Error Bounds on Power Flow Linearizations: A Convex Relaxation Approach

Daniel K. Molzahn Argonne National Laboratory

Krishnamurthy Dvijotham Pacific Northwest National Laboratory

FERC Staff Technical Conference on Increasing Real-Time and Day-Ahead Market Efficiency through Improved Software June 27, 2017

The Power Flow Equations

 Model the relationship between the voltages and the power injections

AC power flow equations Voltages:
$$V_i = |V_i| \angle \theta_i$$

 $P_i = |V_i| \sum_{k=1}^n |V_k| (\mathbf{G}_{ik} \cos(\theta_i - \theta_k) + \mathbf{B}_{ik} \sin(\theta_i - \theta_k))$
 $Q_i = |V_i| \sum_{k=1}^n |V_k| (\mathbf{G}_{ik} \sin(\theta_i - \theta_k) - \mathbf{B}_{ik} \cos(\theta_i - \theta_k))$

- Central to many power system optimization problems
 - Optimal power flow, unit commitment, voltage stability, contingency analysis, transmission switching, etc.

The Power Flow Equations

"Today, 50 years after the problem was formulated, we still do not have a fast, robust solution technique for the full ACOPF." R.P. O'Neill, Chief Economic Advisor, US Federal Energy Regulatory Commission, 2013.

• Linearization of the power flow equations

$$P_{i} = |V_{i}| \sum_{k=1}^{n} |V_{k}| (\mathbf{G}_{ik} \cos(\theta_{i} - \theta_{k}) + \mathbf{B}_{ik} \sin(\theta_{i} - \theta_{k}))$$
$$Q_{i} = |V_{i}| \sum_{k=1}^{n} |V_{k}| (\mathbf{G}_{ik} \sin(\theta_{i} - \theta_{k}) - \mathbf{B}_{ik} \cos(\theta_{i} - \theta_{k}))$$

- Advantages:
 - Fast and reliable solution using linear programming
- Disadvantages:
 - No consideration of voltage magnitudes or reactive power
 - Approximation error

• Linearization of the power flow equations

$$P_{i} = |V_{i}| \sum_{k=1}^{n} |V_{k}| \left(\mathbf{G}_{ik} \cos\left(\theta_{i} - \theta_{k}\right) + \mathbf{B}_{ik} \sin\left(\theta_{i} - \theta_{k}\right)\right)$$
$$Q_{i} = |V_{i}| \sum_{k=1}^{n} |V_{k}| \left(\mathbf{G}_{ik} \sin\left(\theta_{i} - \theta_{k}\right) - \mathbf{B}_{ik} \cos\left(\theta_{i} - \theta_{k}\right)\right)$$

- Advantages:
 - Fast and reliable solution using linear programming
- Disadvantages:
 - No consideration of voltage magnitudes or reactive power
 - Approximation error

• Linearization of the power flow equations

$$P_{i} = |V_{i}| \sum_{k=1}^{n} |V_{k}| \left(\mathbf{G}_{ik} \cos\left(\theta_{i} - \theta_{k}\right) + \mathbf{B}_{ik} \sin\left(\theta_{i} - \theta_{k}\right)\right)$$
$$Q_{i} = |V_{i}| \sum_{k=1}^{n} |V_{k}| \left(\mathbf{G}_{ik} \sin\left(\theta_{i} - \theta_{k}\right) - \mathbf{B}_{ik} \cos\left(\theta_{i} - \theta_{k}\right)\right)$$

- Advantages:
 - Fast and reliable solution using linear programming
- Disadvantages:
 - No consideration of voltage magnitudes or reactive power
 - Approximation error

• Linearization of the power flow equations

$$P_{i} = |V_{i}| \sum_{k=1}^{n} |V_{k}| \left(\mathbf{G}_{ik} \cos\left(\theta_{i} - \theta_{k}\right) + \mathbf{B}_{ik} \sin\left(\theta_{i} - \theta_{k}\right)\right)$$
$$Q_{i} = |V_{i}| \sum_{k=1}^{n} |V_{k}| \left(\mathbf{G}_{ik} \sin\left(\theta_{i} - \theta_{k}\right) - \mathbf{B}_{ik} \cos\left(\theta_{i} - \theta_{k}\right)\right)$$

