Optimization Driven Scenario Grouping for Stochastic Unit Commitment

FERC Technical Conference

Jun 27, 2017

Deepak Rajan*, Kevin Ryan, Shabbir Ahmed, Santanu Dey

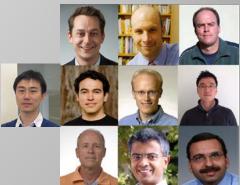
*rajan3@llnl.gov 925-424-6529

LLNL-PRES-733563

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Grid Modernization Laboratory Consortium (GMLC): Multi-Scale Production Cost Models

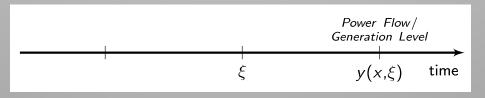
- An aggressive five-year grid modernization strategy for DOE
- Design and planning tools area: Multi-Scale Production Cost Models
 - Develop multi-scale production cost models with faster mathematical solvers
- PCM Goal
 - Substantially increase the ability of production cost models (PCM) to simulate power systems in more detail faster and more robustly
 - Both Deterministic and Stochastic
- Talks at Technical Conference
 - Session T1-B: Optimization Driven Scenario Grouping for Stochastic Unit Commitment (LLNL)
 - Session T2-B: Assessment of Wind Power Ramp Events in Scenario Generation for Stochastic Unit Commitment (SNL)
 - Session T₃-A: Geographic Decomposition of Production Cost Models (NREL)
 - Session T₃-A: Temporal Decomposition of Production Cost Modeling in Power Systems (ANL)



Two-stage stochastic programs and stochastic unit commitment

- Random realization: drawn from distribution
- GOAL: Make first stage decision to minimize Expected Cost

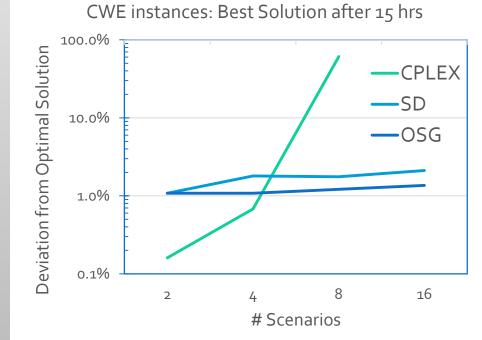
- Decide how to generate/transmit/dispatch power in the following day
- Uncertainty in solar and wind generation as well as customer demand



Scenario Grouping improves solution quality guarantees for Scenario Decomposition algorithms

State-of-the art MIP solvers not suited for stochastic problems

- CWE (Central-Western Europe) instances
 - 679 nodes and 1037 lines, 637 thermal units
 - Can not be solved to optimality in 15 hours
- CPLEX obtains no solution for 16 scenarios
- Scenario Decomposition after one iteration provides high quality solution (~2%)
 - Parallelizing solution by decomposition
 - Capable of running on HPC



- Optimal Scenario Grouping (OSG) Techniques Improve Scenario Decomposition schemes by 40%
 - Provides higher-quality guarantee for solutions obtained (~1%)

Scenario Decomposition for Stochastic 0-1 programs

- We assume
- Scenarios are tied together using non-anticipativity constraints

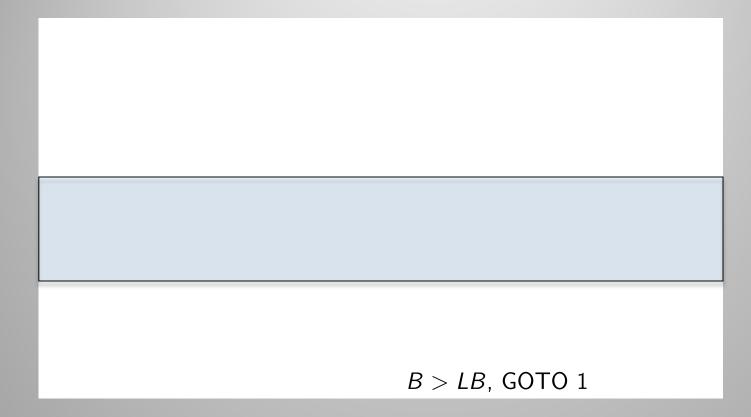
Relaxing non-anticipativity constraints, we decompose by scenario

Decomposition algorithms for Stochastic MIPs are not new...

