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Motivation of This Work

The ”duck” curve of net load: The needs of ramp-up and

ramp-down resources.

Source: “What the duck curve tells us about managing a green grid.” CAISO, 2013.
https://www.caiso.com/Documents/FlexibleResourcesHelpRenewables_FastFacts.pdf

The classic portfolio selection theory (aka the efficient frontier) in
dealing with the trade-offs between risks (reliability) and returns
(cost)
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Targeted Operation in the Day-Ahead/Real-time Market

Figure: Market Operations in a Two-Settlement System [ZWL14]
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Two-stage Stochastic Unit Commitment – First Stage

Model I: Benchmark: Energy and reserve co-optimization (with a fixed

reserve requirement)

• First-stage Variables (unit commitment)

ugt Commitment decision of unit g at period t; binary

vgt Start-up action of unit g at period t; binary

wgt Shut-down action of unit g at period t; binary

rcu
gt Regulation-up reserve to commit of unit g at period t

rcd
gt Regulation-down reserve to commit of unit g at period t

• Objective Function

Minimize Start-up cost [
∑
g,t

SUg vgt ] + Shut-down cost [
∑
g,t

SDg wgt ]

+ Reserve commitment cost [
∑
g,t

(C U
g rcu

gt + C D
g rcd

gt )]

+ Eξ[2nd-stage cost]
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First Stage (cont.)

First-stage constraints:

- Minimum up and down time

ugt − ug(t−1) ≤ ugτ , ∀g ∈ G , t ∈ T , τ = t, . . . ,min{t + Lg − 1}
ug(t−1) − ugt ≤ 1− ugτ , ∀g ∈ G , t ∈ T , τ = t, . . . ,min{t + lg − 1}

- Starting up/shutting down

vgt ≥ ugt − ug(t−1), ∀g ∈ G , t ∈ T

wgt ≥ −ugt + ug(t−1), ∀g ∈ G , t ∈ T

- Fixed reserve requirement (by zones: z ∈ Z)∑
g∈Gz

rc
(u,d)
gt ≥ R

(u,d)
zt , ∀z ∈ Z , t ∈ T

- Binary and non-negativity requirements:

ugt , vgt , wgt ∈ {0, 1}, rcu
gt , rc

d
gt ≥ 0, ∀g ∈ G , t ∈ T

FERC Technical Conference, June 2015
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Second Stage: 24-Hr Real-Time Economic Dispatch

- Second-stage objective function – (∆ξ
it : lost load)

Eξ [2nd-stage cost] = Eξ
∑
t∈T

∑
g∈G

[
Costg (pξgt ) + Costr (ruξ

gt ) + Costr (rdξ

gt ) +
∑
i∈N

VOLL · ∆
ξ
it

]

- Generation and reserve capacity constraints –

(Pmin
g + rcd

gt )ugt ≤ pξgt ≤ (Pmax
g − rcu

gt )ugt , ∀ g ∈ G , t ∈ T , ξ ∈ Ξ

0 ≤ ruξ

gt ≤ rcu
gt ugt , 0 ≤ rdξ

gt ≤ rcd
gt ugt , ∀ g ∈ G , t ∈ T , ξ ∈ Ξ

- Ramping constraints –

−RDg ≤ pξgt − p
ξ
gt−1 ≤ RUg , ∀ g ∈ G , t ∈ T , ξ ∈ Ξ

- Load balancing constraints – (Dξ
it : demand; f ξjit : power flow; W ξ

it : wind)

D
ξ
it − ∆

ξ
it =

∑
(j,i)∈A

−
i

f
ξ

jit −
∑

(i,j)∈A+
i

f
ξ

ijt +
∑

g∈Gi

(pξgt + ruξ

gt − rdξ

gt ) + W
ξ
it , ∀ i ∈ N, t ∈ T , ξ ∈ Ξ

- Kirchhoff’s voltage law and flow capacity

FERC Technical Conference, June 2015
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Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR)Sarykalin et al.: VaR vs. CVaR in Risk Management and Optimization
272 Tutorials in Operations Research, c⃝ 2008 INFORMS

Figure 1. Risk functions: graphical representation of VaR, VaR Deviation, CVaR, CVaR Devia-
tion, Max Loss, and Max Loss Deviation.

