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 Polynomial Optimization: 
 
 
 
 
 
 

 
 
 Different types of solutions: 

Special case: Combinatorial 
optimization and integer 
programming problems 

Very hard to solve  Very hard to solve 

Point A: Local solution  

Point B: Global solution 

Point C: Near-global solution 

Focus of this talk 

Polynomial Optimization 
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Optimality Guarantee   ≥      

 

Global cost 

Near-global cost 
 100 

 Focus of talk: Find a near-global solution with a high optimality guarantee (close to 100%). 

 

 

 Approach: Low-rank optimization, matrix completion, graph theory, convexification 

A number between 0 % and 100 % 

Objective 
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Problem 1: Convexification  
Design a convex problem whose solution is 
near global for original problem. 

Problem 2: Numerical Algorithm  
Design an algorithm to solve the (high-dim) 
convex program numerically. 



 Power system:  

 
 A large-scale system consisting of generators, 

loads, lines, etc.  
 

 Used for generating, transporting and 
distributing electricity.  

1. Optimal power flow (OPF) 
2.  Security-constrained OPF 
3.  State estimation 
4.  Network reconfiguration 
5.  Unit commitment 
6.  Dynamic energy management 

ISO, RTO, TSO 

NP-hard  
(real-time operation and market) 

Power Systems 
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SDP relaxation 

Convexification 
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Penalized SDP 

 Transformation: Replace xxH with W. 
 

 W is positive semidefinite and rank 1 

 Rank-1 SDP: Recovery of a global solution x 

 Rank-1 penalized SDP: Recovery of a near-
global solution x 



 SDP is not exact in general. 

 SDP is exact for IEEE benchmark examples and several real data sets. 

Theorem: Exact under positive LMPs. 
 

Theorem: Exact under positive LMPs 
with many transformers. 
 

Physics of power networks (e.g., passivity) reduces computational complexity 
for power optimization problems. 

Exactness of Relaxation 
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acyclic 

cyclic 

1. S. Sojoudi and J. Lavaei, "Exactness of Semidefinite Relaxations for Nonlinear Optimization Problems with Underlying Graph Structure,” SIOPT, 2014.  
2. S. Sojoudi and J. Lavaei, "Physics of Power Networks Makes Hard Optimization Problems Easy to Solve," PES 2012. 

 



 Observation: SDP may not be exact for ISOs’ large-scale systems (some negative LMPs). 
 

  Remedy: Design a penalized SDP to find a near-global solution. 

Promises of SDP 
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SDP looks very promising for energy applications 

1. J. Lavaei and S. Low, "Zero Duality Gap in Optimal Power Flow Problem," IEEE Transactions on Power Systems, 2012. 
2. J. Lavaei, D. Tse and B. Zhang, "Geometry of Power Flows and Optimization in Distribution Networks," IEEE Transactions on Power System, 2014. 
3. R. Madani, S. Sojoudi and J. Lavaei, "Convex Relaxation for Optimal Power Flow Problem: Mesh Networks," IEEE Transactions on Power Systems, 2015.  
 



Arbitrary Real/Complex Polynomial 
Optimization 

Conversion 

SDP/ Penalized SDP 

Outline 
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Connection between 
sparsity and rank? 

How to design 
penalized SDP? 

Proof of existence of 
low-rank solution using 
OS and treewidth 

Propose two methods 
to design penalty 

Design scalable 
numerical algorithm? 

Cheap iterations for large-
scale problems 



Arbitrary Real/Complex Polynomial 
Optimization 

Conversion 

SDP/ Penalized SDP 

Outline 

Connection between 
sparsity and rank? 

How to design 
penalized SDP? 

Proof of existence of 
low-rank solution using 
OS and treewidth 

Propose two methods 
to design penalty 

Design scalable 
numerical algorithm? 

Cheap iterations for large-
scale problems 



 OS-vertex sequence: [Hackney et al, 2009] 
 
 Partial ordering of vertices 
 Assume O1,O2,…,Om is a sequence. 
 Oi has a neighbor wi not connected to the 

connected component of Oi in the subgraph 
induced by O1,…,Oi 
 

 Bags of vertices Vertices 

 Tree decomposition: Map the graph G into a tree T  
 Each node of T is a bag of vertices of G 
 Each edge of  G appears in one node of T 
 If a vertex shows up in multiple nodes of T, 

those nodes should form a subtree 
 

 Width of T: Max cardinality minus 1 
Treewidth of G: Minimum width 

OS: Maximum cardinality among all 
OS sequences 

 Roughly speaking, very sparse graphs have high OS and low treewidth1 (tree: OS=n-1, TW=1) 

Graph Notions 

10 1. S. Sojoudi, R. Madani, G. Fazelnia and J. Lavaei, “Graph-Theoretic Algorithms for Solving Polynomial Optimization Problems,” CDC 2014 (Tutorial paper). 



