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Introduction – Wind integration
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• Is wind generation “free” beyond installation & maintenance?  

– Difficulties: Intermittent/uncertain nature of wind generation

• In Spain, an unprecedented decrease in wind generation in Feb. 

2012 was equivalent to the sudden down of 6 nuclear plants 

• 4 units not unusual ~ Hidden secret of intermittent renewables

1. http://breakingenergy.com/2015/03/19/wind-2000-gw-by-2030/ 
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Existing Approaches

• Deterministic Approach

– Uncertainties not explicitly considered

– Solutions not robust against realizations of wind generation

– Flexible ramping product being investigated 

• Stochastic Programming

– Modeling wind generation by representative scenarios

– Solution methodology

• Branch-and-cut

• Benders’ decomposition with branch-and-cut

• Lagrangian relaxation with branch-and-cut

– The number of scenarios: Too many or two few?  
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• Robust optimization 

– Uncertainties modeled by an uncertainty set, and optimized 

against the worst possible realization ~ Conservative 

– Min Max ~ Computationally challenging 

– Methodology: Benders’ decomposition with outer approximation

• Interval optimization [2], [3], [4]

– Wind generation modeled by closed intervals 

– Solutions to be feasible for extreme cases of system demand, 

transmission capacity, and ramp rate constraints ~ Conservative 

– Methodology: Benders’ decomposition with branch-and-cut and 

interval arithmetic

• Better ways?
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Outline

• Wind integration w/o transmission (with ISO-NE) [5]

– Stochastic UC formulation – Generation based on wind states

• Wind integration with transmission capacities (ISO-NE) [6]

– Markovian and interval formulation – Generation ~ local state

– Both problems are solved by using branch-and-cut 

• An extended hybrid Markovian and interval approach (with 

the ABB team)

– Generation of an isolated unit can depend on a remote wind farm

– Solved by a synergistic integration of Surrogate Lagrangian 

Relaxation and branch-and-cut 
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Stochastic Unit Commitment Formulation

• Modeling aggregate wind generation – A Markov chain  

– The state at a time instant summarizes the information of 

all the past in a probabilistic sense for reduced complexity

– Net system demand = System demand – wind generation

• Minimize the sum of expected energy and startup/no-load 

costs 

– s.t. system demand constraint for each state at every hour
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– Individual unit constraints 

• Generation capacity constraints for each state

• Time-coupling ramp rate constraints for any state transition 

whose probability is nonzero

• A linear mixed-integer optimization problem

• Solution methodology – Branch-and-cut
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Difficulties when considering transmission

• Transmission capacities – A major complication

– With congestion, wind generation cannot be aggregated

– Global state: A combination of nodal states ~ Too many

• What can be done? 

• Key ideas: Markov + interval-based optimization

– Divide the generation of a unit into two components

• Markovian component: Depending on the local wind state 

• Interval component: To manage extreme combinations of non-

local states 

– Much simpler than the pure Markovian approach 

– Less conservative as compared to the pure interval approach
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• Generation capacity constraints

• Nodal injection

• System demand constraints ~ Sum of nodal injections = 0

– Sum of nodal injections = 0 for both min/max guarantee the 

satisfaction for in-between demand levels
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• Transmission: |Power flow| ≤ Transmission capacity

– A line flow depends on injections from many nodes

Generation Shift Factors (GSFs which can be + or -)

– Determine extreme flows from wind uncertainties by considering 

signs of GSFs and extreme Markovian nodal injections 

• Ramp rate constraints

– For possible states, state transitions, and                  and
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• The objective function 

– With state probabilities and two extreme realizations

– Want to approximate the expected cost w/o much complexity

• Include the expected realization with a set of deterministic 

constraints

• Solution methodology – Branch-and-cut
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Outline

• Wind integration w/o transmission

• Wind integration with transmission capacity constraints 

– Can be conservative if a big unit does not have a local wind 

farm  Interval Approach

• An extended hybrid Markovian and interval approach

– Generation of an isolated unit can depend on a remote wind 

farm

– Solved by a synergistic integration of Surrogate Lagrangian 

Relaxation [7] and branch-and-cut [8]
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Key Ideas

• Allow an isolated unit to depend on a remote wind farm

– Generation: A Markovian component + an interval 

component 

• Modifications in the formulation?  

