B A Dita-driven Optimization

Iﬂiﬂgﬂiﬂ Approaches for Optimal
Power Flow with Uncerta

Johanna L. Mathieu <
Assistant Professor \

| o g || =
Electrical & Computer Engineering \ o
University of Michigan, Ann Arbor q

Joint work with Prof. Sigian Shen, Yiling Zhang, and Bowen Li

N

Reserves from Load Control

¢I||Dimu



The Challenge

* Aggregations of loads can provide reserves via
load control

e But loads are stochastic...

— We don’t know the future load exactly
— We don’t know the future load flexibility exactly

* Two options:

— Be conservative in how much load-based reserve we
schedule (how it’s done today)

— Plan for load control uncertainty within the optimal
power flow problem ...



The Solution:
Planning for load control uncertainty

e Stochastic optimal power flow including...
— Uncertain renewable energy production

— Uncertain load control (i.e., load-based reserves
where feasible reserve capacities aren’t known
exactly)

e Chance-constrained formulation...

— Ensure probabilities of constraints with stochastic
variables are met with certain probabilities



Solution Approaches

* Last year: scenario-based approach

— Calafiore and Campi TAC 2006 — “The scenario
approach” — provides probabilistic guarantees if
certain number of scenarios are used

— Margellos, Goulart, and Lygeros TAC 2012 —
“Probabilistically Robust Design” — robustifies the
scenario approach to reduce data needs/computation

— More information: Vrakopoulou et al. HICSS 2014

* This year: distributionally robust optimization

— Data-driven, but can cope with limited data
availability

— More information: Zhang et al. ACC 2015
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Load Aggregations Modeled as Time-Varying
& Uncertain Energy Storage
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Formulation: Assumptions

 DC-OPF
* Single-period problem
* Load-based reserves should be able to provide
full power capacity for 15-minutes
- Power capacity offered to market is a function of
Prin(k), Puax(E), Smin(k), and Smax (k)



Formulation: Notation

Decision variables:
e energy production at generators Pg B
o generators’ up- and down-reserve capacities Rg, R
o loads’ up- and down-reserve capacities Rp, R},
o “distribution vectors” dg,ds and dr,,d;
Other variables:
e actual generator reserves Rg and load reserves Ry,
o real-time supply/demand mismatch P,,
Cost parameters:
o ¢c=|cg,c1,¢2,Cq,Cq,Cr,cp)"
Given data:
o loads forecast P! and wind forecast Pf
e actual wind power PW, actual load PL

o actual minimum and maximum load [P, Py]
e min/max generator production P, Pg



Formulation: Joint and Individual

Chance Constrained OPF

e [J-CC-OPF]:

min CT[].,PG,Pé;E(%EG)RLaEL]

S.t.

Rg = dg max{—P,,0} — d, max{P,,,0}
R = dr max{P,,,0} — d, max{—P,,,0}

P(ExZ?)/) >1—c€

r = [PGaﬁGaEG)RIMEL)QG?EG;QIJEL] Z 0



Formulation: Joint and Individual
Chance Constrained OPF

@ Constraints inside (7)

Az > b={P; < Pg + Rg < Pa,
ELSﬁL—i_RLS?LJ
—R. < Re < Rg,

_EL S RL S EL:
0
< A <
Pl ne Bﬂow [ Bb_ulspinj ] Pl ne}
o [I-CC-OPF]:
min (1)
st (2)(6), (8)
P(}LZCZ/[;@>21—EZ 1=1,..., m.

(10)



Solution Approaches

Al: Sample Average Approximation

A2: Gaussian Approximation

A3: Scenario Approximation

A4: Distributionally Robust Optimization



Al: Sample Average Approximation
(solved with MILP)

@ Reformulate individual chance constraints (10)
P(ZZCCZEZ)Zl—GZ izl,...,mas

Afx > b5 — My Vs, i=1,...,m (11)
Z Egpsyi <€, Vi, and ¢y’ € {0,1} Vs, 1, (12)

where M is a large scalar coefficient.

@ Associate each s € Q with a binary logic variable 3 such that

o y: = 0 indicates that Afx > bf .
o y: =1 indicates that Az < b3.



A2: Gaussian Approximation

@ Consider an equivalent of individual chance constraints (10)

P(Zga—:gb;) >1—¢ i=1,...,m,

@ Assume the uncertainty is Gaussian distributed:

~

A; ~ N(:LLiv E’L)

Then, N
Al — b, ~ N(u, T —b,2' 5,7).

@ We rewrite (13) as

b, —p, x>0 N1 —e)VET8z i=1,...,m.

The above are second-order cone constraints if ®~1(1 —¢;) > 0, i.e.,

1 — €; Z 0.9.

(13)

(14)



A3: Scenario Approximation

@ Replace each chance constraint in (10)
IP’(;L:L‘ ZEZ) >1—¢ ©+=1,...,m with

ASz > b Vs € Q. (15)

@ Both Al and A2 require full distributional knowledge, while A3 requires
large sample sizes and significant computation.



