

An Extended Hybrid Markovian and Interval Unit Commitment Considering Renewable Generation Uncertainties

Peter Luh¹, Haipei Fan¹, Khosrow Moslehi², Xiaoming Feng², Mikhail Bragin¹, Yaowen Yu¹, Chien-Ning Yu² and Amir Mousavi² 1. University of Connecticut 2. ABB

1

Introduction – Wind integration

GLOBAL CUMULATIVE INSTALLED WIND CAPACITY 1997-2014

- Is wind generation "free" beyond installation & maintenance?
 - Difficulties: Intermittent/uncertain nature of wind generation
 - In Spain, an unprecedented decrease in wind generation in Feb. 2012 was equivalent to the sudden down of 6 nuclear plants
 - 4 units not unusual ~ Hidden secret of intermittent renewables
- 1. http://breakingenergy.com/2015/03/19/wind-2000-gw-by-2030/

Existing Approaches

- Deterministic Approach
 - Uncertainties not explicitly considered
 - Solutions not robust against realizations of wind generation
 - Flexible ramping product being investigated
- Stochastic Programming
 - Modeling wind generation by representative scenarios
 - Solution methodology
 - Branch-and-cut
 - Benders' decomposition with branch-and-cut
 - Lagrangian relaxation with branch-and-cut
 - The number of scenarios: Too many or two few?

- Robust optimization
 - Uncertainties modeled by an uncertainty set, and optimized against the worst possible realization ~ Conservative
 - Min Max ~ Computationally challenging
 - Methodology: Benders' decomposition with outer approximation
- Interval optimization ^{[2], [3], [4]}
 - Wind generation modeled by closed intervals
 - Solutions to be feasible for extreme cases of system demand, transmission capacity, and ramp rate constraints ~ Conservative
 - Methodology: Benders' decomposition with branch-and-cut and interval arithmetic

• Better ways?

- 2. J. W. Chinneck and K. Ramadan, "Linear programming with interval coefficients," *Journal of the Operational Research Society*, Vol. 51, No. 2, pp. 209-220, 2000.
- 3. Y. Wang, Q. Xia, and C. Kang, "Unit commitment with volatile node injections by using interval optimization," *IEEE Transactions on Power Systems*, Vol. 26, No. 3, pp. 1705-1713, 2011.
- 4. L. Wu, M. Shahidehpour, and Z. Li, "Comparison of Scenario-Based and Interval Optimization Approaches to Stochastic SCUC," *IEEE Transactions on Power Systems*, Vol. 27, No. 2, pp. 913-921, 2012.

Outline

- Wind integration w/o transmission (with ISO-NE)^[5]
 - Stochastic UC formulation Generation based on wind states
- Wind integration with transmission capacities (ISO-NE)^[6]
 - Markovian and interval formulation Generation ~ local state
 - Both problems are solved by using branch-and-cut
- An extended hybrid Markovian and interval approach (with the ABB team)
 - Generation of an isolated unit can depend on a remote wind farm
 - Solved by a synergistic integration of Surrogate Lagrangian Relaxation and branch-and-cut
 - 5. P. B. Luh, Y. Yu, B. Zhang, E. Litvinov, T. Zheng, F. Zhao, J. Zhao and C. Wang, "Grid Integration of Intermittent Wind Generation: a Markovian Approach," *IEEE Transactions on Smart Grid*, Vol. 5, No. 2, March 2014.
 - 6. Y. Yu, P. B. Luh, E. Litvinov, T. Zheng, J. Zhao and F. Zhao, "Grid Integration of Distributed Wind Generation: Hybrid Markovian and Interval Unit Commitment," *IEEE Trans. on Smart Grid*, early access since June 2015.