VaR, CVaR, deviations

F
re

qu
en

cy

VaR
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1– α
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Loss
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CVaR Deviation

Max Loss Deviation

Loss

Mean

VaR Deviation

2. General Picture of VaR and CVaR

2.1. Definitions of VaR and CVaR

This section gives definitions of VaR and CVaR and discusses their use and basic properties.
We refer to Figure 1 for their graphical representation.

Let X be a random variable with the cumulative distribution function FX(z) = P{X ≤ z}.
X may have meaning of loss or gain. In this tutorial, X has meaning of loss and this impacts
the sign of functions in definition of VaR and CVaR.

Definition 1 (Value-at-Risk). The VaR of X with confidence level α ∈]0,1[ is

VaRα(X) = min{z | FX(z) ≥ α}. (1)

By definition, VaRα(X) is a lower α-percentile of the random variable X. Value-at-risk is
commonly used in many engineering areas involving uncertainties, such as military, nuclear,
material, airspace, finance, etc. For instance, finance regulations, like Basel I and Basel II,
use VaR deviation measuring the width of daily loss distribution of a portfolio.

For normally distributed random variables, VaR is proportional to the standard deviation.
If X ∼ N(µ,σ2) and FX(z) is the cumulative distribution function of X, then (see Rockafellar
and Uryasev [19]),

VaRα(X) = F−1
X (α) = µ+ k(α)σ, (2)

where k(α) =
√

2erf−1(2α − 1) and erf(z) = (2/
√

π )
∫ z

0
e−t2 dt.

The ease and intuitiveness of VaR are counterbalanced by its mathematical properties.
As a function of the confidence level, for discrete distributions, VaRα(X) is a nonconvex,
discontinuous function. For a discussion of numerical difficulties of VaR optimization, see,
for example, Rockafellar [17] and Rockafellar and Uryasev [19].

Illustration of VaR and CVaR [SSS08, Figure 1]

Let x := (u, v ,w , rcu,d ); that is, the first-stage decisions.

∆(x ; ξ) denote the total unserved energy in the real-time corresponding to an x .

VaRα(x) = min{L|Prob[∆(x ; ξ) ≤ L] ≥ α} (e.g.: α = 99%).

CVaRα(x) = Eξ
[

∆(x ; ξ)

∣∣∣∣∆(x ; ξ) ≥ VaRα

]
.

FERC Technical Conference, June 2015
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Relationship to Reliability Metrics

VaR vs. LOLP

Mathematically, using VaR to ensure reliability leads to
chance-constrained UC; that is,

P[∆(x ; ξ) ≤ VaRα(x)] ≥ α.

CVaR vs. Expected Unserved Energy (EUE)

CVaR is the conditional EUE given that ∆(x ; ξ) > VaRα(x).

FERC Technical Conference, June 2015
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Linear Approximation of CVaR

Let p(ξ) be the probability density function of ξ. Consider

Fα(x ,VaR) = VaR + (1− α)−1
∫
ξ∈<n

max {∆(x , ξ)− VaR, 0} p(ξ)dξ.

Theorem [KPU02]: Let φ̄ denote a loss allowance (i.e., do not want CVaRα > φ̄).
The following two minimization problems are equivalent:

min
x

Cost(x)

s.t. CVaRα(x) ≤ φ̄.
(1)

min
x, VaR

Cost(x)

s.t. Fα(x ,VaR) ≤ φ̄.
(2)

Linear approximation (Note: the approximation is exact if the support of ξ is finite.)

- Sample ξ from its distribution, and let ξ1, . . . , ξj , . . .ξn be the n samples (and pj

be the corresponding probability).
- Use auxiliary variable ζj to replace max

{
∆(x , ξj )− VaR, 0

}
in Fα(x ,VaR).

