

Dynamic Thermal Ratings in Real-time Dispatch Market Systems

Kwok W. Cheung, Jun Wu GE Grid Solutions

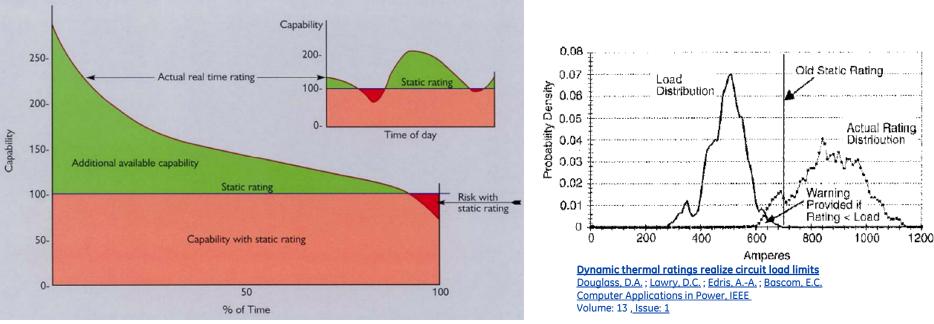
Imagination at work.

FERC 2016 Technical Conference June 27-29, 2016 Washington DC

- Introduction
- Weather-based Dynamic Line Ratings
- Real-time Security Constrained Economic Dispatch (SCED)
- Numerical Examples
- Conclusions

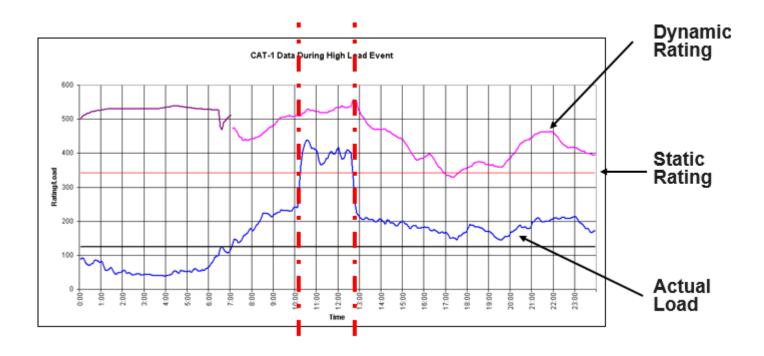
• Introduction

- Weather-based Dynamic Line Ratings
- Real-time Security Constrained Economic Dispatch (SCED)
- Numerical Examples
- Conclusions

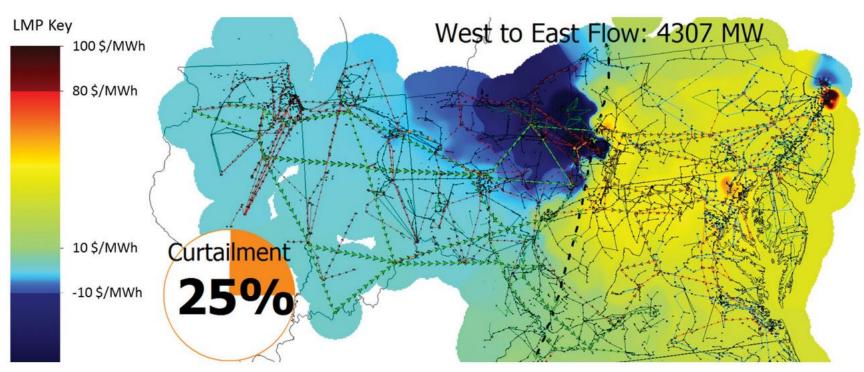

Introduction

- Regional transmission organizations are heavily reliant on *security constrained* unit commitment (SCUC) and economic dispatch (SCED) to optimally dispatch their energy resources.
- With the penetration of renewable energy resources, transmission system operators are in the process of enhancing their dispatch systems with a broader capability and higher economic efficiency.
- Transmission of electric power has traditionally been limited by conductor thermal capacity defined in terms of a *static line rating* which is based upon "near" worst-case weather and pre-load conditions.
- By real-time measurements of weather conditions surrounding the conductor, dynamic line rating (DLR) has the potential to increase line rating, reduce transmission congestion and enhance market efficiency.