– System Demand 

– Ramp rates 

– Transmission capacity ~ Requiring the coordination of a 

isolated unit with a remote wind farm at a different bus 

 More complicated 

 The Extended Formulation 

136/23/2015
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– Simplified extreme Markovian flows – Can be conservative

min𝑓𝑙
𝑀(𝑡) =  

𝑖:𝑎𝑙
𝑖>0

𝑖≠𝑘

[𝑎𝑙
𝑖 ∙ min
𝑛𝑖
𝑃𝑖,𝑛𝑖
𝑀 (𝑡)] +  

𝑖:𝑎𝑙
𝑖<0

𝑖≠𝑘

[𝑎𝑙
𝑖 ∙ max
𝑛𝑖
𝑃𝑖,𝑛𝑖
𝑀 𝑡 ]

+  

𝑘:𝑎𝑙
𝑘>0

[𝑎𝑙
𝑘 ∙ min
𝑛𝑘
𝑃𝑘,𝑛𝑘
𝑀 (𝑡)] +  

𝑘:𝑎𝑙
𝑘<0

[𝑎𝑙
𝑘 ∙ max
𝑛𝑘
𝑃𝑘,𝑛𝑘
𝑀 𝑡 ]

+  

𝑗:𝑎𝑙
𝑗
>0

[𝑎𝑙
𝑗
∙ max
𝑛𝑘
𝑃𝑗,𝑛𝑘
𝑀 (𝑡)] +  

𝑗:𝑎𝑙
𝑗
<0

[𝑎𝑙
𝑗
∙ min
𝑛𝑘
𝑃𝑗,𝑛𝑘
𝑀 𝑡 ]

nk
* for nodes k and j can be different, but can be derived 

– Interval flows
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I
l

f Interval flow has 2 

possible combinations 

denoted as c

k: remote wind farms

j: linked units

• How to solve the problem?  Lagrangian relaxation

• Why?  Reversing the property of NP hardness!
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• Lagrangian ~ Relaxing all system-wide coupling constraints

• Individual unit subproblems

• Dual problem
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• Major difficulties of traditional 

LR

– L is difficult to fully optimize 

–  can suffer from zigzagging 

– Convergence proof and step size 

require q* 
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Surrogate Lagrangian Relaxation [7]

• A new method, proved to converge, and guaranteed for 

practical implementation without fully optimizing the 

relaxed problem and without requiring q*

1)

2) 

• One possible example of k that satisfies conditions 1) 

and 2): 

• At convergence, the surrogate dual value approaches q*

~ valid lower bound on the feasible cost 
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~ Overcomes all major difficulties of traditional LR

 kkkk xgc ~1  

7. M. A. Bragin, P. B. Luh, J. H. Yan, N. Yu, and G. A. Stern, “Convergence of the Surrogate Lagrangian 

Relaxation Method,” Journal of Optimization Theory and Applications, Vol. 164, No. 1, January 2015, 

pp. 173-201. 
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Schematic of Surrogate Lagrangian Relaxation

Surrogate 

optimization

Relax system demand by using 

Lagrange multipliers 

Original problem

Construct a feasible 

solution, and compare 

with the best one

Yes

Solve one or a few subproblems, until 

the surrogate optimization condition is 

satisfied

Meet 

Stopping 

criteria?

No

Update multipliers

Construct a feasible 

solution every few 

iterations

How to solve 

subproblems? 
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Difficulties of Standard Branch-and-Cut

• Branch-and-cut (B&C) can suffer from slow convergence

– Facet-defining cuts and even valid inequalities are problem-

dependent and can be difficult to obtain 

• When facet-defining cuts are not available, a large number of 

branching operations will be performed

– No “local” concept  Constraints associated with one 

subsystem (e.g., a combined cycle unit with complicated state 

transition constraints) are treated as global constraints and 

affect the entire solution process

186/23/2015



Synergistic Combination with Branch and Cut [8]

• SLR relaxation and B&C are synergistically combined to 

simultaneously exploit separability and linearity:

– Relax coupling constraints (system demand/transmission)

– Solve a subproblem by using branch-and-cut w/ warm start

• Subproblem complexity is drastically reduced 

• Subproblem convex hull are much easier to obtain and not 

affected by local constraints of other subproblems

• Subproblem cuts are effective and remain valid for the future

• Convex hulls for a subproblem never changes (if obtained, then 

solving this subproblem in the future is a piece of cake!!) 

