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Mission statement
]

Q Main points:

»

»

»

»

Classical view i1s that ISOs use a “deterministic model” for unit
commitment.

Considerable research has been done on the “stochastic unit
commitment problem” that uses a stochastic lookahead model using
scenario trees.

Our thesis:
 “stochastic programming” is a form of policy (a stochastic lookahead
model) for solving a stochastic problem (the real world).
» ISOs use a modified deterministic lookahead model, where the
modifications enforce reserve requirements to ensure a robust solution.
» We call this a parametric cost function approximation, and argue that this
is also a form of policy for solving stochastic unit commitment problems.

We will describe weaknesses in the use of scenario trees, and argue
why the parametric CFA (which is current industry practice) is likely to
be much more effective for handling uncertainty in this context.
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Variability and uncertainty
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Varnability and uncertainty

Q Illustration of forecasted wind power and actual

» The forecast (black line) 1s deterministic (at time t, when the forecast
was made). The actuals are stochastic.

—Fcast
Observed

This is our forecast f,. of the wind power at
time t’, made at time t.

-l This 1s the actual energy from wind, showing

%

o . the deviations from forecast.

t = Current time t'=Some point in the future
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Variability and uncertainty

A Forecasts evolve over time as new information arrives:

Rolling forecasts, /J’,A \
updated each // , g
hour.

/0
Forecast made at II//,/,

. m1dn1gh; ’,} _
ﬁé// \ Actual
N — -

Hours starting at noon on 13/07/09



Varnability and uncertainty

Q ISOs handle uncertainty using a sequence of
decisions

» Day-ahead, intermediate term and real-time planning
each address different types of decisions

Dav-ahead planning (slow — predominantly steam)

=
Intermediate-term planmng (fasr— gas tarbines)
‘ Real-time planning (economic dispatch)
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General modeling framework

Q The objective function

min (" Z
) L 1=0
Expectation over all

random outcomes , .. . :
State variable Decision function (policy)

Finding the best policy

Cost function

Given a system model (transition function)
M
Sty = O (Eﬁ,)Q,VVH4(CD))

We refer to this as the base model to avoid confusions
with lookahead models we will introduce later.
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General modeling framework
N

Q There are two fundamental strategies for solving
sequential decision problems:

» Policy search — Search over a parameterized class of
functions for making decisions to optimize some
metric.

min, E{iC(St, X[ (5,10))] SO}

» Lookahead approximations — Approximate the impact
of a decision now on the future.



Policy search
N

Q Policy search — Two types of policies:

» Analytical functions that directly map states to actions (“policy
function approximations”)
» Lookup tables
— “when 1n this state, take this action”
» Parametric functions
— Order-up-to policies: if inventory is less than s, order up to S.
» Locally/semi/non parametric
— Release rate from a reservoir as a function of reservoir level

» Minimizing analytical approximations of costs and/or constraints
(“cost function approximations”)

e Optimizing a deterministic model modified to handle uncertainty
(buffer stocks, schedule slack)

X FA(S, | 0) = arg min, ... C™(S,, X | 9)

S



Lookahead policies
|

Q Lookahead approximations — Approximate the impact of a
decision now on the future:

» Approximate lookahead models — Optimize over an approximate
model of the future:
* Replace uncertain future with a deterministic approximation
e Model future with a small sample of uncertain outcomes

.
Xt*(st) = arg minxt [C(Sta X )+ E{minﬂeﬂ {E Z C(Sps Xi (Sp)) | St+1} S, Xt})

t'=t+1

» Approximating the value of being in a downstream state using
machine learning (“value function approximations™)

X™(S,) = argmin, (C(S,,%)+V[" (S(S,,%)))



Lookahead policies

Q The ultimate lookahead policy 1s optimal

T
X, (S,) —argmax, (cxst,xt) B> C(S., X7 (50) S} | St,xt}j
t'=t+1

Maximization that we
cannot compute

v v

Expectations that we
cannot compute
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Designing policies
N