- Advantages:
 - Fast and reliable solution using linear programming
- Disadvantages:
 - No consideration of voltage magnitudes or reactive power
 - Approximation error

• Linearization of the power flow equations

$$P_{i} = |V_{i}| \sum_{k=1}^{n} |V_{k}| (\mathbf{G}_{ik} \cos(\theta_{i} - \theta_{k}) + \mathbf{B}_{ik} \sin(\theta_{i} - \theta_{k}))$$
$$Q_{i} = |V_{i}| \sum_{k=1}^{n} |V_{k}| (\mathbf{G}_{ik} \sin(\theta_{i} - \theta_{k}) - \mathbf{B}_{ik} \cos(\theta_{i} - \theta_{k}))$$

- Advantages:
 - Fast and reliable solution using linear programming
- Disadvantages:
 - No consideration of voltage magnitudes or reactive power
 - Approximation error

• Linearization of the power flow equations

$$P_{i} = |V_{i}| \sum_{k=1}^{n} |V_{k}| (\mathbf{G}_{ik} \cos (\theta_{i} - \theta_{k}) + \mathbf{B}_{ik} \sin (\theta_{i} - \theta_{k}))$$

$$Q_{i} = |V_{i}| \sum_{k=1}^{n} |V_{k}| (\mathbf{G}_{ik} \sin (\theta_{i} - \theta_{k}) - \mathbf{B}_{ik} \cos (\theta_{i} - \theta_{k}))$$

$$P_{i} = \sum_{k=1}^{n} \mathbf{B}_{ik} (\theta_{i} - \theta_{k})$$

- Advantages:
 - Fast and reliable solution using linear programming
- Disadvantages:
 - No consideration of voltage magnitudes or reactive power
 - Approximation error

Summary $\min_{|V|,\theta} \sum_{i=1}^{N} \left(c_{2i} P_{Gi}^{2} + c_{1i} P_{Gi} + c_{0i} \right)$ **Generation Cost** subject to $P_{Gi}^{\min} \leq P_{Gi} \leq P_{Gi}^{\max}$ Engineering $Q_{Gi}^{\min} \leq Q_{Gi} \leq Q_{Gi}^{\max}$ Constraints $V_i^{\min} \leq |V_i| \leq V_i^{\max}$ $\theta_{ik}^{\min} \leq \theta_i - \theta_k \leq \theta_{ik}^{\max}$ $|P_{flow,ik}| \leq P_{flow,ik}^{\max}$ **Physical Laws** $\mathbf{P}_{i} = |V_{i}| \sum |V_{k}| \left(\mathbf{G}_{ik} \cos \left(\theta_{i} - \theta_{k}\right) + \mathbf{B}_{ik} \sin \left(\theta_{i} - \theta_{k}\right) \right)$ k=1 $Q_i = |V_i| \sum |V_k| \left(\mathbf{G}_{ik} \sin \left(\theta_i - \theta_k \right) - \mathbf{B}_{ik} \cos \left(\theta_i - \theta_k \right) \right)$ k=1

Accuracy of the DC Power Flow Approximation

OR

How good is what we do now?

DC Power Flow Accuracy

- Many studies of DC power flow accuracy:
 - [Yan & Sekar '02], [Liu & Gross '02], [Baldick '03], [Overbye, Cheng, & Sun '04], [Baldick, Dixit & Overbye '05], [Purchala, Meeus, Van Dommelen & Belmans '05], [Van Hertem, Verboomen, Purchala, Belmans & Kling '06], [Li & Bo '07], [Duthaler, Emery, Andersson & Kurzidem '08], [Stott, Jardim & Alsac '09], [Lesieutre, Schlindwein & Beglin '10], [Qi, Shi & Tylavsky '12]
- Accuracy depends on the application and test case

"At no stage in the tests were we able to discern any statistical pattern in the dc-flow error scatters. This defeated all our attempts to find concise, meaningful indices with which to characterize and display dc-model accuracies." [Stott, Jardim & Alsac '09]