Stochastic Unit Commitment Formulation

- Modeling aggregate wind generation A Markov chain
 - The state at a time instant summarizes the information of all the past in a probabilistic sense for reduced complexity
 - Net system demand = System demand wind generation
- Minimize the sum of expected energy and startup/no-load costs

 $\min_{\{x_i(t)\}_{i,t}, \{p_{i,n}(t)\}_{i,n,t}} \text{Exp. Energy cost Start-up cost No-load cost} \\ \sum_{i=1}^{\{x_i(t)\}_{i,t}, \{p_{i,n}(t)\}_{i,n,t}} \left[\sum_{n=1}^{N} \varphi_n(t) C_{i,n}(p_{i,n}(t)) \right] + u_i(t) S_i + x_i(t) S_i^{NL} \\ }$

- s.t. system demand constraint for each state at every hour $\sum_{i=1}^{I} p_{i,n}(t) = P_n^D(t), \forall n, \forall t$

- Individual unit constraints
 - Generation capacity constraints for each state

 $x_i(t)p_{i\min} \le p_{i,n}(t) \le x_i(t)p_{i\max}, \forall i, \forall t, \forall n$

• Time-coupling ramp rate constraints for any state transition whose probability is nonzero

$$p_{i,m}(t-1) - \Delta_i \leq p_{i,n}(t) \leq p_{i,m}(t-1) + \Delta_i,$$

 $\forall i, \forall n, \forall t, \forall m \in \{m \mid \pi_{mn} \neq 0\}$ (Ramp-up and ramp-down)

- A linear mixed-integer optimization problem
- Solution methodology Branch-and-cut

Difficulties when considering transmission

- Transmission capacities A major complication
 - With congestion, wind generation cannot be aggregated
 - Global state: A combination of nodal states ~ Too many
- What can be done?
- Key ideas: Markov + interval-based optimization
 - Divide the generation of a unit into two components
 - Markovian component: Depending on the local wind state
 - Interval component: To manage extreme combinations of nonlocal states
 - Much simpler than the pure Markovian approach
 - Less conservative as compared to the pure interval approach

• Generation capacity constraints

The Markovian component: Depending on the local state n_i

$$x_{i,k}(t)p_{i,k}^{\min} \le p_{i,k,n_i}^M(t) + p_{i,k,\overline{n_i}}^I(t) \le x_{i,k}(t)p_{i,k}^{\max}, \forall i, \forall k, \forall t, \forall n_i, \forall \overline{n_i}$$

The interval component: Depending on the combination of non-local states \bar{n}_i

• Nodal injection

6/23/2015

$$P_{i,n_{i},\overline{n_{i}}}(t) = \sum_{k} p_{i,k,n_{i}}^{M}(t) + p_{i,n_{i}}^{W}(t) - p_{i}^{L}(t) + \sum_{k} p_{i,k,\overline{n_{i}}}^{I}(t), \forall i, \forall t, \forall n_{i}, \forall \overline{n_{i}}$$
Markovian nodal injection $\equiv P_{i,n_{i}}^{M}(t)$ Interval nodal injection $\equiv P_{i,\overline{n_{i}}}^{I}(t)$

- System demand constraints ~ Sum of nodal injections = 0
 - Sum of nodal injections = 0 for both min/max guarantee the satisfaction for in-between demand levels

$$\sum_{i} P_{i,n_{i,\min}}, \overline{n}_{i,\min} (t) = 0, \forall t \qquad \sum_{i} P_{i,n_{i,\max}}, \overline{n}_{i,\max} (t) = 0, \forall t$$

9

- Transmission: |Power flow| ≤ Transmission capacity
 - A line flow depends on injections from many nodes

Generation Shift Factors (GSFs which can be + or -)

$$f_{l}(t) = \sum_{i} (a_{l}^{i} \cdot P_{i,n_{i},\overline{n_{i}}}(t)) \qquad \text{Where are uncertainties?}$$

$$= \sum_{i} \left[a_{l}^{i} \cdot \left(\sum_{k} p_{i,k,n_{i}}^{M}(t) + p_{i,n_{i}}^{W}(t) - p_{i}^{L}(t) \right) \right] + \sum_{i} \left[a_{l}^{i} \cdot \left(\sum_{k} p_{i,k,\overline{n_{i}}}^{I}(t) \right) \right], \forall l, \forall t$$

$$Markovian nodal injection \equiv P_{i,n_{i}}^{M}(t) \qquad \text{Interval nodal injection} \equiv P_{i,\overline{n_{i}}}^{I}(t)$$

 Determine extreme flows from wind uncertainties by considering signs of GSFs and extreme Markovian nodal injections

$$\sum_{i:a_l^i > 0} [a_l^i \cdot \min_{n_i} P_{i,n_i}^M(t)] + \sum_{i:a_l^i < 0} [a_l^i \cdot \max_{n_i} P_{i,n_i}^M(t)] \le \sum_i [a_l^i \cdot P_{i,n_i}^M(t)]$$