Q The ultimate lookahead policy 1s optimal

T
X, (S,) = arg max, (c<st,xt>+E{max,,en {EZ c<st.,><:f<st'>>|sm}wt,xt}j

t'=t+1

Q Instead, we have to solve an approximation called
the lookahead model:

t'=t+1

- _ t+H - _ - - - \
X, (S,) = arg max, (C(St, X, )+ E{maxﬁeﬁ {E > C(Si X (Se) | sm} S, xt}

» A lookahead policy works by approximating the
lookahead model.
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Lookahead policies
|

Q We use a series of approximations:

» Horizon truncation — Replacing a longer horizon
problem with a shorter horizon

» Stage aggregation — Replacing multistage problems
with two-stage approximation.

» Outcome aggregation/sampling — Simplifying the
exogenous information process

» Discretization — Of time, states and decisions

» Dimensionality reduction — We may 1gnore some
variables (such as forecasts) in the lookahead model
that we capture in the base model (these become latent
variables in the lookahead model).



Four (meta)classes of policies

Policy search

Lookahead approximations

1) Policy function approximations (PFASs)
» Lookup tables, rules, parametric/nonparametric functions
2) Cost function approximation (CFKAs)
& . ~ T
» XS, |0) =argmin, ., C7(5,%10)

3) Policies based on value function approximations (VFASs)
» X{(S,) =argmin, (C(S,.%)+V* (S (S %))
4) Direct lookahead policies (DL AS)
» Deterministic lookahead/rolling horizon proc./model predictive control

Xe (5) aig iy C(Sy, %)+ D, CSy %y

""" X tH t'=t+1

» Chance constrai ned programmmg

P[AX < FW)]<1-6

» Stochastic lookahead /stochastic prog/Monte CarTlo tree search

X3S =argminC($,. %)+ Y. P(@) Y, C(5(@). %, ()

Xtt’xtt i ’Xtt.+.T el t'=t+1
» ““Robust optimization™

X4 O(s,)=arg min max c:<8n,xn>+ZC<Sﬁ (W), % (W)




Lookahead policies

The lookahead model

A Lookahead policies peek into the future

» Optimize over deterministic lookahead model

t+1 t+2 t+3
The base model
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Lookahead policies
|

A Lookahead policies peek into the future

» Optimize over deterministic lookahead model

A
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t t+1 t+2 t+3
The base model
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Lookahead policies
|

A Lookahead policies peek into the future

» Optimize over deterministic lookahead mo- 1

R
._":L".."\:‘
! A , \’\C(Sf(\:‘
QO 5 »}‘,
M ®] H
o \X%;'
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S G
S ne
Eﬁ //g{%ﬁ\
O Sl
2 e
O | |
| |
=
t t+1 t+2 t+3
The base model
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Lookahead policies
|

A Lookahead policies peek into the future

» Optimize over deterministic lookahead model

. A
3 ¢ f
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t t+1 t+2 t+3

The base model
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Stochastic lookahead policies
|

Q Stochastic lookahead

» Here, we approximate the information model by using a
Monte Carlo sample to create a scenario tree:

lam 2am 3am 4am 5am .....

- =

Change in wind speed C —
Change in wind speed U

Change in wind speed
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Stochastic lookahead policies
|

Q We can then simulate this lookahead policy over
time:

The lookahead model

t t+1 t+2 t+3
The base model
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Stochastic lookahead policies
|

Q We can then simulate this lookahead policy over
time:

The lookahead model

t t+1 t+2 t+3
The base model

Slide 24



Stochastic lookahead policies
|

Q We can then simulate this lookahead policy over

time:

The lookahead model

t t+1

t+2 t+3
The base model
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Stochastic lookahead policies
|

Q We can then simulate this lookahead policy over
time:

The lookahead model

t t+1 t+2 t+3
The base model
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Stochastic lookahead policies
|

Q Two stage lookahead approximation

1) Schedule steam

Xo W, Xi s Xy yeees Xo
/_J% - .
|
1
0,
2
w

2) See wind:
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Stochastic lookahead policies
|

a Creating wind scenarios (Scenario #1)