- Dual Decomposition (Caroe and Schultz, 1999, Aravena and Papavasiliou, 2015, Kim and Zavala, 2016,)
- Benders Decomposition (Benders, 1962)
- L-Shaped (Van Slyke and Wets, 1969)
- Branch and Fix (Alonso-Ayuso, 2003)
- Disjunctive Decomposition (Ntaimo and Sen, 2005, 2008)
- Progressive Hedging (Watson and Woodruff, 2011)
- Scenario Decomposition (Ahmed 2013)

...and many others...

Scenario Decomposition algorithm



- Finitely convergent to optimality for binary first-stage
- Can easily include Lagrangian multiplier updates
- Easily parallelizes to a synchronous algorithm

Outline

- Improvements to Scenario Decomposition Algorithms
 - Asynchronous Implementation
 - Worker processes do not sit idle
 - Works well for instances where scenario solve/eval work is unbalanced
 - Incorporates performance improvements aimed at reducing upper bound evaluation time
 - Lower bound improvements (optimality cuts)
 - Solves some open Stochastic Integer Programming Library (SIPLIB) instances
- New: Optimal Scenario Grouping (OSG): Optimizes improvements in lower bounds, thus improving guarantee on solution quality
 - Solves many more open SIPLIB instances
 - Provides much better optimality gaps at termination for Stochastic UC instances

Scenario Decomposition improvements: Performance on SSCh instances

•	Adding cut	s (AS	S+Cut) solves all "easy" instances					Alonso-Ayuso (2003) 5 "hard" instances
								4 "easy" instances
		c10	181 139,738	(9,649) (1,732)	682 126	OPT OPT	169 (1,259)	

Solves additional "hard" instance

						Time limit: 3hrs Nodes/Cores: 2/24
)	(5,901)	(9,832)	(18,427)	
c4	201,454	(12,202)	(3,523)	(7,876)	(16,629)	
сб	231,368	(10,514)	(4,828)	(10,273)	(8,825)	
c8	100,523	(5,071)	2,545	(3,106)	(13,842)	

Lawrence Livermore National Laboratory

What about harder problems? Lower Bounds from Scenario Decomposition scheme may be too weak...

- Increases time to convergence for "easy" problem instances
- Provides weak guarantee of solution quality for "hard" problem instances

Given multiplier at a particular iteration (λ), how can we strengthen lower bound $z^*(\lambda)$?

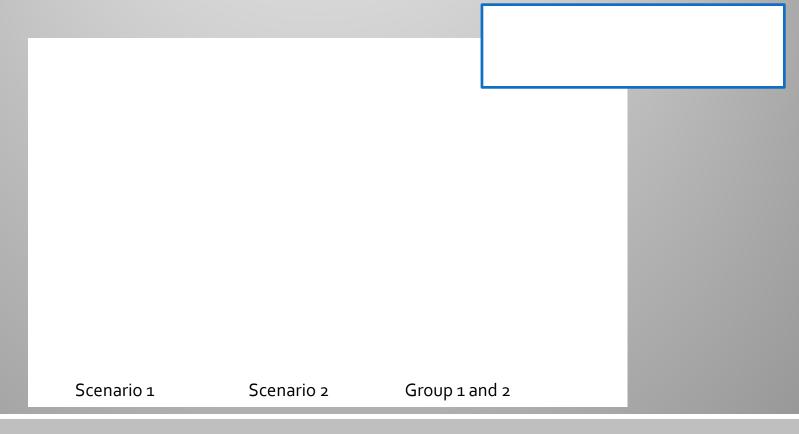
Scenario Grouping to improve Lower Bounds: Motivation

- Issue: Scenario Decomposition Lower Bound may be too weak
- Question: Given multiplier λ, how can we strengthen lower bound z*(λ)?
- Idea: 'Group' scenarios by re-enforcing some non-anticipativity constraints

- **Question:** What does it mean to 'group' scenarios?
 - Create 'multi-scenario' deterministic instances
- Question: Which scenarios do we group?
 - The groups that maximize bound improvement

Scenario Grouping to improve Lower Bounds: Motivation

- Issue: Scenario Decomposition Lower Bound may be too weak
- Question: Given multiplier λ, how can we strengthen lower bound z*(λ)?
- Idea: 'Group' scenarios by re-enforcing some non-anticipativity constraints