– Update multiplies by SLR – fast convergence w/o q*
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Implementation of SLR + Branch-and-Cut

• Testing system – IEEE 30-bus 41-branch 24-period

– Relax system demand & transmission capacity constraints

– Form individual unit subproblems s.t. unit-wise constraints

– Configurations: 10 wind farms, 10 co-located units, 2 non-

colocated cheap units 

– A penalty of $5000/MWh on wind curtailment beyond a threshold 

• Implementation – In CPLEX 12.6.0.0 on Dell Precision M4500

– SLR implemented using ILOG Script for OPL

• Flow control, load data, generate models, update multipliers, warm 

start … 

– Subproblems solved by the CPLEX using branch-and-cut

– Multipliers are initialized according to priority list

206/23/2015
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Unit # pmin pmax Offer price No-load cost Start-up cost
Associated

wind farm

Co-located units

1 5 157 62.6 786.8 50 1

2 8 100 56.7 945.6 100 2

3 14 157 62.6 700 50 3

4 22 100 56.7 800 40 4

5 10 60 42.1 1000 40 5

6 3 157 62.6 650 40 6

7 15 100 56.7 950 39 7

8 10 80 41.1 1243.5 110 8

9 5 157 62.6 600 40 9

10 25 100 56.7 750 50 10

Non-co-located units

11 10 80 37.2 900 440 2

12 10 90 39 1000 500 8

Units’ characteristics
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Testing results

• With 5% wind penetration (pmax = 4 mw for a wind farm) 

22

Non-extended 

case 
Extended  case

Method B&C SLR+B&C B&C

Lower bound (k$) 324,190 318,920 319953

Feasible cost (k$) 327,259 325,915** N/A

Gap (%) 0.94 2.1 N/A

Clock time* 

(s)

Iterations
44

847
1200

Heuristics 53

Wind Curtailment (k$) 0 0 N/A

Load Shedding (k$) 0 766.264 N/A

Clock time* : solving time + 

other time (19 iterations)

**: Feasible solution 

obtained after 297 seconds

6/23/2015

1000 Simulation runs Non-extended case Extended  case

E(Cost) (k$) 307,451 309,839

STD(Cost) (k$) 2.33 2.12

Wind Curtailment (k$) 0 0

Load Shedding (k$) 0.65 0.43



Testing results
• With 15% wind penetration (pmax = 12 mw for a wind farm) 
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Non-extended 

case 
Extended  case

Method B&C SLR+B&C B&C

Lower bound (k$) 293,748 289,035 285305

Feasible cost (k$) 296,808 294,859** N/A

Gap (%) 1 1.97 N/A

Clock time* 

(s)

Iterations
1054

1046
1200

Heuristics 154

Wind Curtailment (k$) 0 0 N/A

Load Shedding (k$) 0 1795.47 N/A

Clock time* : solving time + 

other time (25 iterations)

**: Feasible solution was 

obtained after 369 seconds
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1000 Simulation runs Non-extended case Extended  case

E(Cost) (k$) 297,035 286,417

STD(Cost) (k$) 42.04 17.47

Wind Curtailment (k$) 0 0

Load Shedding (k$) 19.15 8.17



Conclusion

• An important but difficult problem w/ no practical solutions 

• A major breakthrough for effective grid integration of 

intermittent wind (and solar), with key innovations:

– Markov processes as opposed to scenarios to model wind 

generation for reduced complexity

– Markov + interval-based optimization to overcome the 

complexity caused by transmission capacity constraints

– The extended approach further reduces the conservativeness 

• Opens a new and effective way to address stochastic 

problems w/o scenario analysis or over conservativeness

• The innovative SLR + B&C opens a new direction on 

solving large mixed-integer linear programming problems 

• What is the role of FERC on intermittent renewables?  
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