

A progressive method to solve large-scale AC Optimal Power Flow with discrete variables and control of the feasibility

<u>Manuel Ruiz</u>, Jean Maeght, Alexandre Marié, Patrick Panciatici and Arnaud Renaud manuel.ruiz@artelys.com

MOTIVATIONS

The iTesla project

- Pan-European R&D project :
 - Security assessment on large scale power networks by means of security rules
 - Coordinated by RTE (Réseau de Transport d'Electricité)
 - Includes 6 European TSOs, 13 R&D companies and academic partners
 - Official website: <u>http://www.itesla-project.eu/</u>

A sampling example

4

- Power System network with 2 loads (NORTH and SOUTH)
- Generated from historical data, sampled cases are to be analyzed
 - Sampled data are loads or fixed injections (including renewable generation)
 - Steady state, Unstable state or Unknown
- Screening rules describing the boundary between stable and unstable are then extracted from the analysis of the sampled cases

Topic of the talk

- Monte Carlo simulations provide us with thousands of samples (partial network situations)
- Our aim is to build up the complete state for each sample:
 - To assess feasibility
 - To identify the sample parameters that cause infeasibilities
 - While having a realistic and detailed representation of the network
- Specificity of the mathematical problem
 - Non linear
 - Without any guarantee of feasibility (due to sampling)
 - With discrete aspects (rigorous description of the power system network)
 - Large scale network (target is European network)

MATHEMATICAL FORMULATION EXTENDED OPTIMAL POWER FLOW

• The power system network is described using buses and branches:

Loads and production units are set up on buses.

- AC formulation using voltage and production levels:
 - Induces active and reactive non linear power balances,
 - Allows computation of active power losses.
- Security constraints:
 - Bounds on voltage magnitude,
 - Upper bounds on currents (thermal limits).

Lines with PST

- Phase-Shifting Transformers are used to adjust the voltage ratio and the difference in the phase angle.
- Operating points of PST are to be chosen in a set of discrete configurations defining:
 - Reactance,
 - Voltage ratio and the difference in the phase angle.
- Using the admittance matrix Y_j of operating point j, the model simply reads:

$$- Y = \sum_{j} \lambda_{j} Y_{j},$$

$$- \sum_{j} \lambda_{j} = 1, \ \lambda_{j} \in \{0; 1\}.$$

Production units

- Commitment of production unit
 - Active and reactive power injection are bounded when the unit is switched on
 - Given set production levels are to be reached
- Commitment constraints for unit g
 - p_g , q_g : active and reactive injections
 - $is_on_g \in \{0; 1\}$

$$- is_on_g \begin{bmatrix} P_g^{min} \\ Q_g^{min} \end{bmatrix} \le \begin{bmatrix} p_g \\ q_g \end{bmatrix} \le is_on_g \begin{bmatrix} P_g^{max} \\ Q_g^{max} \end{bmatrix}$$

- Definition of the over active injection level:
 - P_g^c : set value of active injection computed using data mining
 - p_g^{add} : active over injection defined by
 - $p_g \leq P_g^c + p_g^{add}$ pour chaque groupe g
- The criterion is defined as $\sum_{g \in Units} (p_g + p_g^{add})$

Other aspects

- Compensation units with similar attributes can be activated at some nodes
 - $> -V_n^2 \cdot nb_n^{shunt} \cdot B_n^{shunt}$: reactive injection in power balance
 - $\succ nb_n^{shunt}$: number of activated devices
 - $\succ B_n^{shunt}$: value of the attribute for one unit
- The main objective is to build a realistic feasible solution to be able to launch dynamic simulation
 - Reduce active power losses
 - Reduce the deviation to set production levels

- The network topology is given as an input
 - Ongoing work to optimize the topology

SOLVING APPROACH CUSTOM DECOMPOSITION STRATEGY

Diagnosis of feasibility

- Sampling may have produced infeasible situations in terms of loads and fixed injections:
 - Fixed injection or loads too high on a node,
 - Current intensity level too low on a line.
- Optimal power flows:
 - Slack variables in power balances or constraints related to thermal limits
 - Continuous relaxations of discrete aspects using $x \in \{0, 1\} \Longrightarrow x \in [0, 1]$:
- The resulting NLP are solved with KNITRO using an interior point method for non linear programming.
- When necessary, fixed injections can be modified:
 - Production curtailment of fatal production unit (PC)
 - Load shedding (LS)
- Whenever LS is used the instance is considered as not feasible
 - In such a case, results analysis can be used to correct the sampling (high loads or renewable productions)

WITHOUT LIMIT

- Discrete aspects are handled separately.
- Resolution of MINLP is based on a MPEC reformulation that can be directly handled by KNITRO.

 $-x \in \{0; 1\} \Leftrightarrow x = 0 \text{ or } 1 - x = 0 \Leftrightarrow 0 \le x \perp 1 - x \ge 0$

- KNITRO then treats MPEC as a NLP.
 - Defining the constraint $x \ge 0$ and $1 x \ge 0$
 - Adding a penalty term $\Pi \cdot x(1-x)$ in the objective
 - Iteratively updating the penalty weight Π to converge to a locally optimal solution.

Decomposition strategy

COMPUTATIONAL RESULTS

Dataset description (1)

- FR-THT: Very High Voltage (VHV) French transmission network.
- 1600 substations, 1900 buses, 2700 branches.
- On average 7000 variables and 7500 constraints after presolve. Jacobian size is over 43 000 non zero elements and the hessian matrix 15 000.
- MPEC reformulations consist in 83(PST step), 112(UNIT step) and 1384(SHUNT step) complementarities.
- Each problem is solved by KNITRO with less then 10s.

Dataset description (2)

- FR-THT-HT-M: Very High Voltage French transmission network, High Voltage (HV) transmission area of Marseilles.
- 2400 substations, 2800 buses, 4060 branches.
- On average 13K variables and 12K constraints after presolve. Jacobian size is over 60 000 non zero elements and the hessian matrix 20 000.
- MPEC reformulations consist in 130(PST), 135(UNIT) and 6681(SHUNT) complementarities.
- During the feasibility phase each problem is solved by KNITRO with less then 10s. MPEC reformulation are solved within 1 or 2 minutes.

Dataset description (3)

- FR-THT-HT-full: Very High Voltage network and the whole High Voltage (HV) transmission network for France; a guard ring is added, with a few buses representing a simplified version of the neighborhood of France.
- 5857 substations, 6471 buses, 9831 branches.
- On average 36K variables and 30K constraints after presolve. Jacobian size is over 200K non zero elements and the hessian matrix 50K.
- MPEC reformulations consist in 355(PST), 174(UNIT) and 24018(SHUNT) complementarities.
- During the feasibility phase each problem is solved by KNITRO with less then 40s. MPEC reformulation are solved within less than 3 minutes.

Remarks on nominal voltage

• Each instance address a very different kind of power system with different voltage levels

Conclusion

- The problem of solving extended OPF with no guarantee on feasibility is addressed.
- A custom methodology is designed. It includes feasibility diagnosis and resolution of several OPF with discrete variables.
- The MPEC reformulation of MINLP is successfully applied and computational results obtained are promising.
- We are currently working on experimentations on European scale.

QUESTIONS ?