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Grid Modernization Laboratory Consortium (GMLC):
Multi-Scale Production Cost Models

 An aggressive five-year grid modernization strategy for DOE

 Design and planning tools area: Multi-Scale Production Cost Models
• Develop multi-scale production cost models with faster mathematical solvers

 PCM Goal
• Substantially increase the ability of production cost models (PCM) 

to simulate power systems in more detail faster and more robustly

• Both Deterministic and Stochastic

 Talks at Technical Conference
• Session T1-B: Optimization Driven Scenario Grouping for Stochastic Unit Commitment (LLNL)

• Session T2-B: Assessment of Wind Power Ramp Events in Scenario Generation for Stochastic 
Unit Commitment (SNL)

• Session T3-A: Geographic Decomposition of Production Cost Models (NREL)

• Session T3-A: Temporal Decomposition of Production Cost Modeling in Power Systems (ANL)
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Two-stage stochastic programs and stochastic unit commitment

 Random realization: drawn from distribution

 GOAL: Make first stage decision to minimize Expected Cost 

 Decide how to generate/transmit/dispatch power in the following day 

 Uncertainty in solar and wind generation as well as customer demand 



Lawrence Livermore National Laboratory

 State-of-the art MIP solvers not suited for stochastic problems
• CWE (Central-Western Europe) instances

— 679 nodes and 1037 lines, 637 thermal units

— Can not be solved to optimality in 15 hours

• CPLEX obtains no solution for 16 scenarios

 Scenario Decomposition after one
iteration provides high quality 
solution (~2%)
• Parallelizing solution by decomposition

• Capable of running on HPC

 Optimal Scenario Grouping (OSG) Techniques Improve Scenario 
Decomposition schemes by 40%
• Provides higher-quality guarantee for solutions obtained (~1%)

Scenario Grouping improves solution quality guarantees for Scenario 
Decomposition algorithms
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 We assume 

 Scenarios are tied together using non-anticipativity constraints

 Relaxing non-anticipativity constraints, we decompose by scenario

Scenario Decomposition for Stochastic 0-1 programs
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Decomposition algorithms for Stochastic MIPs are not new...

 Dual Decomposition (Caroe and Schultz, 1999, Aravena and Papavasiliou, 
2015, Kim and Zavala, 2016, ….) 

 Benders Decomposition (Benders, 1962)

 L-Shaped (Van Slyke and Wets, 1969) 

 Branch and Fix (Alonso-Ayuso, 2003)

 Disjunctive Decomposition (Ntaimo and Sen, 2005, 2008) 

 Progressive Hedging (Watson and Woodruff, 2011)

 Scenario Decomposition (Ahmed 2013)

…and many others…
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Scenario Decomposition algorithm

 Finitely convergent to optimality for binary first-stage

 Can easily include Lagrangian multiplier updates

 Easily parallelizes to a synchronous algorithm
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 Improvements to Scenario Decomposition Algorithms
• Asynchronous Implementation

— Worker processes do not sit idle 

— Works well for instances where scenario solve/eval work is unbalanced 

• Incorporates performance improvements aimed at reducing upper bound evaluation time 

• Lower bound improvements (optimality cuts)

• Solves some open Stochastic Integer Programming Library (SIPLIB) instances 

 New: Optimal Scenario Grouping (OSG): Optimizes improvements in lower 
bounds, thus improving guarantee on solution quality
• Solves many more open SIPLIB instances

• Provides much better optimality gaps at termination for Stochastic UC instances

Outline
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Scenario Decomposition improvements: Performance on SSCh instances

 Adding cuts (AS+Cut) solves all “easy” instances

 Solves additional “hard” instance

Time limit: 3hrs
Nodes/Cores: 2/24

Alonso-Ayuso (2003) 
5 “hard” instances 
4 “easy” instances 

Presenter
Presentation Notes
Scaling numbers extrapolated from PIPS-S; waiting for data.
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 Increases time to convergence for “easy” problem instances

 Provides weak guarantee of solution quality for ”hard” problem instances

Given multiplier at a particular iteration (λ), 

how can we strengthen lower bound z∗(λ)? 

What about harder problems? 
Lower Bounds from Scenario Decomposition scheme may be too weak...
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 Issue: Scenario Decomposition Lower Bound may be too weak 

 Question: Given multiplier λ, how can we strengthen lower bound z∗(λ)? 

 Idea: ’Group’ scenarios by re-enforcing some non-anticipativity constraints 

 Question: What does it mean to ’group’ scenarios? 
• Create ‘multi-scenario’ deterministic instances

 Question: Which scenarios do we group?
• The groups that maximize bound improvement

Scenario Grouping to improve Lower Bounds: Motivation



Lawrence Livermore National Laboratory

 Issue: Scenario Decomposition Lower Bound may be too weak 

 Question: Given multiplier λ, how can we strengthen lower bound z∗(λ)? 

