

Solving the Mixed Integer Non-linear Programming Problem of Unit Commitment on AC Power Systems

Exceptional service in the

national

interest

Carl Laird – Sandia National Laboratories Jianfeng Liu – Purdue University Jean-Paul Watson – Sandia National Laboratories

FERC Software Conference June 27, 2017

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO.

Overview

Today's Practice

Contributions

- Overview
- Local Solution Method
- Global Solution Method
- UC+ACOPF Results
- Ongoing Work

TODAY'S PRACTICE

Operational Challenges

- Committing Least Cost + Maintaining Reliability
- Out-of-Merit Reliability Commitments
- Improving convergence between day-ahead and real-time prices
- Algorithmic Challenges
 - Accounting for reliability needs in dispatch and pricing optimization
 - Better physical representation of the generating units and underlying network

Unit Commitment in the Day-Ahead Market

Current Practices

UC/Security-Constrained UC

- Copper-plate (no network/single node)
- Ignores congestion; requires cutsets to proxy capacity limits on network
- Most tractable

SCUC DCOPF

- Real power flows only (proportional to current)
- BØ (full) or PTDF (compact) approach Extensions:
- Accounts for losses
- Nomograms/cutsets to proxy reliability requirements

Proposed Approach

SCUC ACOPF

- Co-optimizes real and reactive power dispatch
- Accounts for commitments needed for blackstart service, reactive support, voltage support, and interface control
- Nonlinear, nonconvex on meshed networks

The link between physics and prices

- Locational marginal pricing (LMP) is the spot price of electricity
- Dual variable/Lagrange multiplier (λ_n) to real power balancing at all buses $p_n p_n^d + p_n^g = 0$ (λ_n)

ACOPF
$$p_n = |v_n| \sum_{m \in \mathcal{N}} |v_m| \left(G_{nm} \cos \theta_{nm} + B_{nm} \sin \theta_{nm} \right)$$

DCOPF
$$p_n = \sum_{m \in \mathcal{N}} \left(B_{nm} \theta_{nm} \right) \approx |\tilde{v}_n| \sum_{m \in \mathcal{N}} |\tilde{v}_m| \left(B_{nm} \theta_{nm} \right)$$

DCOPF with losses
$$p_n = \sum_{m \in \mathcal{N}} \left(G_{nm} \left(\theta_{nm} \right)^2 / 2 + B_{nm} \theta_{nm} \right)$$

The LMP incorporates the marginal cost of supplying the next MW of load for a given location in time; includes

1. marginal unit cost,

2. cost of network congestion (due to thermal line limits), and

3. cost of real power losses on the network

CONTRIBUTIONS

CONTRIBUTIONS OVERVIEW

UC+ACOPF: MINLP

Min Production Costs + Startup Costs + No-Load Costs

<u>subject to</u>

AC Network Limits

Real power balancing Reactive power balancing Voltage magnitude bounds Thermal line limits Spinning reserves

Apparent Power Production Limits § Max/min real/reactive power generation Ramp up/down rates on real power Minimum up/down time

System Data Nodal voltage limits Reserve requirements Real/reactive power load Transformer tap ratio and phase-shifters Thermal line limits and line R/X/B Shunts

Generator Data

Synchronous condensers T0 state and startup lags Minimum up/down time Ramp up/down limits Startup/shutdown ramp limits Min/max real/reactive power limits

§ Extends Morales-España, Latorre, and Ramos, "Tight and compact MILP formulation for the thermal unit commitment problem," *IEEE Trans. on Power Syst.*, vol. 28, no. 4, pp. 4897–4908, 2013.

