Impact of ACOPF Constraints on Security-Constrained Unit Commitment

Anya Castillo^{1,2}, Jean-Paul Watson³, Cesar Silva-Monroy³, Richard P. O'Neill² and Carl Laird⁴

Increasing Market & Planning Efficiency through Improved Software FERC, 22-24 June 2015

¹ Johns Hopkins University

² Federal Energy Regulatory Commission

³ Sandia National Labs

⁴ Purdue University

SCUC with ACOPF Constraints

- Overview
- Motivation
- Methodology
- Case Studies

UC Transmission Modeling

Current Practices	Proposed Approach
UC	SCUC+ACOPF
 Copper-plate (no network/single node) 	Co-optimizes real and reactive power dispatch
• Ignores congestion; requires cutsets	Accounts for commitments needed
to proxy capacity limits on network	for blackstart service, reactive
Most tractable	support, voltage support, and interface control
SCUC+DCOPF	Nonlinear, nonconvex on meshed
• Real power flows only (proportional	networks (need to approximate)
to current)	
 BØ (full) or PTDF (compact) 	
approach	
Extensions:	
 Accounts for losses (extension) 	
• Incorporates AC feasibility; requires	
nomograms/cutsets to proxy	
reliability requirements	

Issues in Day-Ahead Energy Markets

- Operational Challenges
 - Committing Least Cost + Maintaining Reliability
 - Out-of-Merit Reliability Commitments
 - Better convergence between day-ahead and real-time prices
- Algorithmic Challenges
 - Accounting for reliability needs in dispatch and pricing optimization
 - Better physical representation of the generating units and underlying network

Reliability Commitment Example

Load Forecast: 100 MW

Source: PJM "Impact of Reliability Units Being Included in the Day-Ahead Market" (2013)

SCUC+ACOPF: Parameterization

System Parameterizations

Nodal voltage limits Reserve requirements Real and reactive power load Transformer tap ratio and phase-shifters Thermal line limit and line resistance, reactance, and susceptance Shunts

Generator Characteristics

Synchronous condensers Power generated and unit-on state in TO Minimum/maximum real and reactive power outputs Minimum up/down time Ramp up/down limits Startup/shutdown ramp limits Startup lags Startup/shutdown costs

SCUC+ACOPF: MINLP

min Production Costs + Start-up Costs + No-Load Costs

S.t. AC Network Limits¹

Real power balancing Reactive power balancing Voltage magnitude bounds Thermal line limits Spinning reserves

Apparent Power Production Limits²

Maximum/minimum real power generation Maximum/minimum reactive power generation Ramp up/down rates on real power Minimum up/down time

- 1. Extends Castillo, Lipka, Watson, Oren, and O'Neill. "A successive linear programming approach to solving the IV-ACOPF," Submitted to IEEE Trans. On Power Syst., 2015.
- 2. Extends Carrion and Arroyo. "A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem," *IEEE Trans. On Sustainable Energy*, vol. 2, no. 1, pp. 69-77, 2011.

SCUC+ACOPF: (Compact) Formulation

 $\min \sum_{i \in \mathbf{I}, t \in T} \left(f_{it}^{p} \left(p_{it} \right) + f_{it}^{u} \left(u_{it} \right) \right)$