A4: Distributionally Robust (DR)
Optimization

@ The DR variant of (10):

inf Pe(ASz>08)>1—¢ Vi=1,. . 16
f@g)d ) (16)

@ Given samples {ﬁi}fil of &, we first calculate the empirical mean and

covariance matrix as o = + SV €Ehand Xp = o STV (€ —pd) (€ —ph)T, and
then build a confidence set

fgeg f(f)df =1
D=4 f&): (B —po) (Zo) "(EE] —po) < .
E[(€ — po)(€ — po)'] = 7250



A4: Distributionally Robust (DR)
Optimization

@ (Duality theory) Let 7, lf{’ P z] , and G; be the dual variables associated

with the three constraints in the above confidence set D, respectively. The
individual chance constraints (16) are equivalent to

Y220 - Gi+1—71i+ X0 Hi +71¢: < €yi (17)
[ GfL —Pi | 0 lAfP

— e 27 — 18
G e FY S 1
[ G —pi | {Hz pi] .

-~ 0, 04 >0, i=1....m, (19
—p; 1—ri| = pi @ Y (19)

@,

where operator in constraint (17) represents Frobenius inner product of two
matrices (i.e., A- B = tr(A' B)). This is a semi-definite program and can be
solved by commercial solvers.



Computational experiments

* |EEE 9-bus test system
— Added one wind farm to bus 6
— All loads assumed partially controllable
— Wind forecast uncertainty (modeled with real data)

— Load control uncertainty assumed a function of
temperature forecast uncertainty

e |EEE 39-bus test system

— Similar assumptions...



Results: IEEE 9 Bus Test System

Table : Results for IEEE 9-Bus system with 1 — ¢; = 95%

Obj. Rel(%) CPU
avg min max|avg min maX| avg min max
Al J-CC-OPF (1349 1328 1363| 77 8 95 | 2 1 4
[-CC-OPF (1346 1336 1357| 72 46 90 (5876 131 32817
A2 [-CC-OPF [1349 1340 1358| 82 65 94 [ 1 1 1
A3 I-CC-OPF (1408 1371 1525{100 99 100| 55 54 57
A4 I-CC-OPF 1393 1365 1458|100 98  100| 5 4 6
Cost Performance | Computation

A4 (empirically) requires 20 data points, A3 (theoretically) requires 900!

18




Results: IEEE 9 Bus Test System

Table : Results of I-CC-OPF solved by the DR approach A4

1 —¢; = 95.00% 90.00% 85.00%

avg 1392.64 1369.23 1359.97
Objective cost min 1352.46 1346.62 1346.62
max 1457.81 1385.24 1372.75

avg  99.50 97.97 94.51
Individual Reliability (%) min  91.40 91.40 83.29
max  99.96 99.70  99.18

avg 6.63 6.98 6.95
CPU seconds min 6.13 4.73 6.27
max 8.19 8.44 7.83




Results: IEEE 9 Bus Test System

Table : Solutions from A1-A4 of I-CC-OPF with 1 —¢; = 95%

(Pa)1

(Pa)2

(Pg)s (Ra)1 (Ra)2 (Ra)s (Rg)i (Rg)2 (Rg)s (Ro)i (Rir)o

A1l 10.00
A2 10.00
A3 10.03
A4 10.00

28.84
28.89
29.32
29.22

20.94 0.00 0.00 0.00 0.00 0.00 0.00 4.44 1.21
20.97 0.00 0.00 0.00 0.00 0.00 0.00 3.88 1.88
21.27 0.03 2.35 0.00 0.03 2.79 0.00 10.49 9.73
21.20 0.00 0.25 0.00 0.00 0.34 0.00 1097 7.34

(Rr)3

(B )1

(Bp)2 (Br)s (dg)1 (dg)2 (dg)s (dr)r (dr)2 (dr)s

Al
A2
A3
A4

8.0
9.45
4.74
15.17 8.46

1.86
2.03
8.90

0.63 3.41 0.00 0.00 0.00 0.32 0.09 0.58
1.08 4.21 0.00 0.00 0.00 0.25 0.12 0.62
7.85 4.00 0.00 0.10 0.00 0.38 0.35 0.17
5.68 11.59 0.00 0.01 0.00 0.32 0.21 0.46




Results: IEEE-39 Bus Test System

Table : Average performance (out of 37 Constraints) to IEEE 39-Bus system
with 1 — €, — 95%

CPU seconds Objective cost Reliability (%)

A5 3015.98 25670.07 96.47
A2 4.10 25632.72 93.79
A3 6893.96 26129.16 99.99

A5: A hybrid between A4 (Distributionally Robust
Optimization) and A2 (Gaussian Approximation)



Findings

* Distributionally robust optimization provides a
good trade-off...

— Less computationally-intensive than scenario-based
methods

— Requires less data than scenario-based methods

— Better performance than Gaussian approximation or
sample average approximation (MILP formulation)

e ...but the semidefinite program resulting from the
IEEE 39 bus test system is already too big...



Next steps

* Apply distributionally robust optimization to
the multi-period problem...

— Solved with scenario approach: Vrakopoulou et al.
HICSS 2014

— Solved with Gaussian approximation: Li and
Mathieu PowerTech 2015

* Alternatives to moment-matching
* Alternative approximation techniques
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