Scenario Grouping to improve Lower Bounds: Motivation

- Issue: Scenario Decomposition Lower Bound may be too weak
- Question: Given multiplier λ, how can we strengthen lower bound z*(λ)?
- Idea: 'Group' scenarios by re-enforcing some non-anticipativity constraints
- **Ouestion:** How much does the bound improve?
 - Maximizing bound improvement can be formulated as optimization problem

$$\begin{array}{ll} \max_{\theta,y} & \sum_{m=1}^{M} \theta_{m} \\ s.t. & \theta_{m} \leq \sum_{k=1}^{K} w_{ks} y_{km}, \quad \forall x \in \mathcal{S}, \forall m \in \mathcal{M} \\ & \sum_{m=1}^{M} y_{km} = 1, \quad \forall k \in \mathcal{K} \\ & \sum_{k=1}^{K} y_{km} \leq P, \quad \forall m \in \mathcal{M} \\ & y_{km} \in \{0,1\}, \ \theta_{m} \in \mathbb{R}, \quad \forall m \in M, \forall k \in \mathcal{H} \end{array}$$

Optimal Scenario Grouping (OSG): The best lower bound improvement

- OSG (Optimal Scenario Grouping)
 - When group size (P) = 2, can be solved as matching (polynomial!)

- Compare with SD/Asynch (Scenario Decomposition without Grouping)
- Compare with Rand (Random Grouping)

Is Scenario Grouping new?

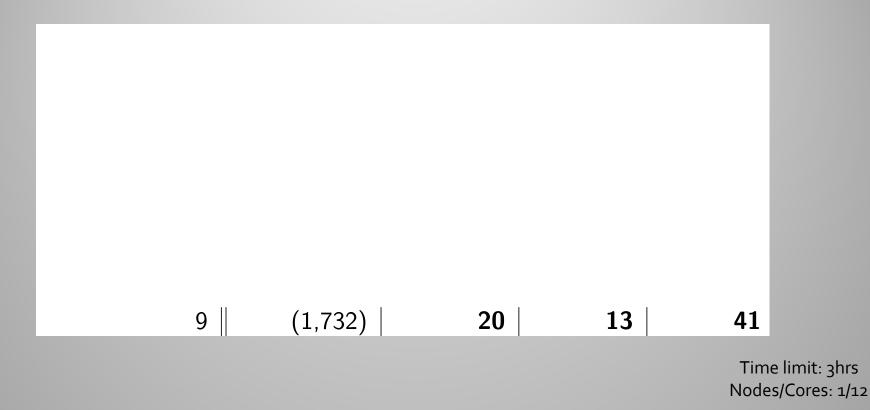
Bounding Schemes

- (Sandikci et al. 2012). Expected Group Subproblem Objective Bounds (EGSO)
- (Sandikci et al. 2014) (Maggioni et al. 2015), (Zenarosa et al. 2014). Extensions of EGSO
- (Boland et al. 2016). Expected Partition Scenario Bounds
- (Gade et al. 2016). Bounding in Progressive Hedging
- Grouping/Aggregation Schemes
 - (Crainic et al. 2014) K-means clustering.
 - (Song and Leudtke 2015) Solution driven scenario aggregation.

OSG (Optimal Scenario Grouping):

Grouping to maximize lower bound improvement

OSG performance for SSCh instances ("Easy")



- Optimal Scenario Grouping (Part) solves all instances when P=4
- Even random grouping helps

But there is no free lunch: Scenario Grouping increases the time per iteration for Scenario Decomposition schemes

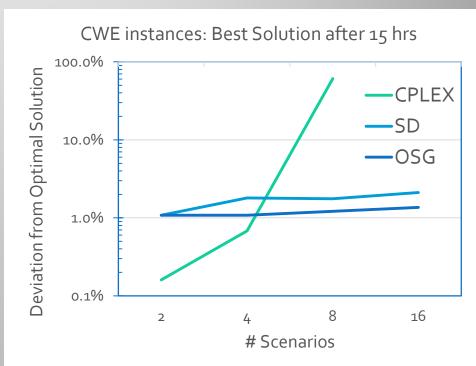
- The significant reduction in number of iterations offsets the increased time per iteration
 - As proved by SSCh experiments
- What about problems where 2-scenario grouped problems are too expensive?
 - Stochastic UC on realistic instances, perhaps?
- Use OSG as a post-processing scheme (one last iteration) to calculate better lower bounds
- What if that is too expensive?
- Use LP relaxations of 2-scenario grouped problems

Stochastic UC experiments:

1 SD iteration + OSG + LP relaxation of 2-scenario problems

OSG Performance: What about "hard" Stochastic Unit commitment instances?

