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Motivation and Introduction

Motivation of This Work

m The "duck” curve of net load: The needs of ramp-up and
ramp-down resources.
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Motivation and Introduction

Motivation of This Work

m The "duck” curve of net load: The needs of ramp-up and
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« The classic portfolio selection theory (aka the efficient frontier) in
dealing with the trade-offs between risks (reliability) and returns

(cost)
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Formulation

Targeted Operation in the Day-Ahead/Real-time Market

Day ahead:
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Figure: Market Operations in a Two-Settlement System [ZWL14]
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Formulation

Two-stage Stochastic Unit Commitment — First Stage

Model I: Benchmark: Energy and reserve co-optimization (with a fixed
reserve requirement)
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Formulation

Two-stage Stochastic Unit Commitment — First Stage

Model I: Benchmark: Energy and reserve co-optimization (with a fixed
reserve requirement)
e First-stage Variables (unit commitment)

ug: Commitment decision of unit g at period t; binary

vgr Start-up action of unit g at period t; binary

wge Shut-down action of unit g at period t; binary

rcg: Regulation-up reserve to commit of unit g at period t

rcgdT Regulation-down reserve to commit of unit g at period t
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Formulation

Two-stage Stochastic Unit Commitment — First Stage

Model I: Benchmark: Energy and reserve co-optimization (with a fixed
reserve requirement)
e First-stage Variables (unit commitment)

ug: Commitment decision of unit g at period t; binary

vgr Start-up action of unit g at period t; binary

wge Shut-down action of unit g at period t; binary

rcg: Regulation-up reserve to commit of unit g at period t
rcgdT Regulation-down reserve to commit of unit g at period t

e Objective Function

Minimize Start-up cost [Z SUg vgt] + Shut-down cost [Z SDgwgt]
gt g,t

+ Reserve commitment cost [Z(Cgu rcg + Cg rcgdt )
gt

+ E¢[2nd-stage cost]

FERC Technical Conference, June 2015



Formulation

First Stage (cont.)

First-stage constraints:
- Minimum up and down time
Ugt — Ug(t—1) < Ugr, VgeG, teT,r=t,...,min{t + L, — 1}
Ug(t—1) — Ugt < 1 — ugr, Vge G, teT,r=t,....,min{t+ Iy —1}
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Formulation

First Stage (cont.)

First-stage constraints:
- Minimum up and down time
Ugt — Ug(t—1) < Ugr, VgeG, teT,r=t,...,min{t + L, — 1}
Ug(t—1) — Ugt < 1 — ugr, Vge G, teT,r=t,....,min{t+ Iy —1}
- Starting up/shutting down
Vgt > Ugt — Ug(t—1), Vge G, teT
Wgt > —Ugt + Ug(t—1), Vge G, teT
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Formulation

First Stage (cont.)

First-stage constraints:
- Minimum up and down time
Ugt — Ug(t—1) < Ugr, VgeG, teT,r=t,...,min{t + L, — 1}
Ug(t—1) — Ugt < 1 — ugr, Vge G, teT,r=t,....,min{t+ Iy —1}
- Starting up/shutting down
Vgt > Ugt — Ug(t—1), Vg S G, te T
Wegt > —Ugt + Ug(t—1) Vg € Ga teT
- Fixed reserve requirement (by zones: z € Z)

STt >RYY, vzezteT
g€G;
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Formulation

First Stage (cont.)

