreased
over the past decades:

* 37.5 MW/mHz - 30.7 MW/mHz

— Increasing penetration of renewable generation
will further decrease this response
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Objectives

* Improve reliability by accurately assessing the
needs for primary frequency response

 Reduce the cost of providing primary reserve

— Significant cost savings even for moderate wind
penetration levels
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Approach

 Optimally allocate primary reserve between
all generating units

— Optimize individual droop coefficients

— Co-optimize each generator’s contribution to
primary reserve with its energy production

— No generator contingency should:
* Cause an excessive frequency deviation
* Overload a line or transformer

* Preventive Security Constrained OPF (PSCOPF)

— Consider generator contingencies

© 2015 D. Kirschen, Y. Dvorkin, P. Henneaux, H. Pandzic



Example

20$/MWh A 5

G @ Continuous rating: 100 MW 10$/MWh
1

Emergency rating: 120 MW
@-
. @®
l330 MW

All generators have the same rating
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OPF without generator contingency constraints

20$/MWh A 5

G ‘ Continuous rating: 100 MW 10$/MWh
1 .

Emergency rating: 120 MW
@-
. @
l330 MW

Output of G, is limited by continuous rating of line A-B:

Pre-contingency dispatch (MW)
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Generator contingency with identical droops

20$/MWh A 5

G ‘ Continuous rating: 100 MW 10$/MWh
1 .

Emergency rating: 120 MW
@-
. @
l330 MW

If G, and G, have the same droop and the same size:

Pre-contingency dispatch (MW)
Response (MW) -- 57.5 57.5
Post-contingency dispatch (MW) -- 172.5 157.5

1
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PSCOPF with generator contingency constraints

20$/MWh A B

G ‘ Continuous rating: 100 MW 10$/MWh
1 .

Emergency rating: 120 MW
@-
. @
l330 MW

The dispatch takes into account the emergency rating of line A-B:

Pre-contingency dispatch (MW)
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Generator contingency with identical droops

20$/MWh A 5

G ‘ Continuous rating: 100 MW 10$/MWh
1 .

Emergency rating: 120 MW
@-
. @
l330 MW

Security constrained dispatch with identical droops:

Pre-contingency dispatch (MW)
Response (MW) -- 70 70
Post-contingency dispatch (MW) -- 210 120

1
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OPF vs. PSCOPF

20$/MWh A 5

G ‘ Continuous rating: 100 MW 10$/MWh
1 .

Emergency rating: 120 MW
@-
. @
l330 MW

“_““

OPF dispatch (MW) 5,600
PSCOPF dispatch (MW) 140 140 50 6,100

Cost of security: $6,100 - $5,600 = $500
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Reducing the security cost

20$/MWh A 5

G @ Continuous rating: 100 MW 10$/MWh
1

Emergency rating: 120 MW
@-
. @®
l330 MW

* Increase the output of G5 in the pre-contingency state

* Decrease the output of G3 in the post-contingency state
» Avoid exceeding the emergency rating of the line

* Increase the primary response of G, and G,
» Avoid excessive frequency drop
* Optimize the droop of each generator
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PSCOPF with droop optimization

20$/MWh A 5

G ‘ Continuous rating: 100 MW 10$/MWh
1 :

Emergency rating: 120 MW
@-
. @
l330 MW

Pre-contingency dispatch (MW)
Droop 2% 2% 6%
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PSCOPF with droop optimization

20$/MWh A 5

G ‘ Continuous rating: 100 MW 10$/MWh
1 .

Emergency rating: 120 MW
@-
. @
l330 MW

Pre-contingency dispatch (MW)

Droop 2% 2% 6%
Response (MW) - 90 30
Post-contingency dispatch (MW) - 210 120

Large pre-contingency output but low response from G,
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Comparison

20$/MWh A 5

G ‘ Continuous rating: 100 MW 10$/MWh
1

Emergency rating: 120 MW
@-
- @
330 MW
“ﬂﬂﬂ

\4

Without droop Pre-contingency $ 6,100
optimization Response — 70 70
WiFh Firqop Pre-contingency 120 120 90 & 5 700
optimization Response - 90 30 '

Droop optimization reduces the total cost while ensuring the
same level of security as PSCOPF with fixed droops
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Cost savings
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The savings depend on the load, but are limited by the
acceptable range of droop coefficients: 2 to 6%
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PSCOPF formulation
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Objective function

Dispatch constraints

Primary response
constraints
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PSCOPF formulation

111111 Z Cy(Pyo)
Z Ly Pye + PV + Z Ly Pre = Py, Vn,c
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Py, >1,. (P — Zge, Vg, constraints
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Droop coefficients:
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Solving this PSCOPF

* Non-linear problem because the droop
coefficients are decision variables

— Product of binary and continuous variables

* Non-convex problem
— Use a Benders-like decomposition
— No guarantee of optimality

— Test results show that the loss of optimality is
acceptable
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Test System and Data

e Modified versions of the one- and three-area
Reliability Test System

* Yearly load and simulated wind generation profiles

* Day-ahead UC decisions are optimized using a
deterministic UC model

* Optimization is performed using the CPLEX 12.1
solver in GAMS 24.0.2 on a 2.5 GHz Intel Xeon
processor with 16 GB RAM
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Cases

e Case 0: PSC OPF with fixed droops

e Case I:PSC OPF with droops optimization but
Benders’ decomposition

e Case ll: PSC OPF with droops optimization but
Benders’ decomposition

* Case lll: Determine the optimal droops using
Benders decomposition, then re-solve the PSC
OPF with these droops fixed.
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Computational performance

10°
‘ ! ' . |_PSC-OPF with |
. fixed droops '
’ i |-+Casel
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Cost of security
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Cost savings over a year

* Three-area RTS

e Case lll technique is used for year-long simulations
* Hourly and daily droop optimization

 Three wind penetration levels: 10, 20, 30%

* Two contingency reserve policies (CRP):

— CRP1 (state-of-the-art): (N-1) reserve requirement is
arbitrarily shared between three areas

— CRP2 (potential policy): Each area provides a third of the
(N-1) reserve requirement
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Savings over a year

a) CRP 1 b) CRP 2
&N nl & a| _
~ 3 = 3
@ @
2 o} 2 ol
> >
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w w
20 30

10 10 20 30
Wind penetration level, % Wind penetration level, %

I Hourly variable [ | Daily variable

* Cost savings increase with the wind penetration

* Hourly variable droop optimization provides more flexibility
for procuring primary response and achieves larger savings

 The proposed methodology is especially valuable for CRP2
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Conclusions

* Optimizing droops enables more flexible
allocation of primary response

* Cost savings achieved with the proposed
methodology increase with wind penetration

* The proposed methodology is computationally
tractable and compatible with PSCOPF
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