Wind Power from All Farms in the Plains - July 2013

—Fcast
5im 1

o -

e R e R R el el e L e el el e e R e e R - e - R -]

10-min Time Intervals
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Stochastic lookahead policies
|

a Creating wind scenarios (Scenario #2)

Wind Power from All Farms in the Plains - July 2013

—Fcast
Sim 2

10-min Time Intervals
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Stochastic lookahead policies
|

a Creating wind scenarios (Scenario #3)

Wind Power from All Farms in the Plains - July 2013

—Fcast
Sim 3

s ¥ i . - ¥ NP

10-min Time Intervals
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Stochastic lookahead policies
|

a Creating wind scenarios (Scenario #4)

Wind Power from All Farms in the Plains - July 2013

—Fcast
5im 4

ARy e RS RO NIOENE RN RS RN AR AR R R AR I RIS ISR R R AR R RN R TP RIS ISR PRI FEEEEE O CAEECERFFERIRRERRE

10-min Time Intervals
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Stochastic lookahead policies
|

a Creating wind scenarios (Scenario #5)

- Wind Power from All Farms in the Plains - July 2013

=—Fcast
Sim 5

10-min Time Intervals
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Stochastic lookahead policies
|

Q The two-stage approximation

1) Schedule

steam

X

2) See wind:

_—
z M
Pt

3) Schedule turbines M

N pons
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MW

Stochastic lookahead policies
|

SMART-ISO - Unconstrained Grid - 22-28 Jul 2010
«oeee —— WWind Buildout 3 - Sample 2 - No ramping reserves

Load shedding event:

|
a !
| 9
- = -
i
%
ik —] ] b
i N Lk 4 kN
- r | B =
1 ] g L - r
| |
. |
.

® Actual Demand (Exc)
Simulated (Used) Wind

= Simulated Storage Power

m Simulated Fast Power

m Simulated Slow Power

LF]
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Stochastic lookahead policies

SMART-ISO - Unconstrained Grid - 22-28 Jul 2010
«oeee —— WWind Buildout 3 - Sample 2 - No ramping reserves

—1

S-min Time Intervals Slld



Stochastic lookahead policies

MW

SMART-ISO - Unconstrained Grid - 22-28 Jul 2010
——Wind Buildout 3 - Sample 2 - No ramping reserves

ol (. Actual wind , | forecast

1 IR B il
) Y o

S—rmin

m pihy [ i j
i
i
i




MW

Stochastic lookahead policies
|

Q Note the dip in steam just when the outage occurs — This 1s
w0 - because we forecasted that wind would cover the load.

® Actual Demand (Exc)
Simulated (Used) Wind

= Simulated Storage Power

m Simulated Fast Power

m Simulated Slow Power
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MW

Stochastic lookahead policies
|

aQ When we allow the model to see into the future (the drop in wind), it
w0000 ——— Schedules additional steam the day before. But only when we need it!

m Actual Demand (Exc)
Simulated (Used) Wind

m Simulated Storage Power

m Simulated Fast Power

m Simulated Slow Power

LE]
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Stochastic lookahead policies
|

Q The two-stage approximation Downward wind shift
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Four (meta)classes of policies
N

1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFAs)
. minxtefﬁg) CriS, X |6)

3) Policies based on value function approximations (VFASs)

» X™A(S,) =argmin, (C(S,x)+V," (S} (Si.%)))
4) Lookahead policies

» Deterministic lookahead/rolling horizon proc./model predictive control
XLA D(S 1= arg mln C(Stt,xﬁ)+ Z C(Stt )

""" Xt tH t'=t+1

» Chance constralned programmlng

P[AX < FW)]<1-6

» Stochastic lookahead /stochastic prog/Monte CarTIo tree search

X" (S,) =argminC(Sy, %)+ . p(@) Y. C(Sy (@), %y (@)
Xtt’Xtt 19°° ’Xtt T CZ)EQ t'=t+1
» ““Robust optimization™

X, - RO(S )= arg mm max C(Sttaxtt)+ Z C(Stt (W), X, (W))

Xt J+H EW (9) t t+1



Parametric cost function approximation

A A deterministic lookahead model

» Optimize over all decisions at the same time

t+H
IIllIl
(Xtt t'=l,..,24
(Yt e=1..