First-stage constraints:
- Minimum up and down time
Ugt — Ug(t—1) < Ugr, VgeG, teT,r=t,...,min{t + L, — 1}
Ug(t—1) — Ugt < 1 — ugr, Vge G, teT,r=t,....,min{t+ Iy —1}
- Starting up/shutting down
Vgt > Ugt — Ug(t—1), Vg S G, te T
Wegt > —Ugt + Ug(t—1) Vg € Ga teT
- Fixed reserve requirement (by zones: z € Z)

STt >RYY, vzezteT
g€G;

- Binary and non-negativity requirements:

Ugt, Vgt, Wgr € {0,1}, rcé’t,rcgt >0,VgeG, teT
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Formulation

Second Stage: 24-Hr Real-Time Economic Dispatch

- Second-stage objective function — (A?t: lost load)

E¢[2nd-stage cost] = E¢ Z Z [Costg(pgt) + Cost,(r;’_f) + Cast,(rgf) + Z VOLL - Aﬁ]
teT geG ieN
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- Generation and reserve capacity constraints —
(PI™ + reG)uge < ply < (PT™ — rcky)uge, VeeG teT, ce=

3 3
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FERC Technical Conference, June



Formulation

Second Stage: 24-Hr Real-Time Economic Dispatch

- Second-stage objective function — (A?t: lost load)

E¢[2nd-stage cost] = E¢ Z Z [Costg(pgt) + Cost,(r;’_f) + Cast,(rgf) + Z VOLL - Aﬁ]
teT geG ieN

- Generation and reserve capacity constraints —
(PI™ + reG)uge < ply < (PT™ — rcky)uge, VeeG teT, ce=

3 3
ogr;’t grcgtugt,ogrgt grcgtugt, VgeG,teT, £€=

- Ramping constraints —

—RDg < pf, — gtilgRUg, VgEG teT, £€=
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Formulation

Second Stage: 24-Hr Real-Time Economic Dispatch

- Second-stage objective function — (A?t: lost load)

E¢[2nd-stage cost] = E¢ Z Z [Castg pgt) + Cost,( )+ Cast,( )+ Z VOLL - Aﬁ]
teT geG ieN

- Generation and reserve capacity constraints —

(P "+rc )ugt<pgt<(P 7rc ) ugt, VgeG, teT, §€=
13 13
Ogrg"t grcgtugt,ogrgdt grcgtugt, VgeG,teT, £€=

- Ramping constraints —

—RDg < pf, — gtilgRUg, VgEG teT, £€=

- Load balancing constraints — (Dg: demand; ﬂi power flow; VVlf wind)

13 £ _ € ; =
thiAitf Z G’it7 Z UﬁZ(Pgr 7gf)+ :t' VieN, teT, €=
G.iveA; (et EE€Gi
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Formulation

Second Stage: 24-Hr Real-Time Economic Dispatch

- Second-stage objective function — (A?t: lost load)

E¢[2nd-stage cost] = E¢ Z Z [Castg pgt) + Cost,( )+ Cast,( )+ Z VOLL - Aﬁ]
teT geG ieN

- Generation and reserve capacity constraints —

(P "+rc )ugt<pgt<(P 7rc ) ugt, VgeG, teT, §€=
13 13
Ogrg"t grcgtugt,ogrgdt grcgtugt, VgeG,teT, £€=

- Ramping constraints —

—RDg < pf, — gtilgRUg, VgEG teT, £€=

- Load balancing constraints — (Dg: demand; ﬂi power flow; VVlf wind)

13 £ _ € ; =
thiAitf Z G’it7 Z UﬁZ(Pgr 7gf)+ :t' VieN, teT, €=
G.iveA; (et EE€Gi

- Kirchhoff’s voltage law and flow capacity
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Formulation

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR)

VaR, CVaR, deviations

Frequency

Max
Loss

Probability
I-o

CVaR

Max Loss Deviation —————————»|

Mean

lllustration of VaR and CVaR [SSS08, Figure 1]

m Let x := (u,v,w, rc”’d); that is, the first-stage decisions.
m A(x;§) denote the total unserved energy in the real-time corresponding to an x.
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Formulation

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR)

VaR, CVaR, deviations

Frequency

Max
Loss

Probability
I-o

CVaR

Mean

lllustration of VaR and CVaR [SSS08, Figure 1]

m Let x := (u,v,w, rc”’d); that is, the first-stage decisions.
m A(x;§) denote the total unserved energy in the real-time corresponding to an x.
m VaR.(x) = min{L|Prob[A(x;£) < L] > a} (e.g.: o =99%).
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Formulation