$$s.t. \qquad \sum_{i \in l(n)} p_{it} - \left(v_{nt}^{r} i_{nt}^{r} + v_{nt}^{j} i_{nt}^{j}\right) = P_{nt}^{d}, \forall n \in N, t \in T \qquad \left(i_{k(n,m)t}^{r}\right)^{2} + \left(i_{k(n,m)t}^{j}\right)^{2} \leq \left(I_{k}^{\max}\right)^{2}, \forall k(\cdot) \in F, t \in T \\ \sum_{i \in l(n)} q_{it} + \left(v_{nt}^{r} i_{nt}^{j} - v_{nt}^{j} i_{nt}^{r}\right) = Q_{nt}^{d}, \forall n \in N, t \in T \qquad i_{k(n,m)t}^{r} = \operatorname{Re}\left(Y_{k(n,m)t}^{1,1}v_{nt} + Y_{k(n,m)}^{1,2}v_{mt}\right), \forall k(\cdot) \in F, t \in T \\ \left(V_{n}^{\min}\right)^{2} \leq \left(v_{nt}^{r}\right)^{2} + \left(v_{nt}^{j}\right)^{2} \leq \left(V_{n}^{\max}\right)^{2}, \forall n \in N, t \in T \qquad i_{k(n,m)t}^{j} = \operatorname{Im}\left(Y_{k(n,m)t}^{2,1}v_{nt} + Y_{k(n,m)}^{2,2}v_{mt}\right), \forall k(\cdot) \in F, t \in T \\ i_{nt}^{r} - \sum_{k(n,\cdot)} i_{k(n,m)t}^{r} = 0, \forall n \in N, t \in T \qquad \sum_{i \in l(n)} r_{it} \geq R_{t}, \forall t \in T \\ i_{nt}^{j} - \sum_{k(n,\cdot)} i_{k(n,m)t}^{j} = 0, \forall n \in N, t \in T \qquad p, q, r, u \in \Omega \text{ (feasible set of apparent power production)}$$

 $f_{it}^{u}(u_{it})$ is the startup and no-load cost $f_{it}^{p}(p_{it})$ is the incremental cost

 u_{it} is the commitment status for generator *i* at time *t*

 p_{it}, q_{it}, r_{it} are the real and reactive power, and reserves for generator *i* at time *t* $\left(v_{nt}^{r}\right)^{2} + \left(v_{nt}^{j}\right)^{2}$ is the nodal voltage magnitude squared for node *n* $\left(i_{k(n,m)t}^{r}\right)^{2} + \left(i_{k(n,m)t}^{j}\right)^{2}$ is the directional flow current magnitude squared for network element *k*

Linearization Constraint Set MINLP \rightarrow MIP

Taylor Series Approximation

Real power balancing Reactive power balancing Line current magnitude squared Nodal voltage magnitude squared

$$h(x^{k+1}) = h(x^k) + \nabla h(x^k)^T (x^{k+1} - x^k)$$

Linearization Constraint Set MINLP \rightarrow MIP

Slack Variables Penalized in Cost Function

Nodal voltage magnitude bounds Thermal line limits Spinning reserves Load mismatch

$$x^{L} - \varepsilon^{-} \leq x \leq x^{U} + \varepsilon^{+}$$

Taylor Series Approximation

Real power balancing Reactive power balancing Line current magnitude squared Nodal voltage magnitude squared

$$h(x^{k+1}) = h(x^k) + \nabla h(x^k)^T (x^{k+1} - x^k)$$

Linearization Constraint Set MINLP \rightarrow MIP

Slack Variables Penalized in Cost Function

Nodal voltage magnitude bounds Thermal line limits Spinning reserves Load mismatch

$$x^{L} - \varepsilon^{-} \leq x \leq x^{U} + \varepsilon^{+}$$

Taylor Series Approximation

Real power balancing Reactive power balancing Line current magnitude squared Nodal voltage magnitude squared

 $h(x^{k+1}) = h(x^{k}) + \nabla h(x^{k})^{T}(x^{k+1} - x^{k})$

Infeasibility Handling

 x^{k+1}

Nodal voltage magnitude upperbounds Thermal line limit

- ACOPF Feasible Region
- —— Linearized Region Infeasibility Cut

Comparative Case Studies

UC	SCUC+DCOPF	SCUC+ACOPF	SCUC+DCOPF+RUC
No capacity line limits	Capacity line limits determined as P ^{max} = VI ^{max}	Capacity line limits determined as thermal line ratings (I ^{max}) on	Initially a SCUC+DCOPF is solved to determine the commitment schedule; if
No reactive power dispatch	where V = 1 p.u.	the current magnitude	the solution is not AC feasible, then solve the
	No reactive power dispatch	Compared to DCOPF: V > 1 p.u. → Higher power transfers V < 1 p.u. → Lower power transfers	SCUC+ACOPF with the specified commitment schedule in order to determine residual unit (add'l) commitments.