• Ramp rate constraints

– For possible states, state transitions, and $p_{i,k,\overline{n}_{i,\min}}^{I}(t)$ and $p_{i,k,\overline{n}_{i,\max}}^{I}(t)$

- The objective function
 - With state probabilities and two extreme realizations
 - Want to approximate the expected cost w/o much complexity
 - Include the expected realization with a set of deterministic constraints

$$\min \sum_{t=1}^{T} \sum_{i=1}^{I} \sum_{k=1}^{Ki} \left\{ \sum_{n_i=1}^{Ni} \left[w_{n_i,m_i}(t)C_{i,k}\left(p_{i,k,n_i}^M(t) + p_{i,k,m_i}^I(t)\right) + w_{n_i,M_i}(t)C_{i,k}\left(p_{i,k,n_i}^M(t) + p_{i,k,M_i}^I(t)\right) \right] + w_E(t)C_{i,k}\left(p_{i,k,E}(t)\right) + u_{i,k}(t)S_{i,k} + x_{i,k}(t)S_{i,k}^{NL} \right\}$$

Weight for the expected realization, adding up to 1

• Solution methodology – Branch-and-cut

Outline

- Wind integration w/o transmission
- Wind integration with transmission capacity constraints
 - − Can be conservative if a big unit does not have a local wind farm ⇒ Interval Approach
- An extended hybrid Markovian and interval approach
 - Generation of an isolated unit can depend on a remote wind farm
 - Solved by a synergistic integration of Surrogate Lagrangian Relaxation ^[7] and branch-and-cut ^[8]
- M. A. Bragin, P. B. Luh, J. H. Yan, N. Yu, and G. A. Stern, "Convergence of the Surrogate Lagrangian Relaxation Method," *Journal of Optimization Theory and Applications*, Vol. 164, No. 1, January 2015, pp. 173-201.
- 8. M. A. Bragin, P. B. Luh, J. H. Yan, and G. A. Stern, "Novel Exploitation of Convex Hull Invariance for Solving Unit Commitment by Using Surrogate Lagrangian Relaxation and Branch-and-cut," to appear in *Proceedings of the IEEE Power and Energy Society 2015 General Meeting*, Denver, CO, USA

Key Ideas

- Allow an isolated unit to depend on a remote wind farm
 - Generation: A Markovian component + an interval component
- Modifications in the formulation?
 - System Demand
 - Ramp rates
 - Transmission capacity ~ Requiring the coordination of a isolated unit with a remote wind farm at a different bus
 - \Rightarrow More complicated
- \Rightarrow The Extended Formulation

- Simplified extreme Markovian flows - Can be conservative

$$\begin{split} \min f_l^M(t) &= \sum_{\substack{i:a_l^i > 0 \\ i \neq k}} [a_l^i \cdot \min_{n_i} P_{i,n_i}^M(t)] + \sum_{\substack{i:a_l^i < 0 \\ i \neq k}} [a_l^i \cdot \max_{n_i} P_{k,n_k}^M(t)] + \sum_{\substack{i:a_l^i < 0 \\ i \neq k}} [a_l^k \cdot \max_{n_k} P_{k,n_k}^M(t)] + \sum_{\substack{k:a_l^k < 0 \\ k:a_l^i < 0}} [a_l^j \cdot \max_{n_k} P_{j,n_k}^M(t)] + \sum_{\substack{j:a_l^j < 0 \\ j:a_l^j < 0}} [a_l^j \cdot \min_{n_k} P_{j,n_k}^M(t)] + \sum_{\substack{j:a_l^j < 0 \\ j:a_l^j < 0}} [a_l^j \cdot \min_{n_k} P_{j,n_k}^M(t)] \quad \end{split}$$

k: remote wind farms *j*: linked units

 n_k^* for nodes k and j can be different, but can be derived

- - Interval flow has 2 possible combinations denoted as *c*
- How to solve the problem? Lagrangian relaxation
- Why? Reversing the property of NP hardness!