Steam generation Gas turbines

» In a deterministic model, we mix generators with different

notification times:
« Steam generation i1s made day-ahead

» (as turbines can be planned an hour ahead or less
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Parametric cost function approximation

Q A deterministic lookahead policy

» This 1s the policy produced by solving a deterministic
lookahead model

t+H
X/ (S, )—( min
(it )tt 11 221

Steam generation Gas turbines

» No ISO uses a deterministic lookahead model. It would
never work, and for this reason they have never used it.
They always modify the model to produce a robust

solution.
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Parametric cost function approximation

Q A robust CFA policy

» The ISOs introduce reserves:

t+H

min ZC(X&'» ytt')
t'=t

(Xtt ' )t '=1,...,.24
(Yt ot 24

Up-ramping reserve

X o — X" 20",  Down-ramping reserve

» This modification 1s a form of parametric function (a
parametric cost function approximation). It has to be

tuned to produce a robust policy. Slide 44



Parametric cost function approximation

Q An energy storage problem:

Sample Paths of Spot Price (P)
) w / T

7 3 i
0 (A v 4
! iy % o
| e J R e
i 3 ( \
/ i/ 4! AP A
\ 18 Y
e, I
i
| “ f
[ 1 \
' |

- e
zpd
________________ Demand D,
gr
— = - 'h-.i:‘ - - -

The state of the system can be represented by the following five ¢ Figure: Sample paths of spot prices (P;)
dimensional vector,

St = (Rt- Er- F ts Dr- Gt) o wpwgr,mugmj?;i;;::mtrmgm,m
where . \ i
@ R: € [0, Rmax] is the level of energy in storage at time t g: O
@ E; is the amount of energy available from wind m
@ P; is the spot price of electricity Em o ViR |
@ D, is the power demand wof ) i 1
e G; is the energy available from the grid RSN A R



Parametric cost function approximation
N

A Benchmark policy — Deterministic lookahead

t+H
XPA(S,) = argmin C(5¢, x;) Z Cre' Koyt
ek M=t FE ) —1
c
ol O idx +xf° < Dy,
¥4 W £ G, .
rd rg
XI— | Xr E R[’.
i Xfr < Rmax — R:
wr P de S Et-
Wr + Xgr < ~C
.I'"d g - d
Xr | X S: !
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Parametric cost function approximation

Q Parametric cost function approximations
. wr wd
» Replace the constraint Ly _,._f’%t'

wr wd ’-- .. . —— ) Demand D,
Xt- + Xt S Er'. ‘::::r::.f’;: ";‘I:d,
with: &

» Lookup table modified forecasts (one adjustment term for
each time 7 = t'- ¢t 1n the future):

E
xtt' +xtt' T 9 tF;t'

» Exponential function for adjustments (just two parameters)

L (t'-t) 7 E
<
xtt' +$t' - (91 F:ft'

» Constant adjustment (one parameter)

E
xtt' T ajt' o eﬁlt'
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Parametric cost function approximation
N

Q Optimizing the CFA:

» Let F(@ a)) be a simulation of our policy given by

ZO( (S,(@) | 0))

» We then compute the gradlent with respect to &
V,F(0) = E{V,F(6,0)|
» The parameter & is found using a classical stochastic
gradient algorithm:
0" = 0" + anVQF(H”,a)””)

We tested several stepsize formulas and found that ADAGRAD

worked best:
Ji
\I'J'Cl:f + €

e, —
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Parametric cost function approximation
N

Q Optimizing the CFA:
» We compute the gradient by applying the chain rule

L (0C) 0Xo\ . <~ [(0Cs 05y 9C,  [0Xs(S:0) 8Se 0Xy(S:0)
Vol = (axﬂ'aa)+z Kasy' 89)+(6Xt:(.5‘t|6)'( 9S, o0« og )) ’

t'=1

» Where the interaction from one time period to the next
1s captured using

90 08,1 00 ' 0Xea1Seald) | 05e. a6 a0

855 BS{ ) 883*_1 BSH BXE;—I(St—llg) . 5.5'y_1 + 3Xtr_1(5}_;|9)]

» Assuming there are no integer variables, these
equations are quite easy to compute.