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR)

VaR, CVaR, deviations

Frequency

Max
Loss

Probability
I-o

CVaR

Max Loss Deviation —————————»|

Mean

lllustration of VaR and CVaR [SSS08, Figure 1]

Let x := (u, v, w, rc¥>?); that is, the first-stage decisions.
A(x; &) denote the total unserved energy in the real-time corresponding to an x.
VaRa(x) = min{L|Prob[A(x;£) < L] > a} (e.g.: o =99%).

CVaRa(x) = E¢ [A(X; §)’A(X; &) > VaRa:| .
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Formulation

Relationship to Reliability Metrics

VaR vs. LOLP

Mathematically, using VaR to ensure reliability leads to
chance-constrained UC; that is,

P[A(x; €) < VaR,(x)] > a.
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Formulation

Relationship to Reliability Metrics

VaR vs. LOLP

Mathematically, using VaR to ensure reliability leads to
chance-constrained UC; that is,

P[A(x; €) < VaR,(x)] > a.

CVaR vs. Expected Unserved Energy (EUE)
CVaR is the conditional EUE given that A(x; §) > VaR,(x).
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Formulation

Linear Approximation of CVaR

Let p(€) be the probability density function of £. Consider
Fa(x,VaR) = VaR + (1 — a)*l/ max {A(x, &) — VaR,0} p(€)d¢.
EERN

Theorem [KPUO2]: Let & denote a loss allowance (i.e., do not want CVaR, > ).
The following two minimization problems are equivalent:

min  Cost(x) min  Cost(x)
) (1) o (2)
st.  CVaRq(x) < ¢. st.  Fa(x,VaR) < é.
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Formulation

Linear Approximation of CVaR

Let p(€) be the probability density function of £. Consider
Fa(x,VaR) = VaR + (1 — a)*I/ max {A(x, &) — VaR,0} p(€)d¢.
EERN

Theorem [KPUO2]: Let & denote a loss allowance (i.e., do not want CVaR, > ).
The following two minimization problems are equivalent:

min  Cost(x) m\i/nR Cost(x)
X x, Va
i 1) @
s.t.  CVaRa(x) < . st.  Fa(x,VaR) < ¢.
Linear approximation (Note: the approximation is exact if the support of ¢ is finite.)
- Sample ¢ from its distribution, and let £1,...,&;,...£n be the n samples (and p;

be the corresponding probability).
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Formulation

Linear Approximation of CVaR

Let p(€) be the probability density function of £. Consider
Fa(x,VaR) = VaR + (1 — a)*I/ max {A(x, &) — VaR,0} p(€)d¢.
EERN

Theorem [KPUO2]: Let & denote a loss allowance (i.e., do not want CVaR, > ).
The following two minimization problems are equivalent:

min  Cost(x) m\i/nR Cost(x)
X x, Va
i 1) @
s.t.  CVaRa(x) < . st.  Fa(x,VaR) < ¢.
Linear approximation (Note: the approximation is exact if the support of ¢ is finite.)
- Sample ¢ from its distribution, and let £1,...,&;,...£n be the n samples (and p;

be the corresponding probability).
- Use auxiliary variable ¢; to replace max {A(x,¢;) — VaR,0} in Fo(x, VaR).
- Then Fa(x, VaR) < & in Problem (2) can be approximated by the following
THREE sets of constraints

1.¢ > A(x,€)— VaR, 2. ¢ >0, 3. VaR+(1—a)*lzpjgj <é j=1,...,n
i=j
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Formulation

Computational Approach

Model Il = Mode | — Fixed Reserve Requirement in Stage-1 + CVaR Constraints in
Stage-2
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Formulation

Computational Approach

Model Il = Mode | — Fixed Reserve Requirement in Stage-1 + CVaR Constraints in
Stage-2