- State-of-the art MIP solvers not suited for stochastic problems
 - CWE (Central-Western Europe) instances
 - CPLEX obtains no solution for 16 scenarios
- Scenario Decomposition after one iteration provides high quality solution (~2%)
- Can we provide better guarantee for solutions obtained?



 Optimal Scenario Grouping (OSG) Techniques Improve Scenario Decomposition schemes by 40%

Why not just group randomly? Do we need optimal grouping? Random works if the number of scenarios is small (4)

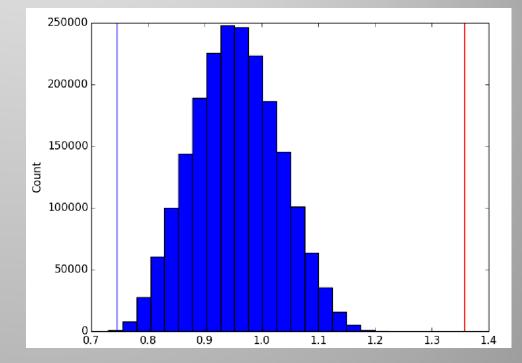
Problem		Best UB	Asynch	Rand P=2	
Autumn	WD	36,177,240.0	1.62%	0.98%	
Autonin	WE	27,180,129.1	2.12%	1.43%	
Corina	WD	23,323,714.7	0.66%	0.22%	
Spring	WE	18,168,310.0	0.67%	0.16%	
Summer	WD	23,950,144.7	0.70%	0.43%	
Sommer	WE	17,640,484.7	1.10%	0.64%	
Winter	WD	29,287,830.0	3.72%	2.34%	
	WE	23,546,261.2	3.82%	2.41%	
	Averag	je	1.80%	1.08%	CPLEX 12.5
					Time limit: 15hrs
					Nodes - #Scenarios/

Nodes = #Scenarios/2 +1 Cores = 12 * #nodes

- Random grouping reduces gap by 40% for 4 scenario problems
- Random grouping does not scale

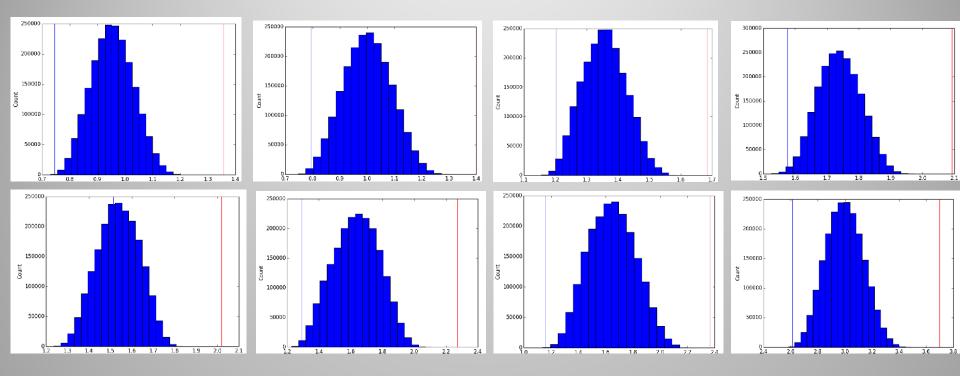
Why not just group randomly? Do we need optimal grouping? Random grouping does not work as well for 16 scenarios

- Not surprising: Too many groupings to choose from
- Spring Weekday (histogram of Deviation from optimal)
 - Asynch/SD bound (red line)
 - OSG bound (blue line)
 - Rand bound (from histogram)



- Random partitioning reduces gap by 25%
- Optimal scenario grouping reduces gap by more than 40%

What about other 16 scenario instances? Works very well on 7/8



- Optimal scenario grouping (OSG) comparable to random in 1/8
- Current research: Improving the quality of OSG (improve estimates)

Summary

- Scenario decomposition natural algorithm for solving stochastic integer programs: Improvements can significantly improve performance
- Optimal scenario grouping (OSG) solved previously unsolved instances, demonstrated effectiveness on standard test instances (SIPLIB)
- Optimal scenario grouping improves lower bound for stochastic unit commitment instances

Acknowledgments/Auspices

- Prepared by LLNL under Contract DE-AC52-07NA27344
- LLNL LDRD Funding (15-ERD-041), LLNL GMLC Funding (1.4.26 PCM)