Formulation

Assessing DC Power Flow Accuracy

 Goal: bound the worst-case error in the active power flows between the DC and AC power flow models

Worst-Case Error Formulation

$$\begin{split} \max_{\substack{|V|, \theta^{AC}, \theta^{DC}}} & ||P_{flow}^{DC} - P_{flow}^{AC}||_{\infty} & \text{Maximize}_{Error} \\ \text{subject to} & |V_i^{min}| \leq |V_i| \leq |V_i^{max}| \\ & \theta_{ik}^{min} \leq \theta_i^{AC} - \theta_k^{AC} \leq \theta_{ik}^{max} \\ & P_i^{min} \leq P_i \leq P_i^{max} & \text{Operational}_{Constraints} \\ & Q_i^{min} \leq Q_i \leq Q_i^{max} \\ & P_i = \sum_{k=1}^n \mathbf{B}_{ik} \left(\theta_i^{DC} - \theta_k^{DC} \right) & \text{DC Power}_{Flow} \\ & P_{flow,ik}^{DC} = \mathbf{B}_{ik} \left(\theta_i^{DC} - \theta_k^{DC} \right) + \mathbf{B}_{ik} \sin \left(\theta_i^{AC} - \theta_k^{AC} \right) \\ & P_i = |V_i| \sum_{k=1}^n |V_k| \left(\mathbf{G}_{ik} \cos \left(\theta_i^{AC} - \theta_k^{AC} \right) + \mathbf{B}_{ik} \cos \left(\theta_i^{AC} - \theta_k^{AC} \right) \right) \\ & P_i = |V_i| \sum_{k=1}^n |V_k| \left(\mathbf{G}_{ik} \cos \left(\theta_i^{AC} - \theta_k^{AC} \right) + \mathbf{B}_{ik} \sin \left(\theta_i^{AC} - \theta_k^{AC} \right) \right) \\ & P_i = |V_i| \sum_{k=1}^n |V_k| \left(\mathbf{G}_{ik} \cos \left(\theta_i^{AC} - \theta_k^{AC} \right) + \mathbf{B}_{ik} \sin \left(\theta_i^{AC} - \theta_k^{AC} \right) \right) \\ & P_i = |V_i| \sum_{k=1}^n |V_k| \left(\mathbf{G}_{ik} \cos \left(\theta_i^{AC} - \theta_k^{AC} \right) + \mathbf{B}_{ik} \sin \left(\theta_i^{AC} - \theta_k^{AC} \right) \right) \\ & P_i = |V_i| \sum_{k=1}^n |V_k| \left(\mathbf{G}_{ik} \cos \left(\theta_i^{AC} - \theta_k^{AC} \right) + \mathbf{B}_{ik} \sin \left(\theta_i^{AC} - \theta_k^{AC} \right) \right) \\ & P_{flow,ik}^{AC} = |V_i| |V_k| \left(\mathbf{G}_{ik} \cos \left(\theta_i^{AC} - \theta_k^{AC} \right) + \mathbf{B}_{ik} \sin \left(\theta_i^{AC} - \theta_k^{AC} \right) \right) \\ & = |V_k|^2 \mathbf{G}_{ik} \\ \end{array}$$

15 / 42

Handling the Objective Function

 Maximize the infinity norm by solving 4 × (number of lines) optimization problems:

$$\begin{split} \max_{|V|,\theta^{AC},\theta^{DC}} & ||P_{flow}^{DC} - P_{flow}^{AC}||_{\infty} \end{pmatrix} \longrightarrow \\ \max_{ik\in\mathcal{L}} \left\{ \max_{|V|,\theta^{AC},\theta^{DC}} & |P_{flow,ik}^{DC} - P_{flow,ik}^{AC}| \right\} \\ & \checkmark \end{split}$$
For each line $ik\in\mathcal{L}$ and $\sigma = \{-1,1\}$, solve (in parallel):

$$\max_{|V|,\theta^{AC},\theta^{DC}} & \sigma \cdot \left(P_{flow,ik}^{DC} - P_{flow,ik}^{AC}\right) \\ \text{Select the largest absolute value among all the solutions} \end{split}$$

