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• ISO markets in the US optimize generator 
schedules to produce power at the lowest cost

• In the US: $1-4 billion in savings are possible 
from a 1% decrease in operational costs1

Market efficiency through 
central dispatch

Picture credit: http://w3.siemens.com/smartgrid/global/en/projects/pages/pjm.aspx
1 M.B. Cain, R. P. O’Neill, and A. Castillo, “History of optimal power flow and formulations,”  Federal Energy Regulatory Commission, December 2012.
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AC vs DC modeling

• AC optimal power flow (AC OPF)
• 𝑃, 𝑄, Θ, 𝑉

• Nonlinear, non-convex

• DC optimal power flow (DC OPF)
• 𝑃 only in ISO software

• Linear

• DC-based market dispatch requires additional 
tweaks to account for voltage
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AC OPF

DC OPF



Example: IEEE 57-bus
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More supply at 

“distant” busses

=

Binding voltage 

constraints

=

Poor DCOPF 

accuracy



In PJM: closed loop interfaces

Pre-defined borders to proxy voltage constraints
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Source: http://www.monitoringanalytics.com/reports/Reports/2016/IMM_Comments_Docket_No_AD14-14-000_20160406.pdf



𝑘∈𝐾𝐶𝐿𝐼

𝐴𝑘
𝐶𝐿𝐼𝑝𝑖𝑗𝑘 ≤ 𝐵𝐶𝐿𝐼

𝑝𝑖𝑗𝑘 : power flow on line 𝑘

𝐴𝑘
𝐶𝐿𝐼 : usually 1 if 𝑘 ∈ 𝐾𝐶𝐿𝐼

𝐵𝐶𝐿𝐼 : import limit
𝑖, 𝑗, 𝑛 : buses or nodes

𝑘 : transmission lines



MISO market enhancements

• Current practice: Operating Guides and uplift

• Est. $90M/yr in uplift for MISO South load 
pockets

• New project: “Pricing for Voltage and Local 
Reliability Commitments”

• Goal: send appropriate price signals and 
decrease uplift

• Directly affects 6000-9000MW

• Production cost savings and pricing efficiency
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Source: https://www.misoenergy.org/WhatWeDo/MarketEnhancements/Pages/MarketEnhancements.aspx



Literature review

• Power Flow
• Stott, Alsac (1973) - Fast decoupled load flow 

• Alsac, Bright, Prais, Stott (1990) - Further developments in 
LP-based power flow

• Overbye, Cheng, Sun (2004) - Comparison of AC and DC 
power flow models

• Coffrin, Van Hentenryck (2014) - LP approximation of AC 
power flows

• Pricing/markets
• Baughman and S. N. Siddiqi (1991) - Real time pricing of 

reactive power

• Khan, Baldick (1994) - Reactive power is a cheap constraint

• Hogan (1996) - Markets in real electric networks require 
reactive power prices
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Formulation
• DCOPF

• Q,V Linearization

• Linear OPF
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DCOPF formulations

• B-theta

𝑝𝑖𝑗𝑘 =
−1

𝑥𝑘
(𝜃𝑖 − 𝜃𝑗)

• PTDF

𝑝𝑖𝑗𝑘 = ∑𝑡𝑘𝑛𝑝𝑛 = ∑
−1

𝑥𝑘

𝑑𝜃𝑖
𝑑𝑝𝑛

−
𝑑𝜃𝑗

𝑑𝑝𝑛
𝑝𝑛

• PTDF is equivalent to B-theta
• Fewer variables, dense sensitivity matrix

• Only model flowgates with high prob. of binding

• Assumptions ignore reactive power and voltage!
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Nonlinear reactive power flow

𝑞𝑘 𝑣, 𝜃 = −𝐵𝑘𝑣𝑖
2 − 𝑣𝑖𝑣𝑗 𝐺𝑘sin𝜃𝑖𝑗 − 𝐵𝑘cos𝜃𝑖𝑗

• Small angle approximations

sin𝜃 ≈ 𝜃 and cos𝜃 ≈ 1 − 𝜃2/2
𝑞𝑘 𝑣, 𝑝𝑘 = −𝐵𝑘 𝑣𝑖

2 − 𝑣𝑖𝑣𝑗 − 𝑋𝑘𝑣𝑖𝑣𝑗 −𝐺𝑘𝑝𝑘 − 𝑝𝑘
2/2

• Linearization

𝑞𝑘 𝑣, 𝑝𝑘 ≈ 𝑞𝑘 ҧ𝑣, ҧ𝑝𝑘 + 𝛻𝑞𝑘 ҧ𝑣, ҧ𝑝𝑘 𝑣 − ҧ𝑣, 𝑝𝑘 − ҧ𝑝𝑘
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Linear OPF formulation

min

𝑖

𝑐𝑖𝑝𝑖
𝑔

standard DCOPF with losses

𝑞𝑖
𝑔
− 𝑞𝑖

𝑑 − 

𝑘∈𝐾𝑖

𝑞𝑘 = 0

𝑞𝑘 = 𝑞𝑘 ҧ𝑣, ҧ𝑝𝑘 + 𝛻𝑞𝑘 ҧ𝑣, ҧ𝑝𝑘 𝑣 − ҧ𝑣, 𝑝𝑘 − ҧ𝑝𝑘

𝑣min ≤ 𝑣 ≤ 𝑣max
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Nodal balance

Q flow Taylor series

Voltage limits



Sensitivity
• Motivating example

• 118, 300 bus cases

• Solution times
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Example: IEEE 57-bus
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lopf iterates / Taylor series updates



Example: IEEE 118-bus
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dcopf same as lopf



Example: IEEE 300-bus
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Summary: Avg Cost Error (%)
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* Relative to ACOPF objective function

No difference



Summary: Avg Solution Time
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* Relative to ACOPF solution time



Conclusion
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Conclusion

• The DCOPF is the standard electric dispatch 
model

• Linear programming solves quickly

• MIP formulation for unit commitment

• Ignores reactive power and voltage

• Reactive power and voltage are not optimized

• Can be modeled with additional constraints
• First-order Taylor series approximation

• Base point solution updated with DC approximation

• May speed up computation time!
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Future Work

Improved approximation
• Physically meaningful Q and V
• MVA transmission limits, D-curves, line losses
• Convergence to AC solution?

Computational enhancements
• Restrict modeling to specific network areas
• Base point estimation, piecewise linearization

Economics and pricing
• Cost allocation to real power or voltage
• Better incentives to install synchronous Var 

compensators, etc.
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Thank you!
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