6-Bus Example¹

G1: $100 \le p_{it} \le 220 \text{ MW}$ Ramp: +/- 55 MW -80 $\le q_{it} \le 200 \text{ MVAr}$ Min Up/Down Time: 4 Hr

G2: $10 \le p_{it} \le 100 \text{ MW}$ Ramp: +/- 50 MW -40 $\le q_{it} \le 70 \text{ MVAr}$ Min Up/Down Time: 2/3 Hr

G3: $10 \le p_{it} \le 20$ MW Ramp: +/- 20 MW -40 $\le q_{it} \le 50$ MVAr Min Up/Down Time: 1 Hr

	Start-Up	No-Load	Production Cost		UC	SCUC+DCOPF	SCUC+ACOPF
	(\$)	(\$)	(\$/MWh)	Cost (\$)	101,269 (base)	106,987 (+5.8%)	101,762 (+0.5%)
G1	124.69	220.58	0.0005(p _{it}) ² + 16.83p _{it}	G1 (Hr)	1-24	1-24	1-24
G2	249.22	161.87	$0.001(p_{it})^2 + 40.62p_{it}$	G2 (Hr)	1,12-21	1,11-22	1,12-21
G3	0	171.23	0.006(p _{it}) ² + 21.93p _{it}	G3 (Hr)	10-22	10-22	10-22

1. Data Source: Fu, Shahidehpour, and Li. "AC Contingency Dispatch Based on Security-Constrained Unit Commitment," IEEE Transactions on Power Systems, vol. 21, no. 2, May 2006.

6-Bus Dispatch Stacks

UC commitments and dispatch equivalent to SCUC+ACOPF (minus losses)

6-Bus Dispatch Stacks

UC commitments and dispatch equivalent to SCUC+ACOPF (minus losses)

SCUC+DCOPF congestion begins in hour 10

More VAr from G2 and G3 starting in hours 10-12 in SCUC +ACOPF

6-Bus Nodal Voltage Profiles and Dispatch

6-Bus Nodal Voltage Profiles and Dispatch

RTS-96¹

24 nodes
32 generators
17 loads
1 synchronous condenser
38 network elements/lines

	Cost (\$)	AC Feasible?
UC	822,977 (base)	NO
SCUC+DCOPF	823,648 (+0.1%)	NO
SCUC+ACOPF	873,984 (+5.8%)	YES
SCUC+DCOPF+RUC	879,751 (+6.5%)	YES

1. Data Source: Reliability Test System Task Force, "The IEEE reliability test system -- 1996," IEEE Trans. on Power Syst., vol. 14, no. 3, 1999.

RTS-96 Voltage Levels

SCUC+ACOPF (ACOPF FEASIBLE)

SCUC+DCOPF (LOAD MISMATCH)

₅ IEEE-118¹

118 nodes

(5)

- 54 generators
- 91 loads

186 network elements/lines

	Cost (\$)	AC Feasible?
UC	812,369 (base)	NO
SCUC+DCOPF	814,703 (+0.41%)	NO
SCUC+ACOPF	845,983 (+3.97%)	YES
SCUC+DCOPF+RUC	-	-

1. Data Source: Fu, Shahidehpour, and Li. "AC Contingency Dispatch Based on Security-Constrained Unit Commitment," IEEE Transactions on Power Systems, vol. 21, no. 2, May 2006.

Conclusions

- Findings
 - The SCUC+ACOPF can result in a different commitment schedule compared to current practices
 - The residual commitments to make current models AC feasible can be expensive
- Preliminary Stats (CPLEX 12.6.2)
 - Linearized ACOPF solves 3.4k node network (Polish, 1 time period) in ~ 60 seconds
 - SCUC+ACOPF solves RTS-96 (24 time period) in ~ 136 seconds (47% in SLP, 53% in MIP)
 - SCUC+ACOPF solves IEEE-118 (24 time period) in ~ 15-20 minutes (SLP << MIP time)
- Next Steps...
 - Improve scalability
 - Parameterize solver options and algorithm defaults
 - Incorporating models of controllable network devices (transformers, phase-shifters, FACTS, etc.)