- Lagrangian ~ Relaxing all system-wide coupling constraints $L = \sum_{t=1}^{T} \{ \sum_{i=1}^{I} [p_i(t) \cdot C_i + x_i(t) \cdot S_i^{NL} + u_i(t) \cdot S_i] + \lambda(t)(\sum_i P_i) + \sum_l [\mu_{l,-}(t)(-f_l^{\max} - f_l(t))] + \sum_l [\mu_{l,+}(t)(f_l(t) - f_l^{\max})] \}$
- Individual unit subproblems $\min_{\substack{x_i(t)\\p_i(t)}} L, \text{ with } L \equiv \sum_{t=1}^T \{ [p_i(t) \cdot C_i + x_i(t) \cdot S_i^{NL} + u_i(t) \cdot S_i] \}$

+
$$\lambda(t)P_i + \sum_{l=1}^{L} \mu_{l,+}(t)(a_l^i \cdot P_i(t)) - \sum_{l=1}^{L} \mu_{l,-}(a_l^i \cdot P_i(t))\}$$

Dual problem

$$\max_{\lambda,\mu} \Phi(\lambda,\mu), \text{ with } \Phi(\lambda,\mu) \equiv \sum_{i=1}^{I} L_{i}^{*}(\lambda,\mu)$$

$$-\sum_{t=l}^{T}\sum_{l=1}^{L}(\mu_{l,+}(t) + \mu_{l,-}(t))f_{l}^{\max}$$

s.t.
$$\mu_{l,+}(t) \ge 0, \mu_{l,-}(t) \ge 0$$

- Major difficulties of traditional LR
 - *L* is difficult to fully optimize
 - λ can suffer from zigzagging
 - Convergence proof and step size require q*

Surrogate Lagrangian Relaxation^[7]

• A new method, proved to converge, and guaranteed for practical implementation without fully optimizing the relaxed problem and without requiring *q*^{*}

1)
$$c^{k} \sim \prod_{i=1}^{k} \alpha_{i} \rightarrow 0$$

2) $\lim_{k \rightarrow \infty} \frac{1 - \alpha_{k}}{c^{k}} = 0$
Without requiring $q^{*!}$

- One possible example of α_k that satisfies conditions 1) and 2): $\alpha_k = 1 - \frac{1}{M \cdot k^p}$, 0 , <math>M > 1, k = 1, 2, ...
- At convergence, the surrogate dual value approaches q*
 valid lower bound on the feasible cost

~ Overcomes all major difficulties of traditional LR

 M. A. Bragin, P. B. Luh, J. H. Yan, N. Yu, and G. A. Stern, "Convergence of the Surrogate Lagrangian Relaxation Method," *Journal of Optimization Theory and Applications*, Vol. 164, No. 1, January 2015, 6/23/2015.

Schematic of Surrogate Lagrangian Relaxation

Difficulties of Standard Branch-and-Cut

- Branch-and-cut (B&C) can suffer from slow convergence
 - Facet-defining cuts and even valid inequalities are problemdependent and can be difficult to obtain
 - When facet-defining cuts are not available, a large number of branching operations will be performed
 - No "local" concept ⇒ Constraints associated with one subsystem (e.g., a combined cycle unit with complicated state transition constraints) are treated as global constraints and affect the entire solution process

Synergistic Combination with Branch and Cut^[8]

- SLR relaxation and B&C are synergistically combined to simultaneously exploit separability and linearity:
 - Relax coupling constraints (system demand/transmission)
 - Solve a subproblem by using branch-and-cut w/ warm start
 - Subproblem complexity is drastically reduced
 - Subproblem convex hull are much easier to obtain and not affected by local constraints of other subproblems
 - Subproblem cuts are effective and remain valid for the future
 - Convex hulls for a subproblem never changes (if obtained, then solving this subproblem in the future is **a piece of cake!!**)
 - Update multiplies by SLR fast convergence w/o q^*

$$L = \sum_{i=1}^{I} \left\{ \sum_{t=1}^{T} \left(C_i(\mathbf{p}_i(t), t) + \mathbf{S}_i(t) - \lambda(t) p_i(t) \right) + \sum_{t=1}^{T} \lambda(t) P_d(t) \right\}$$

