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Power System Stability

• Frequency instability

‒ Associated with an imbalance between load and generation

‒ Demand response based on temporal shifting of load

• Voltage instability

‒ Associated with operation that nears the limits of the network’s

power transfer capability

‒ Demand response based on spatial shifting of load

Introduction

How to control flexible loads in order to 

improve voltage stability after a disturbance?

[Short, Infield, & Freris ‘07], [Molina-Garcia, Bouffard, & Kirschen ‘10], 

[Mathieu, Koch, & Callaway ‘12], [Zhang, Lian, Chang, & Kalsi ‘13] 
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Voltage Stability

Introduction

Power

Voltage

• Distance to the “nose point” of the PV curve

‒ Often computed using continuation methods, which are difficult 

to embed within an optimization problem

‒
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Voltage Stability

Introduction

Power

Voltage

• Distance to the “nose point” of the PV curve

‒ Often computed using continuation methods, which are difficult 

to embed within an optimization problem

‒ A voltage stability metric based on power flow sensitivities is 

based on the smallest singular value of the power flow Jacobian

The power flow 

Jacobian is singular: 

smallest singular 

value equal to zero

[Tiranuchit  & Thomas ‘88], [Lof, Smed, Andersson, & Hill ‘92]
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Our Approach

Introduction

Power

Voltage

• Maximize the smallest singular value of the power 

flow Jacobian via control of flexible load demands

• Spatial shifting of loads with total demand held 

constant over time to maintain frequency stability

The power flow 

Jacobian is singular: 

smallest singular 

value equal to zero
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Multi-Period Approach

Introduction

Power flow solvability

boundary (singular Jacobian)

Initial operating point
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Multi-Period Approach

Introduction

Power flow solvability

boundary (singular Jacobian)

Initial operating point

Post-disturbance

operating point
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Multi-Period Approach

Introduction

Power flow solvability

boundary (singular Jacobian)

Initial operating point

Post-disturbance

operating point

After reallocating

flexible load
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Multi-Period Approach

Introduction

Power flow solvability

boundary (singular Jacobian)

Initial operating point

Post-disturbance

operating point

After reallocating

flexible load

Generation redispatch, 

energy payback
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Multi-Period Approach

Introduction

Power flow solvability

boundary (singular Jacobian)

Initial operating point

Post-disturbance

operating point

After reallocating

flexible load

Generation redispatch, 

energy payback
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Problem Formulation
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Assumptions

Formulation

• Load models

‒ Constant power factor

‒ Flexible loads at some or all PQ buses

‒ Total demand from flexible loads held constant at each period

• Generator models

‒ Modeled as PV buses immediately after the disturbance

‒ Active power generation redispatched in subsequent periods

We first show the single-period formulation, 

and then extend to a multi-period setting.
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Smallest Singular Value Maximization

Formulation

smallest singular value of 

the power flow Jacobian

Total flexible load demand is constant

AC power flow equations

Operational limits

Directly solving this problem is challenging

Similar to the formulations in [Berizzi et al. ‘01], [Cañizares et al. ‘01]
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Solution via Successive Linearization

Formulation

• Use singular value sensitivities and a linearization of the 

AC power flow equations

• Sensitivity of the singular values      for the Jacobian 

with respect to a parameter in                                           :

The approximate change in      is

Left eigenvector Right eigenvector

Similar to the approach in [Avalos, Cañizares, & Anjos ‘08]
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Incremental Formulation

Formulation

Take a step that seeks to increase 

the smallest singular value

The singular value sensitivity

Total flexible load demand is constant

Linearized AC power flow equations

Linearized operational constraints

See [Yao, Mathieu, & Molzahn ‘17] for the full formulation.
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Successive Linearization Algorithm

Formulation

Solve the base case 

AC power flow

Solve the 

incremental 

optimization problem

Update variables

Run AC power flow

+

Output the 

solution

No

Yes
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Recall the Multi-Period Approach

Initial operating point

Post-disturbance

operating point

Reallocate flexible 

load (t = 1)

Redispatch generation for 

energy payback (t = 2)

Formulation
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Recall the Multi-Period Approach

Reallocate flexible 

load (t = 1)

Redispatch generation for 

energy payback (t = 2)

Optimize flexible loads in these steps

Formulation
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Multi-Period Formulation

Formulation

t=1: Smallest singular value maximization

t=2: Energy payback for flexible loads

Optimize a weighted sum of the smallest 

singular value and the generation 

redispatch cost for energy payback

smallest singular value of 

the power flow Jacobian

Total flexible load demand is constant

AC power flow equations 

and operational limits

Power demand shifted from 

flexible loads is “paid back”
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Multi-Period Formulation

Formulation

Optimize a weighted sum of the smallest 

singular value and the generation 

redispatch cost for energy payback

smallest singular value of 

the power flow Jacobian

Total flexible load demand is constant

AC power flow equations 

and operational limits

Power demand shifted from 

flexible loads is “paid back”

Solve using a successive linearization algorithm
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Test Cases
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Nine-Bus Test Case

Test Cases

Smallest Singular Value:  1.0895                 0.4445

59% decrease
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Results: Smallest Singular Value

6.1% improvement in the smallest singular 

value from spatially shifting controllable loads
Test Cases
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Results: Generation Cost

0.8% increase in generation cost from 

spatially shifting controllable loads
Test Cases
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Convergence Rate

The successive linear programming algorithm 

typically converges in a few tens of iterations

Test Cases
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Trade-Off Between Smallest Singular 

Value and Generation Cost

The weights in the objective function effectively 

control the trade-off between higher generation 

cost and improved voltage stability marginsTest Cases
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IEEE 118-Bus Test Case

4.6% improvement in the 

smallest singular value

0.2% increase in the 

total generation cost

Computation time: 282 seconds

Test Cases
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IEEE 118-Bus Test Case

Visualization created using 

http://immersive.erc.monash.edu.au/stac/ Test Cases
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Conclusion
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Conclusion

• Spatial shifting of load can improve voltage stability 

margins after a disturbance

• To determine appropriate load control, we formulated 

a multi-period optimization problem and applied a 

successive linearization solution algorithm

• Future work:

‒ Incorporating more detailed load models (ZIP loads)

‒ Improving computational speed

‒ Characterizing closeness to global optimality using convex 

relaxation techniques
Conclusion
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Questions?
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