Handling the Power Flow Equations via Convex Relaxations

- A variety of recently developed relaxations
- One example: The QC Relaxation [Coffrin, Hijazi & Van Hentenryck '15]

Handling the Power Flow Equations via Convex Relaxations

- A variety of recently developed relaxations
- One example: The QC Relaxation [Coffrin, Hijazi & Van Hentenryck '15]

Further Tightening the Relaxation

- Augment the QC relaxation with
 - A Semidefinite Programming Relaxation of the power flow equations in rectangular coordinates [Lavaei & Low '12]
 - Sparsity-Exploiting Moment Relaxations from the Lasserre hierarchy [Lasserre '01], [Molzahn & Hiskens '15], [Josz & Molzahn '16]
 - Lifted Nonlinear Cuts implied by the angle difference and voltage magnitude limits [Coffrin, Hijazi & Van Hentenryck '15], [Chen, Atamturk & Oren '15]
 - Arctangent Envelopes [Kocuk, Dey & Sun '16]
- Apply a bound tightening algorithm to improve upon the specified operational limits [Kocuk, Dey & Sun '15], [Chen, Atamturk & Oren '15], [Coffrin, Hijazi & Van Hentenryck '16]

Formulation

Further Tightening the Relaxation

- Augment the QC relaxation with
 - A Semidefinite Programming Relaxation of the power flow equations in rectangular coordinates [Lavaei & Low '12]
 - Sparsity-Exploiting Moment Relaxations from the Lasserre hierarchy [Lasserre '01], [Molzahn & Hiskens '15], [Josz & Molzahn '16]
 - Lifted Nonlinear Cuts implied by the angle difference and voltage magnitude limits [Coffrin, Hijazi & Van Hentenryck '15], [Chen, Atamturk & Oren '15]
 - Arctangent Envelopes [Kocuk, Dey & Sun '16]
- Apply a bound tightening algorithm to improve upon the specified operational limits [Kocuk, Dey & Sun '15], [Chen, Atamturk & Oren '15],

[Coffrin, Hijazi & Van Hentenryck '16]

Formulation

Semidefinite Relaxation of the Power Flow Equations

- Write power flow equations as $z^H \mathbf{A}_i z = c_i$ where $z = \begin{bmatrix} V_1 & \dots & V_n \end{bmatrix}^{\mathsf{T}}$ with voltage phasors $V \in \mathbb{C}^n$
- Define matrix $\mathbf{W} = zz^H$
- Rewrite as rank $(\mathbf{W}) = 1$ and $\begin{cases} \operatorname{trace} (\mathbf{A}_i \mathbf{W}) = c_i \\ \mathbf{W} \succeq 0 \end{cases}$
- Relaxation: Do not enforce $\operatorname{rank}(\mathbf{W}) = 1$ [Lavaei & Low '12]
 - A solution with rank(W) = 1 implies zero relaxation gap and recovery of the globally optimal voltage profile. This is not necessary for our problem: we only require a lower bound.

Formulation Summary

For each $ik \in \mathcal{L}$ and $\sigma = \{-1, 1\}$, solve (in parallel): $\max_{|V|, heta^{AC}, heta^{DC}} \quad \sigma \cdot \left(P^{DC}_{flow,ik} - P^{AC}_{flow,ik}
ight)$ Maximize the absolute value of the error at each line terminal subject to $|V_i^{min}| \le |V_i| \le |V_i^{max}|$ $\theta_{ik}^{min} \leq \theta_i^{AC} - \theta_k^{AC} \leq \theta_{ik}^{max}$ **Operational** $P_i^{min} \leq P_i \leq P_i^{max}$ constraints $Q_i^{min} \le \mathbf{Q}_i \le Q_i^{max}$ $P_i = \sum \mathbf{B}_{ik} \left(\theta_i^{DC} - \theta_k^{DC} \right)$ **DC Power Flow** $P_{flow,ik}^{DC} = \mathbf{B}_{ik} \left(\theta_i^{DC} - \theta_k^{DC} \right)$ $\mathbf{P}_{i} = |V_{i}| \sum_{i=1}^{N} |V_{k}| \left(\mathbf{G}_{ik} \cos \left(\theta_{i}^{AC} - \theta_{k}^{AC} \right) + \mathbf{B}_{ik} \sin \left(\theta_{i}^{AC} - \theta_{k}^{AC} \right) \right)$ Convex relaxations $Q_{i} = |V_{i}| \sum |V_{k}| \left(\mathbf{G}_{ik} \sin \left(\theta_{i}^{AC} - \theta_{k}^{AC} \right) - \mathbf{B}_{ik} \cos \left(\theta_{i}^{AC} - \theta_{k}^{AC} \right) \right)$ $\underline{P_{flow,ik}^{AC}} = |V_i| |V_k| \left(\mathbf{G}_{ik} \cos \left(\theta_i^{AC} - \theta_k^{AC} \right) + \mathbf{B}_{ik} \sin \left(\theta_i^{AC} - \theta_k^{AC} \right) \right) - |V_k|^2 \mathbf{G}_{ik}$ **Formulation**

