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• Model the relationship between the voltages and the 

power injections

• Central to many power system optimization problems

‒ Optimal power flow, unit commitment, voltage stability, 

contingency analysis, transmission switching, etc.

The Power Flow Equations

Voltages:AC power flow equations

Introduction
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The Power Flow Equations

“Today, 50 years after the problem was formulated, we 

still do not have a fast, robust solution technique for the 

full ACOPF.” 
R.P. O’Neill, Chief Economic Advisor, US Federal Energy Regulatory 

Commission, 2013.

Introduction
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• Linearization of the power flow equations

• Advantages: 

‒ Fast and reliable solution using linear programming

• Disadvantages: 

‒ No consideration of voltage magnitudes or reactive power

‒ Approximation error

DC Power Flow Approximation

Introduction
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Current Industry Practice

Sidney Harris,

Science Cartoons Plus

Clear markets using 

the DC power flow

approximation

Engineering 

intuition and 

heuristics

Feasible operating 

point for the AC power 

flow equations

Introduction
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Summary

Generation Cost

Engineering 

Constraints

Physical Laws

Introduction
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Accuracy of the DC Power 

Flow Approximation

OR

How good is what we do now?
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“At no stage in the tests were we able to discern any 

statistical pattern in the dc-flow error scatters. This 

defeated all our attempts to find concise, meaningful 

indices with which to characterize and display 

dc-model accuracies.”

DC Power Flow Accuracy

• Many studies of DC power flow accuracy:

‒ [Yan & Sekar ’02], [Liu & Gross ’02], [Baldick ’03], [Overbye, Cheng, 

& Sun ’04], [Baldick, Dixit & Overbye ’05], [Purchala, Meeus, 

Van Dommelen & Belmans ’05], [Van Hertem, Verboomen, 

Purchala, Belmans & Kling ’06], [Li & Bo ’07], [Duthaler, Emery, 

Andersson & Kurzidem ’08], [Stott, Jardim & Alsac ‘09], 

[Lesieutre, Schlindwein & Beglin ‘10], [Qi, Shi & Tylavsky ’12]

• Accuracy depends on the application and test case

[Stott, Jardim & Alsac ‘09]
Formulation
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Assessing DC Power Flow Accuracy

• Goal: bound the worst-case error in the active power 

flows between the DC and AC power flow models

DC Power Flow

AC Power Flow
ErrorPower 

Injections

Formulation
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Worst-Case Error Formulation

AC Power 

Flow

Maximize 

Error

Operational 

Constraints

DC Power 

Flow

Formulation
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Worst-Case Error Formulation

Non-Convex!

Formulation
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•

For each line               and                     , 

solve (in parallel):

Handling the Objective Function

Select the largest absolute value among 

all the solutions
Formulation
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• A variety of recently developed relaxations

• One example: The QC Relaxation

Handling the Power Flow Equations 

via Convex Relaxations

[Coffrin, Hijazi & Van Hentenryck ‘15]

Formulation
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• Augment the QC relaxation with

‒ A Semidefinite Programming Relaxation of the power flow 

equations in rectangular coordinates

‒ Sparsity-Exploiting Moment Relaxations from the Lasserre

hierarchy

‒ Lifted Nonlinear Cuts implied by the angle difference and voltage 

magnitude limits

‒ Arctangent Envelopes 

• Apply a bound tightening algorithm to improve upon the 

specified operational limits

Further Tightening the Relaxation

[Lavaei & Low ‘12]

[Coffrin, Hijazi & Van Hentenryck ‘15],

[Kocuk, Dey & Sun ‘16]

[Chen, Atamturk & 

Oren ‘15]

[Kocuk, Dey & Sun ‘15], 

[Chen, Atamturk & Oren ‘15], 

[Coffrin, Hijazi & Van Hentenryck ‘16]
Formulation

[Lasserre ‘01], [Molzahn & Hiskens ’15], [Josz & Molzahn ‘16]



21 / 42

• Augment the QC relaxation with
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equations in rectangular coordinates

‒

‒
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Semidefinite Relaxation of the 

Power Flow Equations

• Write power flow equations as

where                              with voltage phasors 

• Define matrix

• Rewrite as                           and 

• Relaxation:

Do not enforce 

‒ A solution with                          implies zero relaxation gap 

and recovery of the globally optimal voltage profile. This is 

not necessary for our problem: we only require a lower bound.

Formulation

[Lavaei & Low ‘12]
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Arctangent Envelopes

• Enclose the arctangent function using linear 

inequalities

Formulation

[Kocuk, Dey, & Sun ‘16]

Lower Inequalities
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Formulation Summary

Convex

relaxations

Maximize the absolute 

value of the error at 

each line terminal

Operational 

constraints

For each              and                     , solve (in parallel):

DC Power Flow

Formulation
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Results for the IEEE Test Cases
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Results

Worst-case power injection error (MW)

for the IEEE 14-bus system

Upper bound from 

the relaxation

Results
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Results

Worst-case power injection error (MW)

for the IEEE 14-bus system

Range from 

random 

injections

Average from 

random injections

Results

Upper bound using 

the second-order 

moment relaxation
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Results

Worst-case power flow error (MW)

for the IEEE 14-bus system, by line

5% Allowed Variation in Injections 50% Allowed Variation in Injections

Line Index Line Index

Results
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Results

IEEE 30-Bus System

IEEE 57-Bus System

IEEE 118-Bus System

Results
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Other 

Linearizations

Results

IEEE 14-Bus System

Power Flow Jacobian (Polar Coordinates)

Decoupled Power Flow (Polar Coordinates)

Hot-Start DC Power Flow
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Conclusions

• We proposed an algorithm that uses convex relaxations 

to bound the worst-case error of power flow 

linearizations

• Results for several IEEE test cases show:

‒ The bound is reasonably tight

‒ The DC power flow can have large errors for some operating 

conditions

• Next steps:

‒ Application to other linear approximations and test cases

‒ Comparison with other error bounds

‒ Determination of physical explanations for large errors

‒ Design of new linearizations informed by the worst-case errorConclusion
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Questions?

Dan Molzahn
dmolzahn@anl.gov
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