Computational consideration of CVaR constraints

m Advantage (over VaR): linear inequalities are much easier to deal with than
chance-constraints

m Disadvantage: the constraint VaR + (1 — a)™! 27:1' p;j¢j is pooling over all
scenarios (the summation); cannot directly apply Benders’ decomposition (aka
the L-shaped method)

Modified Bender's Decomposition

m Put the CVaR constraints in the Master problem (the first-stage problem plus 0:
approximation of the 2nd stage optimal value function)

m Add optimality cuts and feasibility cuts the same way as in Benders’
m Branch-and-cut on the first-stage integer variables

m Provable finite convergence with finite support of & and relatively complete
recourse ([LL93], [BL11] Prop. 7.4).
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Numerical Results

Numerical Results: 7-Bus Example

R1 G1 G2

l G4
©

L3 L5
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Numerical Results

Results: 7-Bus Example — Input Data

Table: Generator Parameters and Costs

G1 G2 G3 G4
Min-ON (h) 2 1 2 4
Min-OFF (h) 2 2 2 1
Ramp-Up (MW/h) 60 30 60 60
Ramp-Down (MW/h) 60 30 60 60
Pmin (MW) 10 5 9 7
Pmax (MW) 110 50 90 70
Startup (3) 50 500 800 30
Shutdown ($) 50 500 800 20
Fuel Cost a ($) 6.78 6.78 31.67 10.15
Fuel Cost b ($/MWh) 12.888 12.888 26.244 17.820
Fuel Cost ¢ ($/MWh?) | 0.0100 | 0.0109 | 0.0697 | 0.0128

- Reg-up requirement = Reg-down requirement = 50% of largest capacity

- Uncertainty on net-load (did not consider wind-demand correlation or
autocorrelation; 100 samples)

- VOLL =1,000 $/MWh,a = 99%, ¢ = 4MW
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Numerical Results

Results: 7-Bus Example (cont.)

Regulation-UP reserves: Model | vs. Model Il
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Numerical Results

Results: 7-Bus Example (cont.)

Regulation-UP reserves: Model | vs. Model Il

sof-

Regulation Up Reserve (MW)
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Hour

Regulation-DOWN reserves:

n Down Reserve (MW)

FERC Technical Conferenc

June

Regulation Up Reserve (MW)

Model | vs. Model Il

&

Regulation Dwon Reserve (MW).




Numerical Results

IEEE 118-Bus Example

- 54 generators, including 4 wind plants
- 186 transmission lines with 120 MW capacity on each line
- VOLL = $100/MWh, a = 99%, ¢ = 7T0MW (~ 1%peak)

- 100 scenarios sampled

- Requirement of Reg-Up = Reg-Down = 300 MW (= largest capacity of
the generators)

- Use CPLEX: Model | (21,686 sec.); Model Il (19,670 sec.)
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Numerical Results

|IEEE 118-Bus Example (cont.)
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Comparison of regulation-up reserve capacity between Model | and Model Il
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Numerical Results

|IEEE 118-Bus Example (cont.)
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Comparison of regulation-up reserve capacity between Model | and Model Il

Model Il cost reduction ~ 1.8%; Expected Loss for Model | is 0; for Model Il is

3.55 MW (really needs to draw the efficient frontier curve to compare! (In

progress))
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Discussions and Future Research

Further Discussions of CVaR

Robust CVaR: What if the distribution p(:) of & is not fully known?

Suppose p(-) € Z: a set of distributions. Then the worst-case CVaR (WCVaR,(x))
is: WCVaR,(x) := sup CVaRa(x).
LOSE%
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Discussions and Future Research

Further Discussions of CVaR

Robust CVaR: What if the distribution p(:) of & is not fully known?

