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The Power Flow Equations

* Model the relationship between the voltages and the
power injections

AC power flow equations = voltages: V; = |V;|Z£0,

'—\HZHH G, cos (0; — 0.) + Bigsin (0, — 0;.))

Q,_mZ\m iesin (6; — 0) — Bigcos (6; — 6;))

* Central to many power system optimization problems

— Optimal power flow, unit commitment, voltage stability,
contingency analysis, transmission switching, etc.
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The Power Flow Equations

“Today, 50 years after the problem was formulated, we
still do not have a fast, robust solution technique for the

full ACOPF.”

R.P. O’Neill, Chief Economic Advisor, US Federal Energy Regulatory
Commission, 2013.

Introduction
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DC Power Flow Approximation

* Linearization of the power flow equations

-_|I|Z|h| G cos (6, —6;) +Bjsin (6, — 6;,))

Qi =V, |Z|h| iksin (6; — 6,) — By, cos (6, — 6))

* Advantages:

— Fast and reliable solution using linear programming

* Disadvantages:

— No consideration of voltage magnitudes or reactive power

— Approximation error
Introduction
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DC Power Flow Approximation

* Linearization of the power flow equations

P =V |§E:|1r| Gicos (6, — 0;,) +Bpsin (6, — 6;))

—

— V] Z Vil (G sind et B cos (6; — 6;.))
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— Approximation error
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DC Power Flow Approximation

* Linearization of the power flow equations

: :f Zf (Gjcos (0, — 6;) + By sin (6, — 6;))
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DC Power Flow Approximation

* Linearization of the power flow equations

L, 1 0
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DC Power Flow Approximation

* Linearization of the power flow equations
(He’l o 9;1)

- f 3 }f (}t[]a (6; — 6,) +B,-5..~}t(aj —6)

—

Qi = Vi Y [Vi| (G SinLlemmbbr="T7. cOs (6; — O1))

* Advantages:

— Fast and reliable solution using linear programming

* Disadvantages:

— No consideration of voltage magnitudes or reactive power

— Approximation error
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DC Power Flow Approximation

* Linearization of the power flow equations
(He’l o 9;1)

0
| EE: | (G cos (6, — 0,) + By sifi (6; — 6;)) n
f Alf f N f B # P = Z B (0, — 0,)
:; k=1

Qi = [Vi| Y Vil (G sinllemmbrr=B; cos (6; — 6

* Advantages:

— Fast and reliable solution using linear programming

* Disadvantages:

— No consideration of voltage magnitudes or reactive power

— Approximation error
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Current Industry Practice

Clear markets using
the DC power flow

approximation

Engineering Feasible operating

heuristics flow equations

Introduction

intuition and point for the AC power

MIRAC /)
e dw ukl;{“."-’\

Sidney Harris,
Science Cartoons Plus

“I think you should be more
explicit here in step two."
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Summary

V9e 4
=l#
subjectto P, mn o p.o< Py

Qlllll] i: QG? "(: Qlﬂa}{ E”gineeri”g

| Constraints
1/;111111 i: |LF‘ i: 1/;111&){

9 1min 6 { 9 max

|Pffm‘t ik < }lflsxw ik 5
Physical Laws

P, = V| Z Vil (Gicos (0 — 0r) + Bigsin (6; — 6))

Q'rf — \W Z |1"E-\ (Gik SN (‘9; — fﬁ-) — B 003(55 — Qﬂ-))

Introduction

min Z (c2i Pai” + c1iPai + coi) Generation Cosft
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Summary

vie 4
=¥

subjectto P, mn o p.o< Py

W Engineering
o — [ -
s Consftraints
Vi ST

o < 0, — 0 < O3

P } < 111'&;3{r i
n HE o Jlow ik Physical Laws

|1"}1—\ (Gik COS (35 - 9&-) + Bk sin (35 - 9%—))

Q; = HF‘ZHH Gz sin (¢ —BikCOS(Qs—Qﬂ-)%

Pi=Y B (0 —
k=l
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Accuracy of the DC Power
Flow Approximation

OR

How good is what we do now?