Results for the IEEE Test Cases

Worst-case power flow error (MW) for the IEEE 14-bus system, by line

Conclusions

- We proposed an algorithm that uses convex relaxations to bound the worst-case error of power flow linearizations
- Results for several IEEE test cases show:
 - The bound is reasonably tight
 - The DC power flow can have large errors for some operating conditions
- Next steps:
 - Application to other linear approximations and test cases
 - Comparison with other error bounds
 - Determination of physical explanations for large errors
- Conclusion Design of new linearizations informed by the worst-case error

42 / 42

References

- R. Baldick, "Variation of Distribution Factors with Loading," *IEEE Transactions on Power Systems,* vol. 18, no. 4, pp. 1316-1323, November 2003.
- R. Baldick, K. Dixit, and T.J. Overbye, "Empirical Analysis of the Variation of Distribution Factors with Loading," *IEEE PES General Meeting*, pp. 221-229, June 2005.
- W.A. Bukhsh, A. Grothey, K.I. McKinnon, and P.A. Trodden, "Local Solutions of Optimal Power Flow," University of Edinburgh School of Mathematics, Tech. Rep. ERGO 11-017, 2011.
- W.A. Bukhsh, A. Grothey, K.I. McKinnon, and P.A. Trodden, "Local Solutions of the Optimal Power Flow Problem," *IEEE Transactions on Power Systems*, vol. 28, no. 4, pp. 4780-4788, 2013.
- M.B. Cain, R.P. O'Neil, and A. Castillo, "History of Optimal Power Flow and Formulations," *Optimal Power Flow Paper 1, Federal Energy Regulatory Commission*, August 2013.
- C. Coffrin, H. Hijazi, and P. Van Hentenryck, "The QC Relaxation: A Theoretical and Computational Study on Optimal Power Flow," IEEE Transactions on Power Systems, vol. 31, no. 4, pp. 3008-3018, July 2016.
- C. Duthaler, M. Emery, G. Andersson, and M. Kurzidem, "Analysis of the Use of Power Transfer Distribution factors (PTDF) in the UCTE Transmission Grid," *16th Power Systems Computation Conference (PSCC)*, 2008.
- K. Dvijotham and D.K. Molzahn, "Error Bounds on the DC Power Flow Approximation: A Convex Relaxation Approach," *IEEE 55th Annual Conference on Decision and Control (CDC),* December 12-14, 2016.
- I.A. Hiskens and R.J. Davy, "Exploring the Power Flow Solution Space Boundary", *IEEE Transactions on Power Systems*, Vol. 16, No. 3, August 2001, pp. 389-395.
- K.H. LaCommare and J.H. Eto. "Cost of Power Interruptions to Electricity Consumers in the United States (US)." *Energy*, vol. 31, no. 12 pp. 1845-1855, 2006.
- J.B. Lasserre, "Global Optimization with Polynomials and the Problem of Moments," *SIAM Journal on Optimization,* vol. 11, pp. 796-817, 2001.
- J.B. Lasserre, <u>Moments, Positive Polynomials and Their Applications</u>, Imperial College Press, vol. 1, 2010.

Conclusion

References (cont.)