Nodal Power Balancing is Nonconvex

Polar Power-Voltage Power Flow Formulation (**PSV**)

$$v_{n,t} |\sum_{m \in \mathcal{N}} |v_{m,t}| \left(G_{nm} \cos \theta_{nm,t} + B_{nm} \sin \theta_{nm,t} \right) - p_{n,t}^+ + p_{n,t}^- = 0, \qquad \forall n \in \mathcal{N}$$

$$|v_{n,t}| \sum_{m \in \mathcal{N}} |v_{m,t}| \left(G_{nm} \sin \theta_{nm,t} - B_{nm} \cos \theta_{nm,t} \right) - q_{n,t}^+ + q_{n,t}^- = 0, \qquad \forall n \in \mathcal{N}$$

Rectangular Power-Voltage Power Flow Formulation (RSV)

$$v_{n,t}^{r} \sum_{m \in \mathcal{N}} \left(G_{nm} v_{m,t}^{r} - B_{nm} v_{m,t}^{j} \right) + v_{n,t}^{j} \sum_{m \in \mathcal{N}} \left(G_{nm} v_{m,t}^{j} + B_{nm} v_{m,t}^{r} \right) - p_{n,t}^{+} + p_{n,t}^{-} = 0, \quad \forall n \in \mathcal{N}$$
$$v_{n,t}^{j} \sum_{m \in \mathcal{N}} \left(G_{nm} v_{m,t}^{r} - B_{nm} v_{m,t}^{j} \right) - v_{n,t}^{r} \sum_{m \in \mathcal{N}} \left(G_{nm} v_{m,t}^{j} + B_{nm} v_{m,t}^{r} \right) - q_{n,t}^{+} + q_{n,t}^{-} = 0, \quad \forall n \in \mathcal{N}$$

Rectangular Current Injection Formulation (RIV)

MINLP solved by Outer Approximation [§] (OA) ^{In Sandia} Laboratories

$$\begin{cases} minimize_x f(x), \\ subject to g(x) \leq 0, \\ x \in X, \\ x_i \in \mathbb{Z}, \forall i \in I \end{cases} \end{cases}$$

 $f: \mathbb{R}^n \to \mathbb{R}, g: \mathbb{R}^n \to \mathbb{R}^m$ are twice continuously differentiable functions, $X \subset \mathbb{R}^n$ is a bounded polyhedral set, and $I \subseteq \{1, ..., n\}$ is the index set of integer variables

CONTRIBUTIONS LOCAL SOLUTION METHOD

Successive Linear Programming (SLP) [R1]

SLP Convergence Properties §

- (1) A KKT point to the ACOPF is found
 (2) The SLP optimal solution is ACOPF feasible but not optimal
- Still a useful solution; may be better than a DCOPF with AC feasibility or decoupled OPF solution
- (3) The SLP optimal solution is ACOPF infeasible
- Active penalties present
- Solution may be useful depending upon whether the violated limits are "soft" or "hard"
- (4) The SLP is infeasible
- The ACOPF may have no solution
- The SLP requires a better initialization

Time Complexity Performance

 $\Theta\left(|\mathcal{N}|^p\right)$

	Best-Case Simulations			All Converged Simulations		
Baseline	p	R^2	RMSE (s)	p	R^2	RMSE (s)
NLP/KNITRO	1.42	0.83	1.46	1.47	0.82	1.40
NLP/IPOPT	1.13	0.95	0.60	1.34	0.97	0.50
SLP/CPLEX	0.97	0.99	0.20	1.01	0.98	0.33
$\mathrm{SLP}/\mathrm{Gurobi}$	1.01	0.99	0.21	1.03	0.98	0.33
Thermally Constrained						
NLP/KNITRO	1.39	0.88	1.13	1.39	0.89	1.08
NLP/IPOPT	1.11	0.98	0.36	1.22	0.97	0.50
SLP/CPLEX	0.99	0.99	0.17	1.00	0.98	0.31
SLP/Gurobi	1.06	0.99	0.23	1.05	0.97	0.36

- Running time increases linearly with the network size (p=1 corresponds to a linear algorithmic scaling) for the SLP algorithm
- Potentially applicable in the strict time frames of the real-time markets