 Sparsity Graph G: Generalized weighted graph 

with no weights. 

 SDP may has infinitely many solutions. 

 How to find a low-rank solution (if any)? 

 Consider a supergraph G’ of G. 

Theorem: Every solution of perturbed SDP satisfies 
the following: 

Equal bags: TW(G)+1 for a right choice of G’ 
 

Unequal bags: Needs nonlinear penalty to 
attain TW(G)+1  

Low-Rank Solution 

Perturbed SDP  

SDP  

11 1. R. Madani et al., “Low-Rank Solutions of Matrix Inequalities with Applications to Polynomial Optimization and Matrix Completion Problems,” CDC 2014. 
2. R. Madani et al., “Finding Low-rank Solutions of Sparse Linear Matrix Inequalities using Convex Optimization,” Under review for SIOPT, 2014. 

 
 

 This result includes the recent work Laurent and Varvitsiotis, 2012. 



Tree decomposition for IEEE 14-bus system: 

Treewidth of NY < 40 

Case studies: 

Treewidth of Poland < 30 
SDP relaxation of every SC-UC-OPF problem 
solved over NY grid has rank less than 40 (size of 
W varies from 8500 to several millions). 

Illustration: Power Optimization 
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1. R. Madani, S. Sojoudi and J. Lavaei, "Convex Relaxation for Optimal Power Flow Problem: Mesh Networks," IEEE Transactions on Power Systems, 2015. 
2. R. Madani, M. Ashraphijuo and J. Lavaei, “Promises of Conic Relaxation for Contingency-Constrained Optimal Power Flow Problem,” Allerton 2014. 
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Sparse 

Low-rank 

Rank-1 

 
SDP works if G has no edges:             
                                                
                                                  (LP) 
                                                     

 
• Assume SDP fails.  

 
• Can we identify what edges 

caused the failure?  
 

• Localized non-convexity v.s. 
uniform non-convexity? 

 

Approach for localized case: 
Penalty over problematic edges 
 
 
 
 
                                                     

Non-convexity Localization 
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Rank of W Max rank of submatrices 

W Submatrices 
 of W 

Problematic edges: 
Identified based on high-
rank submatrices 
                                                     

IEEE 300-bus: 2 
Polish 2383-bus :  11 
                                                     

Problematic Edges 

15 1. R. Madani et al., “Finding Low-rank Solutions of Sparse Linear Matrix Inequalities using Convex Optimization,” Under review for SIOPT, 2014. 
2. R. Madani, M. Ashraphijuo and J. Lavaei, “Promises of Conic Relaxation for Contingency-Constrained Optimal Power Flow Problem,” Allerton 2014. 
 
 



 
Strategy: Penalize reactive loss over 
problematic lines  
                                                     

 Modified IEEE 118-bus:  

 3 local solutions 

 Costs:  129625, 177984, 195695 

 

SDP 
cost 

Lambda 

                                                     

                                                     

 
7000 simulations  

 

Example: Near-Global Solutions 
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1. R. Madani, S. Sojoudi and J. Lavaei, "Convex Relaxation for Optimal Power Flow Problem: Mesh Networks," IEEE Transactions on Power Systems, 2015.  
2. R. Madani, M. Ashraphijuo and J. Lavaei, “Promises of Conic Relaxation for Contingency-Constrained Optimal Power Flow Problem,” Allerton 2014. 



 

 Compressed sensing and phase retrieval 

 Need  n log n  measurements for a much 

simpler problem [Candes and Recht, 2009]. 

Why was penalty chosen as loss? 
 

 
Proposed penalty: 
 

 
  

 
Algorithm design: Can we design an SDP to find 
the best M? 
 
 

Penalty Design 
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Good penalty: Minimization of penalty by itself (             ) leads to a rank-1 solution. 
 

First try: 

Study of a simpler case:  Guess for solution of original QCQP:  x* 
 
 
 



 
 

 
  

Theorem: If Jacobian is nonsingular, 
then SDP is exact in a vicinity of x*.  
 

x* 

Recoverable region for x : 

 
 

 
  

Local behavior: Linearization solves 
approximately but SDP solves exactly. 
 