 M. A. Bragin, P. B. Luh, J. H. Yan, and G. A. Stern, "Novel Exploitation of Convex Hull Invariance for Solving Unit Commitment by Using Surrogate Lagrangian Relaxation and Branch-and-cut," to appear
 ^{6/23}/⁴⁴Proceedings of the IEEE Power and Energy Society 2015 General Meeting, Denver, CO, USA ¹⁹

Implementation of SLR + Branch-and-Cut

- Testing system IEEE 30-bus 41-branch 24-period
 - Relax system demand & transmission capacity constraints
 - Form individual unit subproblems s.t. unit-wise constraints
 - Configurations: 10 wind farms, 10 co-located units, 2 noncolocated cheap units
 - A penalty of \$5000/MWh on wind curtailment beyond a threshold
- Implementation In CPLEX 12.6.0.0 on Dell Precision M4500
 - SLR implemented using ILOG Script for OPL
 - Flow control, load data, generate models, update multipliers, warm start ...
 - Subproblems solved by the CPLEX using branch-and-cut
 - Multipliers are initialized according to priority list

Units' characteristics

Unit #	pmin	pmax	Offer price	No-load cost	Start-up cost	Associated wind farm	
Co-located units							
1	5	157	62.6	786.8	50	1	
2	8	100	56.7	945.6	100	2	
3	14	157	62.6	700	50	3	
4	22	100	56.7	800	40	4	
5	10	60	42.1	1000	40	5	
6	3	157	62.6	650	40	6	
7	15	100	56.7	950	39	7	
8	10	80	41.1	1243.5	110	8	
9	5	157	62.6	600	40	9	
10	25	100	56.7	750	50	10	
Non-co-located units							
11	10	80	37.2	900	440	2	
12	10	90	39	1000	500	8	

Testing results

With 5% wind penetration ($p_{max} = 4$ mw for a wind farm) •

			Non-o	extended case	Extended case		ed case	
	Method Lower bound (k\$) Feasible cost (k\$)		E	3&C	SLR+B&	kС	B&C	
			32	4,190	318,92	0	319953	
			327,259		325,915**		N/A	
	Gap	(%)	().94	2.1		N/A	
	Clock time*	Iterations	44		847		1200	
	(s)	Heuristics			53	1200		
	Wind Curta	ilment (k\$)		0	0		N/A	
	Load Shee	lding (k\$)		0	766.26	4	N/A	
1000 Sin	nulation runs	Non-extende	d case	Extended	d case			
E(Cost) (k\$)		307,451		309,839		Clo	Clock time* : solving tim	
STD(Cost) (k\$)		2.33		2.12		other time (19 iterations) **: Feasible solution obtained after 297 seconds		
Wind Curtailment (k\$)		0		0				
Load Shedding (k\$)		0.65		0.43				

Testing results

• With 15% wind penetration ($p_{max} = 12 \text{ mw for a wind farm}$)

		Non-extended case	Extended case		
Method		B&C	SLR+B&C	B&C	
Lower bound (k\$)		293,748	289,035	285305	
Feasible cost (k\$)		296,808	294,859**	N/A	
Gap (%)		1	1.97	N/A	
Clock time* (s)	Iterations	1054	1046	1200	
	Heuristics	1034	154	1200	
Wind Curtailment (k\$)		0	0	N/A	
Load Shedding (k\$)		0	1795.47	N/A	

1000 Simulation runs	Non-extended case	Extended case
E(Cost) (k\$)	297,035	286,417
STD(Cost) (k\$)	42.04	17.47
Wind Curtailment (k\$)	0	0
Load Shedding (k\$)	19.15	8.17

Clock time* : solving time + other time (25 iterations) **: Feasible solution was obtained after 369 seconds

Conclusion

- An important but difficult problem w/ no practical solutions
- A major breakthrough for effective grid integration of intermittent wind (and solar), with key innovations:
 - Markov processes as opposed to scenarios to model wind generation for reduced complexity
 - Markov + interval-based optimization to overcome the complexity caused by transmission capacity constraints
 - The extended approach further reduces the conservativeness
- Opens a new and effective way to address stochastic problems w/o scenario analysis or over conservativeness
- The innovative SLR + B&C opens a new direction on solving large mixed-integer linear programming problems
- What is the role of FERC on intermittent renewables?