 Idea: ’Group’ scenarios by re-enforcing some non-anticipativity constraints 

Scenario Grouping to improve Lower Bounds: Motivation

Group 1 and 2Scenario 2Scenario 1
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 Issue: Scenario Decomposition Lower Bound may be too weak 

 Question: Given multiplier λ, how can we strengthen lower bound z∗(λ)? 

 Idea: ’Group’ scenarios by re-enforcing some non-anticipativity constraints 

 Question: How much does the bound improve?
• Maximizing bound improvement can be formulated as optimization problem 

Scenario Grouping to improve Lower Bounds: Motivation
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 OSG (Optimal Scenario Grouping)
• When group size (P) = 2, can be solved as matching (polynomial!)

 Compare with SD/Asynch (Scenario Decomposition without Grouping)

 Compare with Rand (Random Grouping)

Optimal Scenario Grouping (OSG): The best lower bound improvement
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 Bounding Schemes 
• (Sandikci et al. 2012). Expected Group Subproblem Objective Bounds (EGSO)

• (Sandikci et al. 2014) (Maggioni et al. 2015), (Zenarosa et al. 2014). Extensions of EGSO 

• (Boland et al. 2016). Expected Partition Scenario Bounds 

• (Gade et al. 2016). Bounding in Progressive Hedging

 Grouping/Aggregation Schemes 
• (Crainic et al. 2014) K-means clustering. 

• (Song and Leudtke 2015) Solution driven scenario aggregation. 

OSG (Optimal Scenario Grouping): 

Grouping to maximize lower bound improvement

Is Scenario Grouping new?
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OSG performance for SSCh instances (“Easy”)

 Optimal Scenario Grouping (Part) solves all instances when P=4

 Even random grouping helps

Time limit: 3hrs
Nodes/Cores: 1/12
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 The significant reduction in number of iterations offsets the increased time 
per iteration
• As proved by SSCh experiments

 What about problems where 2-scenario grouped problems are too 
expensive?
• Stochastic UC on realistic instances, perhaps?

 Use OSG as a post-processing scheme (one last iteration) to calculate 
better lower bounds

 What if that is too expensive?

 Use LP relaxations of 2-scenario grouped problems

Stochastic UC experiments: 

1 SD iteration + OSG + LP relaxation of 2-scenario problems

But there is no free lunch: Scenario Grouping increases the time per 
iteration for Scenario Decomposition schemes
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 State-of-the art MIP solvers not suited for stochastic problems
• CWE (Central-Western Europe) instances

• CPLEX obtains no solution for 16 scenarios

 Scenario Decomposition after one
iteration provides high quality 
solution (~2%)

 Can we provide better guarantee for
solutions obtained?

 Optimal Scenario Grouping (OSG) Techniques Improve Scenario 
Decomposition schemes by 40%

OSG Performance: What about ”hard” Stochastic Unit commitment 
instances?
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Why not just group randomly? Do we need optimal grouping? 
Random works if the number of scenarios is small (4)

 Random grouping reduces gap by 40% for 4 scenario problems

 Random grouping does not scale

CPLEX 12.5 
Time limit: 15hrs 

Nodes = #Scenarios/2 +1
Cores = 12 * #nodes

Problem Best UB Asynch Rand P=2

Autumn
WD 36,177,240.0 1.62% 0.98%
WE 27,180,129.1 2.12% 1.43%

Spring
WD 23,323,714.7 0.66% 0.22%
WE 18,168,310.0 0.67% 0.16%

Summer
WD 23,950,144.7 0.70% 0.43%
WE 17,640,484.7 1.10% 0.64%

Winter
WD 29,287,830.0 3.72% 2.34%
WE 23,546,261.2 3.82% 2.41%

Average 1.80% 1.08%
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Why not just group randomly? Do we need optimal grouping? 
Random grouping does not work as well for 16 scenarios

 Random partitioning 
reduces gap by 25% 

 Optimal scenario grouping 
reduces gap by more than 40%

 Not surprising: Too many groupings to choose from

 Spring Weekday (histogram of Deviation from optimal)
• Asynch/SD bound (red line) 

• OSG bound (blue line)

• Rand bound (from histogram)
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What about other 16 scenario instances? Works very well on 7/8

 Optimal scenario grouping (OSG) comparable to random in 1/8

 Current research: Improving the quality of OSG (improve estimates)
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 Scenario decomposition natural algorithm for solving stochastic integer 
programs: Improvements can significantly improve performance

 Optimal scenario grouping (OSG) solved previously unsolved instances, 
demonstrated effectiveness on standard test instances (SIPLIB)

 Optimal scenario grouping improves lower bound for stochastic unit 
commitment instances

Summary
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Thank you!
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