- Then Fα(x ,VaR) ≤ φ̄ in Problem (2) can be approximated by the following
THREE sets of constraints

1. ζj ≥ ∆(x , ξ)−VaR, 2. ζj ≥ 0, 3. VaR + (1−α)−1
n∑

i=j

pjζj ≤ φ̄, j = 1, . . . , n.
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Computational Approach

Model II = Mode I − Fixed Reserve Requirement in Stage-1 + CVaR Constraints in
Stage-2

Computational consideration of CVaR constraints

Advantage (over VaR): linear inequalities are much easier to deal with than
chance-constraints

Disadvantage: the constraint VaR + (1− α)−1
∑n

i=j pjζj is pooling over all

scenarios (the summation); cannot directly apply Benders’ decomposition (aka
the L-shaped method)

Modified Bender’s Decomposition

Put the CVaR constraints in the Master problem (the first-stage problem plus θ:
approximation of the 2nd stage optimal value function)

Add optimality cuts and feasibility cuts the same way as in Benders’

Branch-and-cut on the first-stage integer variables

Provable finite convergence with finite support of ξ and relatively complete
recourse ([LL93], [BL11] Prop. 7.4).
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Numerical Results: 7-Bus Example
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Results: 7-Bus Example – Input Data

Table: Generator Parameters and Costs

G1 G2 G3 G4
Min-ON (h) 2 1 2 4
Min-OFF (h) 2 2 2 1
Ramp-Up (MW/h) 60 30 60 60
Ramp-Down (MW/h) 60 30 60 60
Pmin (MW) 10 5 9 7
Pmax (MW) 110 50 90 70
Startup ($) 50 500 800 30
Shutdown ($) 50 500 800 20
Fuel Cost a ($) 6.78 6.78 31.67 10.15
Fuel Cost b ($/MWh) 12.888 12.888 26.244 17.820

Fuel Cost c ($/MWh2) 0.0109 0.0109 0.0697 0.0128

- Reg-up requirement = Reg-down requirement = 50% of largest capacity

- Uncertainty on net-load (did not consider wind-demand correlation or
autocorrelation; 100 samples)

- VOLL =1,000 $/MWh,α = 99%, φ̄ = 4MW
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Results: 7-Bus Example
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Results: 7-Bus Example (cont.)

Regulation-UP reserves: Model I vs. Model II
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Regulation-DOWN reserves: Model I vs. Model II
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Results: 7-Bus Example (cont.)

Regulation-UP reserves: Model I vs. Model II
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Regulation-DOWN reserves: Model I vs. Model II
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IEEE 118-Bus Example

- 54 generators, including 4 wind plants

- 186 transmission lines with 120 MW capacity on each line

- VOLL = $100/MWh, α = 99%, φ̄ = 70MW (≈ 1%peak)

- 100 scenarios sampled

- Requirement of Reg-Up = Reg-Down = 300 MW (= largest capacity of
the generators)

- Use CPLEX: Model I (21,686 sec.); Model II (19,670 sec.)
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IEEE 118-Bus Example (cont.)
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Comparison of regulation-up reserve capacity between Model I and Model II

Model II cost reduction ≈ 1.8%; Expected Loss for Model I is 0; for Model II is

3.55 MW (really needs to draw the efficient frontier curve to compare! (In

progress))
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IEEE 118-Bus Example (cont.)
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Further Discussions of CVaR

Robust CVaR: What if the distribution p(·) of ξ is not fully known?

Suppose p(·) ∈P: a set of distributions. Then the worst-case CVaR (WCVaRα(x))
is: WCVaRα(x) := sup

p(·)∈P
CVaRα(x).

Results [ZF09]:

WCVaRα(x) is still a coherent risk-measure

Under mixture distribution uncertainty or box uncertainty, can still use a linear
set of inequalities to represent/approximate WCVaRα(x).

Use CVaR to price flexible ramping products (a proposal)

Shared ramping (up) constraints (using different weights for energy (ag ), reserve
(ar ) and flexible ramping (af ) at different time scales (aka CAISO):

ag (pξgt−pξgt−1)+ar (ruξ

gt −ruξ

gt−1)+af (flexRUξgt−flexRUξgt−1) ≤ RUg , ∀ g ∈ G , t ∈ T , ξ ∈ Ξ

Define different CVaRs at different time scales

Use the shadow prices of CVaR constraints to pay for different ramping products
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Summary and Future Research

Summary

Presented a CVaR-based formulation to determine reserve level, instead
of using a fixed reserve requirement

Promising results of the CVaR model (in terms of the cost-reliability
trade-off) compared to the fixed-reserve case (but based on very limited
numerical results)

Future Research

Computational experiments of robust CVaR and comparison with
distribution-specific CVaR

Ramp product pricing using CVaR constraints, with intra-hour modeling

Can we use CVaR as a basis to compensate demand-side resources (DR,
DG, etc) and storage for their contribution of reliability?
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Thank you!
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