DC Power Flow Accuracy

* Many studies of DC power flow accuracy:

— [Yan & Sekar ’'02], [Liu & Gross '02], [Baldick ‘03], [Overbye, Cheng,
& Sun '04], [Baldick, Dixit & Overbye '05], [Purchala, Meeus,
Van Dommelen & Belmans ’05], [Van Hertem, Verboomen,
Purchala, Belmans & Kling '06], [Li & Bo '07], [Duthaler, Emery,
Andersson & Kurzidem ’08], [Stott, Jardim & Alsac ‘09],
[Lesieutre, Schlindwein & Beglin “10], [Qi, Shi & Tylavsky ’12]

* Accuracy depends on the application and test case

“At no stage in the tests were we able to discern any
statistical pattern in the dc-flow error scatters. This
defeated all our attempts to find concise, meaningful
iIndices with which to characterize and display
dc-model accuracies.” [Stott, Jardim & Alsac ‘09]
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Assessing DC Power Flow Accuracy

* Goal: bound the worst-case error in the active power
flows between the DC and AC power flow models

DC Pj(a)wer Flow

o Pi=) Bi(0~0))
k=1

P =B (0 — 01)
Power flowiik — 4 Error
Injections AC Power Flow HPDC _ pAC H
. flou flou
PE* CJE —|I |Z|I.’| ,LCDE: 6 —HJ)

\ +B;; sin (6, — 0,.))

Q—|I|Z|I;| G, sin (0, — 6;.)
—Bii cos (6, — 6,))
P = Vil Vil (G cos (8; — 0,
+B,;; sin (ﬂ,‘ — b’,{.)) — V5 EG;;\_




Worst-Case Error Formulation

max | | ff ow j%gu | |r:x:- Maximize

V] 64.00e Error
subject to |V'mm < [Vi™]
Qmm < 94_( . 9}{( < Gmﬂ:r
min maz Operational
Frshish Constraints
szn < C,.)z < Qma-:r
Fi= Z By (07 = 6/") DC Power
PRS. i = B (07° — 0F°) Flow
P, = V; Vi (G;;i. COS (Hjl’:" — H;fw') + B sin (H;’l’:" — H;’IW'))
; AC Power

Qi = Vi1 > Vil (Garsin (67 = 6{“) — Bircos (6 — 6{')) Flow

k=1
Piiow i = Vil Vil (Gacos (077 = 6'7) + Bagsin (0,7 — 61)) — [Vi/*Gar
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Worst-Case Error Formulation

AC

max | | fhtm flow | |r:x:-

V|,9-AC gDC
subject to |V'mm’ < Vi Vi

Qmm < 94_( . 9}{( < Gmﬂ:r

Pt < P < P Non-Convex!
szn < C,.)z < Qma-:r

P Z B HJ’)( . H”f )

"::,.‘ 7

<

D = |V Z % (G;;i. COS (Hjl’:" — H;wl) + B, sin (H;’l’:"

)

Qi = |Vi Z Vi (G;;i. sin (H;’I"ﬁ — H;fl"ﬁ) — Bji cos (H;’“.' — H;I"ﬁ))

=l
Formulation Pf}f,; = |Vi| Vi (G cos (ﬁ;’lr:" — b’},’.l"ﬂ) + B, sin (ﬁ;’lr:" — ﬁ'}’.-w)) — | Vi|" G
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Handling the Objective Function

* Maximize the infinity norm by solving
4 X (number of lines) optimization problems:

1nax HPH““ ffm‘t H —> Hla}{{ max ‘Pﬂrm ik Pffm‘t ik }

V|,84¢ gDC kel | V| gAC gDC

/

For each line ik € £ and o = {—1,1},
solve (in parallel):

max (ijﬂu vk Pﬂ()u Hf)

|1| ?g_{(’*?gD(f

Select the largest absolute value among
all the solutions
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Handling the Power Flow Equations
via Convex Relaxations

* A variety of recently developed relaxations

* One example: The QC Relaxation [coffrin, Hijazi & Van Hentenryck ‘15]

sin (6:' — 6;1¢) cos (07 — 0;°)

g 0.95 -
0.9
4 0.85 -
0.8
] 0.75 1
0.7 +
i 0.65 -
0.6

| o055}

0.5
-1 I I 1 I I I I I I I
-60 -40 20 0 20 40 60 -60 -40 20 0 20 40

NAC AC NAC AC
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Handling the Power Flow Equations
via Convex Relaxations

* A variety of recently developed relaxations

* One example: The QC Relaxation [coffrin, Hijazi & Van Hentenryck ‘15]

sin (6:' — 6;1¢)

coa(ﬁf(f—-ﬁf()
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Further Tightening the Relaxation

* Augment the QC relaxation with

A Semidefinite Programming Relaxation of the power flow
equations in rectangular coordinates [Lavaei & Low ‘12]

Sparsity-Exploiting Moment Relaxations from the Lasserre
hierarchy [Lasserre ‘01], [Molzahn & Hiskens ’15], [Josz & Molzahn ‘16]

Lifted Nonlinear Cuts implied by the angle difference and voltage

maghnitude limits [Coffrin, Hijazi & Van Hentenryck ‘15], [Chen, Atamturk &
Oren ‘“15]

Arctangent Envelopes [Kocuk, Dey & Sun ‘16]