» For real stochastic unit commitment problems, we are
going to need to use a derivative-free algorithm.
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Parametric cost function approximation
N

0 Optimal adjustment parameters @ for each model

More accurate forecasts Less accurate forecasts
1.0 - 1.0 -
+  Lookup table
Constant parameter E Lookup table
-~ 05 1
> = Constant parameter
- | ; . . s 0.0. L: . I ‘,‘ lH L " l l l
(a) 6, for or = 20 and ¥ = Ry« (a) 8, for of = 35 and ¥ = Ry
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Parametric cost function approximation
N

QA Improvement over deterministic benchmark:

Decreasing forecast accuracy: >
fo:;)D n_f:‘Z'J (szgﬂ (Tf::}':'l
Constant 13% 13% 16% 17%
Lookup table 20% 22% 26% 25%
Exponential decay 14% 22% 26% 26%

» Significant improvement over deterministic benchmark
(an untuned lookahead policy).
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Parametric cost function approximation

MW
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SMART-ISO - Unconstrained Grid - 22-28 Jul 2010

Wind Buildout 4 - No ramping reserves

B Actual Demand (Exc)
Simulated (Used) Wind

" Simulated Storage Power

M Simulated Fast Power

B Simulated Slow Power




Parametric cost function approximation

MW

140000

120000

100000

80000 1

60000

40000

20000

SMART-ISO - Unconstrained Grid - 22-28 Jul 2010

Wind Buildout 4 - Ramping reserves 9GW

B Actual Demand (Exc)

Notice that we get uniformly more Simulated (Used) Wind

" Simulated Storage Power

gas turbine reserves at all points in = Simulated Fast Power
time (because we asked for it) ® Simulated Slow Power




Paper available on arXiv:

Stochastic Optimization with Parametric Cost Function Approximations

Raymond T. Perkins 111*, Warren B. Powell®

raymondp Tprinceton. edu
! powel [Bprinceton. edu

Abstract

A widely used heuristic for solving stochastic optimization problems is to use a deterministic rolling
horizon procedure which has been modified to handle uncertaimty (e.g.  buffer stocks, schedule
slack). This approach has been criticized for its use of a determmmistic approximation of a stochastic
problem, which is the major motivation for stochastic programming. We recast this debate by iden-
tifying both determimistic and stochastic approaches as policies for solving a stochastic base model,
which may be a simmlator or the real world. Stochastic lookahead models (stochastic programming )
require a range of approximations to keep the problem tractable. By contrast, so-called determinis-
tic models are actually parametrically modified cost function approximations which use parametric
adjustments to the objective function and for the constraints. These parameters are then optimized
in a stochastic base model which does not require making any of the types of simplifications required
by stochastic programming, We formalize this strategy and describe a gradient-based stochastic
search strategy to optimize the parameters.

Keywords:  Stochastic Optimization, Stochastic Programming, Decisions under uncertainty,

Parametric Cost Function Approximation, Cost Funetion A pproximation, Policy Search
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Conclusions:
]

» Weaknesses of stochastic programming (with scenario trees)
« Computationally intensive
e It does not ensure robust solutions (needs too many scenarios)
« Many approximations are required (e.g. two stage).

» Parametric cost function approximations:
* Generalizes standard industry practice
« Uses domain knowledge to ensure robust policies across a much wider
range of scenarios.
« Resulting models can be implemented using existing commercial
software.

» Parametric CFAs open up an entirely new research directions for

stochastic unit commitment:
* Propose new parameterizations to achieve robustness at lowest cost.
« Design algorithms (either derivative-based or derivative-free) to optimize
the parameterized policy.
* Need to design algorithms for online learning.
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