Global behavior: The region could be as big as 
the entire space. 

x*  LMI 

Design of M: Include x* and a set of points 
 

 
 
  

Power flow equations for power systems: M is a one-time design independent of loads. 

Penalty Design 

18 1. M. Ashraphijuo and J. Lavaei, “SDP-Type Algorithm Design for Systems of Polynomials," Preprint, 2015. 
2. R. Madani, R. Baldick and J. Lavaei, “Convexification of Power Flow Problem over Arbitrary Networks,” Preprint, 2015. 



 
Theorem: There is a region RM with a non-empty interior and containing the vector 1 such that 
SDP solves PF if and only if PF has a solution in RM . 
 

Power Flow Problem Using SDP 

19 1. M. Ashraphijuo and J. Lavaei, “SDP-Type Algorithm Design for Systems of Polynomials," Preprint, 2015. 
2. R. Madani, R. Baldick and J. Lavaei, “Convexification of Power Flow Problem over Arbitrary Networks,” Preprint, 2015. 

 Interpretations:  

 SDP always solves PF precisely if PF has a solution with small angles. 

 It works for all networks (all topologies). 

 Unlike DC approximation, this accommodates equations for reactive power. 
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Connection between 
sparsity and rank? 
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Proof of existence of 
low-rank solution using 
OS and treewidth 

Propose two methods 
to design penalty 

Design scalable 
numerical algorithm? 

Cheap iterations for large-
scale problems 



Sum of agents’ objectives 

Local constraints 

Overlapping constraints 

 Distributed Algorithm: ADMM-based dual decomposed SDP (related work: [Parikh and Boyd, 

2014], [Wen, Goldfarb and Yin, 2010], [Andersen, Vandenberghe and Dahl, 2010]). 

 Iterations: Closed-form solution for every iteration  (eigen-decomposition on submatrices) 

  

Low-Complex Algorithm 

Goal: Design a low-complex 
algorithm for sparse 
LP/QP/QCQP/SOCP/SDP 
 

21 1. A. Kalbat and J. Lavaei, “Alternating Direction Method of Multipliers for Sparse Semidefinite Programs,” Preprint, 2015. 



 Number of blocks (agents): 2000 

 Size of each block: 40  

 Number of constraints per block: 5 

 Overlapping degree: 25% 

 Number of entries for full SDP: 6.4B 

 Number of entries for decomposed SDP: Over 3M 

 Number of constraints: Several thousands  

0 

99.9% feasible and 
globally optimal 

 20 minutes in MATLAB with cold start (2.4 GHz and 8 GB):  

Example: Large-Scale Random Problem 
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Example: IEEE Benchmark Systems 
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Distributed control 

Another Project: Distributed Control of Stochastic Systems 

Stochastic Distributed Control: Design                            for  
                            

 

 to minimize:   

 

disturbance 

noise 

New England 
Test System 

Theorem: Rank of SDP solution in the Lyapunov domain is 1, 2 or 3. 

(NP-hard: Witsenhausen’s example) 
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1. G. Fazelnia et al., “Convex Relaxation for Optimal Distributed Control Problem — Part I: Time-Domain Formulation”, Submitted to IEEE Transactions 
on Automatic Control, 2014 (conference version: CDC 2014). 

2. G. Fazelnia et al., “Convex Relaxation for Optimal Distributed Control Problem — Part II: Lyapunov Formulation and Case Studies”, Submitted to IEEE 
Transactions on Automatic Control, 2014 (conference version: Allerton 2014). 

3. Salar Fatahi, Ghazal Fazelnia and Javad Lavaei, Transformation of Optimal Centralized Controllers Into Near-Global Static Distributed Controllers , 
Preprint, 2015. 
 



Problem: Find a near-global solution together with 
a global optimality guarantee for energy problems 
 
  
Approach: Graph-theoretic convexification 

 OS and treewidth: Connection between rank and sparsity 

 Non-convexity diagnosis:  Graph-based localization 

 Penalized SDP:  Obtaining a near-global solution 

 Scalable algorithm: High-dimensional sparse SDP 

 

 
 

Conclusions 
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 ONR YIP: Graph-theoretic and low-rank optimization  
 
 
 

 NSF CAREER: Control and optimization for power systems 
 
 
 
 

 NSF EPCN: Contingency analysis for power systems 
 
 
 
 

 Google: Numerical algorithms for nonlinear optimization 
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