- J. Lavaei and S. Low, "Zero Duality Gap in Optimal Power Flow Problem," *IEEE Transactions on Power Systems*, vol. 27, no. 1, pp. 92–107, February 2012.
- B.C. Lesieutre, M. Schlindwein and E.E. Beglin, "DC Optimal Power Flow Proxy Limits," 43rd Hawaii International Conference on System Sciences, Honolulu, HI, 2010
- B.C. Lesieutre and I.A. Hiskens, "Convexity of the Set of Feasible Injections and Revenue Adequacy in FTR Markets," *IEEE Transactions* on *Power Systems*, vol. 20, no. 4, pp. 1790-1798, November 2005.
- F. Li and R. Bo, "DCOPF-Based LMP Simulation: Algorithm, Comparison with ACOPF, and Sensitivity," *IEEE Transactions on Power Systems,* vol. 22, no. 4 pp. 1475-1485, 2007.
- M. Liu and G. Gross, "Effectiveness of the Distribution Factor Approximations Used in Congestion Modeling," 14th Power System Computation Conference (PSCC), 2002.
- D.K. Molzahn, "Computing the Feasible Spaces of Optimal Power Flow Problems," to appear in *IEEE Transactions on Power Systems*, 2017.
- D.K. Molzahn, S.S. Baghsorkhi, and I.A. Hiskens, "Semidefinite Relaxations of Equivalent Optimal Power Flow Problems: An Illustrative Example," *IEEE International Symposium on Circuits and Systems (ISCAS)*, May 24-27, 2015.
- D.K. Molzahn and I.A. Hiskens, "A Survey of Relaxations and Approximations of the Power Flow Equations," in preparation for invited submission to Foundations and Trends in Electric Power Systems.
- D.K. Molzahn and I.A. Hiskens, "Moment-Based Relaxation of the Optimal Power Flow Problem," 18th Power Systems Computation Conference (PSCC), August 18-22, 2014.
- D.K. Molzahn and I.A. Hiskens, "Sparsity-Exploiting Moment-Based Relaxations of the Optimal Power Flow Problem," *IEEE Transactions on Power Systems*, vol. 30, no. 6, pp. 3168-3180, November 2015.
- D.K. Molzahn and I.A. Hiskens, "Convex Relaxations of Optimal Power Flow Problems: An Illustrative Example," To appear in *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 63, no. 5, pp. 650-660, May 2016.

Conclusion

References (cont.)

- R.P. O'Neill, "New Approaches to Transforming Wind, Rain and Fire into Electricity Making a Smarter, Cleaner, Efficient Grid," Weston Roundtable Lecture Series, University of Wisconsin-Madison, March 8, 2012. [Online]. Available: http://www.sage.wisc.edu/weston/
- T. Overbye, X. Cheng, and Y. Sun, "A Comparison of the AC and DC Power Flow Models for LMP Calculations," 37th Hawaii International Conference on System Sciences (HICSS), January 2004.
- K. Purchala, L. Meeus, D. Van Dommelen, and R. Belmans, "Usefulness of DC Power Flow for Active Power Flow Analysis," *IEEE PES General Meeting*, pp. 454-459, June 2005.
- Y. Qi, D. Shi, and D. Tylavsky, "Impact of Assumptions on DC Power Flow Model Accuracy," *North American Power Symposium (NAPS)*, September 2012.
- B. Stott, J. Jardim, and O. Alsac, "DC Power Flow Revisited," *IEEE Transactions on Power Systems*, vol. 24, no. 3, pp. 1290-1300, August 2009.
- D. Van Hertem, J. Verboomen, K. Purchala, R. Belmans, and W.L. Kling, "Usefulness of DC Power Flow for Active Power Flow Analysis with Flow Controlling Devices," 8th IEE International Conference on AC and DC Power Transmission, pp. 58-62, March 2006.
- P. Yan and A. Sekar, "Study of Linear Models in Steady State Load Flow Analysis of Power Systems," *IEEE PES Winter Meeting,* pp. 666-671, 2002.
- B. Zhang and D. Tse, "Geometry of Feasible Injection Region of Power Networks," 49th Annual Allerton Conference on Communication, Control, and Computing, 28-30 Sept. 2011.

Conclusion