* Apply a bound tightening algorithm to improve upon the
specified operational limits [Kocuk, Dey & Sun “15],

[Chen, Atamturk & Oren ‘15],
[Coffrin, Hijazi & Van Hentenryck ‘16]
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Further Tightening the Relaxation

* Augment the QC relaxation with

— A Semidefinite Programming Relaxation of the power flow
equations in rectangular coordinates [Lavaei & Low ‘12]

— Arctangent Envelopes [Kocuk, Dey & Sun ‘16]
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Semidefinite Relaxation of the
Power Flow Equations

Write power flow equations as 2z A, z = ¢
where z = V4 ... V,|" with voltage phasors V € C"

Define matrix W = 2z

trace (A; W) = ¢;
Rewrite as rank (W) = 1 and
W >0
Relaxation:
Do not enforce rank (W) =1 [Lavaei & Low 12]

— A solution with rank (W) = limplies zero relaxation gap
and recovery of the globally optimal voltage profile. This is
not necessary for our problem: we only require a lower bound.
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Arctangent Envelopes

« Enclose the arctangent function using linear
inequalities [Kocuk, Dey, & Sun ‘16]

Lower Inequalities

-0.2

-0.4
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Arctangent Envelopes

« Enclose the arctangent function using linear
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Arctangent Envelopes

« Enclose the arctangent function using linear
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Arctangent Envelopes

« Enclose the arctangent function using linear
inequalities [Kocuk, Dey, & Sun ‘16]

Lower Inequalities Upper Inequalities

0 0.2 -0.4

sin (H )
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Arctangent Envelopes

« Enclose the arctangent function using linear
inequalities [Kocuk, Dey, & Sun ‘16]

Lower Inequalities Upper Inequalities

0 0.2 -0.4

sin (H )
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Arctangent Envelopes

« Enclose the arctangent function using linear
inequalities [Kocuk, Dey, & Sun ‘16]

Lower Inequalities Upper Inequalities
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Formulation Summary

For each ik € L and o= {—1, 1}, solve (in parallel):

( P P ) Maximize the absolute
flow,ik f low,ik value of the error at
each line terminal

Imax
V| HAC pDC

subject to | Vi Vi

Gmm < H{( . 9;4_( < Qma.r

| Operational
Pt < P < P constraints
Qmin < CJ; < Qma-:r
P Z B H”E . H”E )
DC Power Flow

D e le
Prrm ;; = By (H _H )

P =V Z Vil (Gig cos (¢ S 1('-) + B sin (H}JWI — H}:wl)) Convex

" ! ! ! i relaxations
Qi =V Z Vil (Gigsin (6 — 6;'“) — Bircos (6 — 6;))

k=1
Piigw i = Vil [Vil (Gir cos (077 — 61) + Basin (6 — 6/ )) — [Vi’Gir
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Results for the IEEE Test Cases




Results

Worst-case power injection error (MW)
for the IEEE 14-bus system
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Results
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Results

Worst-case power injection error (MW)
for the IEEE 14-bus system
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Results

Worst-case power injection error (MW)
for the IEEE 14-bus system
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Results

Worst-case power injection error (MW)
for the IEEE 14-bus system

N
&)

N

o
|
I

Upper bound using
the second-order
moment relaxation

—

6)]
|
I

RN
o
I

Maximum Active Power Flow Error (MW)

5 Range from
random Average from
. injections | ‘random injections
0 10 20 30 40 50

Allowed Injection Variation (%)

35/42



14

)
(%)
©
Q-
25
oS
=T
5 2
%LIJ
c 3
© O
o
q‘)L
S g
go
OQ.
o

Results

Worst-case power flow error (MW)
for the IEEE 14-bus system, by line

5% Allowed Variation in Injections 50% Allowed Variation in Injections

-
N
T

10 |-

\\\\\\\\\\\\\\\\\\\\

1 1 1 1 1 1 1 1 1 1 1 1 1 B 1 L 1 1

14

412+

110+

\\\\\\\\\\\\\\\\\\\\

1 1 1 1 1 1 1 L L 1 1 1 1 — L

0
12345673829 1011121314151617181920

Line Index

0
123456 738 91011121314151617181920

Line Index

36/42



Results
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Power Flow Jacobian (Polar Coordinates)
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Power Flow Jacobian (Polar Coordinates)
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Conclusions

* We proposed an algorithm that uses convex relaxations
to bound the worst-case error of power flow
linearizations

 Results for several IEEE test cases show:
— The bound is reasonably tight

— The DC power flow can have large errors for some operating
conditions

* Next steps:
— Application to other linear approximations and test cases
— Comparison with other error bounds
— Determination of physical explanations for large errors

— Design of new linearizations informed by the worst-case error
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