Suppose p(-) € Z: a set of distributions. Then the worst-case CVaR (WCVaR,(x))
is: WCVaR,(x) := sup CVaRa(x).
LOSE%

Results [ZF09]:
m WCVaR.(x) is still a coherent risk-measure

m Under mixture distribution uncertainty or box uncertainty, can still use a linear
set of inequalities to represent/approximate WCVaR.(x).
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Discussions and Future Research

Further Discussions of CVaR

Robust CVaR: What if the distribution p(:) of & is not fully known?

Suppose p(-) € Z: a set of distributions. Then the worst-case CVaR (WCVaR,(x))
is: WCVaR,(x) := sup CVaRa(x).
p()EZ

Results [ZF09]:
m WCVaR.(x) is still a coherent risk-measure

m Under mixture distribution uncertainty or box uncertainty, can still use a linear
set of inequalities to represent/approximate WCVaR.(x).

Use CVaR to price flexible ramping products (a proposal)

m Shared ramping (up) constraints (using different weights for energy (ag), reserve
(ar) and flexible ramping (ar) at different time scales (aka CAISO):

3 3 —
ag(Pgi—P5e_1)+ar(rke —rée—1)+ar(flexRUs —flexRUS,_1) < RUg, Vg € G, t € T,£ €=
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Discussions and Future Research

Further Discussions of CVaR

Robust CVaR: What if the distribution p(:) of & is not fully known?

Suppose p(-) € Z: a set of distributions. Then the worst-case CVaR (WCVaR,(x))
is: WCVaR,(x) := sup CVaRa(x).
p()EZ

Results [ZF09]:
m WCVaR.(x) is still a coherent risk-measure

m Under mixture distribution uncertainty or box uncertainty, can still use a linear
set of inequalities to represent/approximate WCVaR.(x).

Use CVaR to price flexible ramping products (a proposal)

m Shared ramping (up) constraints (using different weights for energy (ag), reserve
(ar) and flexible ramping (ar) at different time scales (aka CAISO):

3 3 —
ag(Pgi—P5e_1)+ar(rke —rée—1)+ar(flexRUs —flexRUS,_1) < RUg, Vg € G, t € T,£ €=

m Define different CVaRs at different time scales
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Discussions and Future Research

Further Discussions of CVaR

Robust CVaR: What if the distribution p(:) of & is not fully known?

Suppose p(-) € Z: a set of distributions. Then the worst-case CVaR (WCVaR,(x))
is: WCVaR,(x) := sup CVaRa(x).
p()EZ

Results [ZF09]:
m WCVaR.(x) is still a coherent risk-measure

m Under mixture distribution uncertainty or box uncertainty, can still use a linear
set of inequalities to represent/approximate WCVaR.(x).

Use CVaR to price flexible ramping products (a proposal)

m Shared ramping (up) constraints (using different weights for energy (ag), reserve
(ar) and flexible ramping (ar) at different time scales (aka CAISO):

3 3 —
ag(Pgi—P5e_1)+ar(rke —rée—1)+ar(flexRUs —flexRUS,_1) < RUg, Vg € G, t € T,£ €=

m Define different CVaRs at different time scales

m Use the shadow prices of CVaR constraints to pay for different ramping products
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Discussions and Future Research

Summary and Future Research

m Presented a CVaR-based formulation to determine reserve level, instead
of using a fixed reserve requirement

m Promising results of the CVaR model (in terms of the cost-reliability
trade-off) compared to the fixed-reserve case (but based on very limited
numerical results)
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Discussions and Future Research

Summary and Future Research

m Presented a CVaR-based formulation to determine reserve level, instead
of using a fixed reserve requirement

m Promising results of the CVaR model (in terms of the cost-reliability
trade-off) compared to the fixed-reserve case (but based on very limited
numerical results)

Future Research

m Computational experiments of robust CVaR and comparison with
distribution-specific CVaR

m Ramp product pricing using CVaR constraints, with intra-hour modeling

m Can we use CVaR as a basis to compensate demand-side resources (DR,
DG, etc) and storage for their contribution of reliability?
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Discussions and Future Resear

Thank you!
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Discussions and Future Research
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