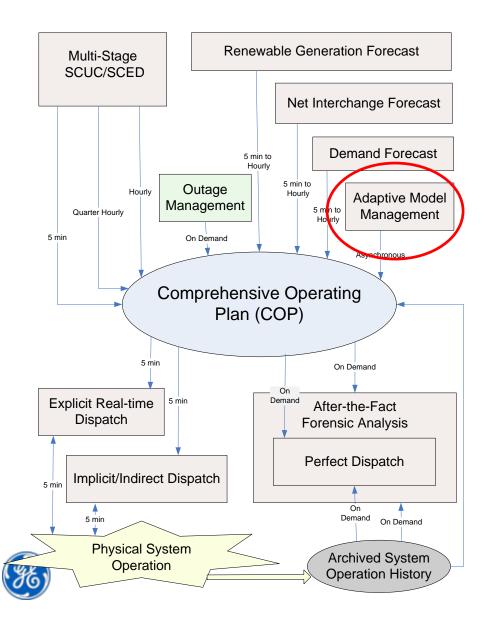
Dynamic Line Rating vs. Static Line Rating


- DLR enables significant amount of additional transmission capacity (Ampacity)
- DLR eliminates the risk in static rating

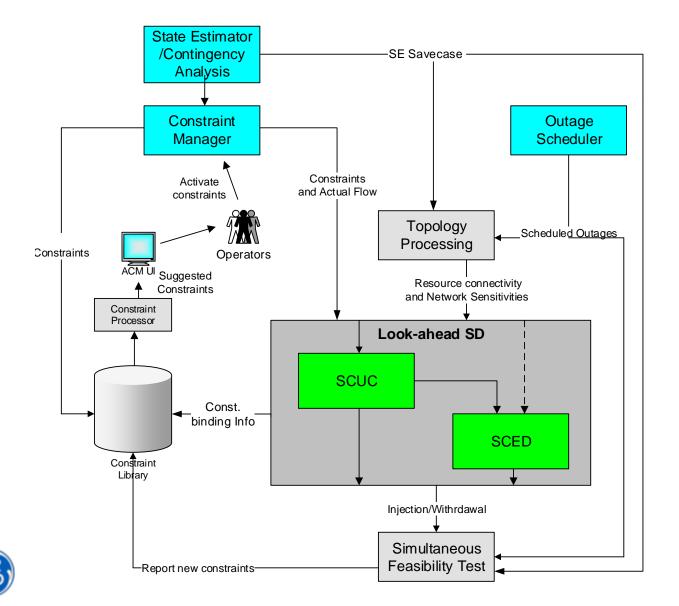
CAT-1 Transmission line monitoring system. The Valley Group. Available at http://www.nexans.be/eservice/Belgiumen/ fileLibrary/Download 540145282/US/files/valley%20group_CAT-1.pdf


Impact on Transmission Grid Operations

- Line was operating within limits in accordance with operating standards.
- Without dynamic rating, this event must be reported as a violation.
- The operator would have been forced to move the grid off its optimum dispatch.


Potential of Market Efficiency Improvement

Source: The Brattle Group



GE's Smart Dispatch Solution Overview

- Multi-stage SCUC/SCED
- Outage management
- After-the-fact forensic analysis (perfect dispatch)
- Renewable generation forecasting
- Net interchange forecasting
- Demand forecasting
- Adaptive Model Management
 - Adaptive generator modeling
 - Adaptive constraint modeling

Transmission Constraint Management

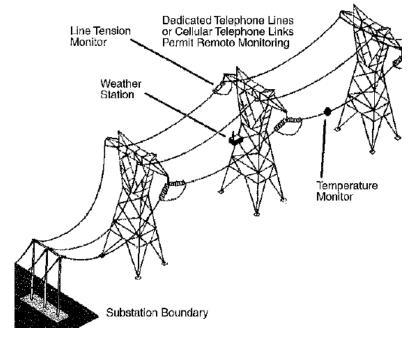
- Introduction
- Weather-based Dynamic Line Ratings
- Real-time Security Constrained Economic Dispatch (SCED)
- Numerical Examples
- Conclusions

DLR

- In the last two decades, technologies and strategies have emerged to allow the real-time or pseudo-real-time measurement of transmission line characteristics and environmental conditions which enabled calculation of a real-time rating.
- As economic pressure builds to fully utilized the capacity of existing power equipment in both deregulated and regulated environments, dynamic line ratings can improve the efficiency of transmission operation by capturing unutilized line capacity while maintaining system reliability.
- Two key benefits of DLR over traditional static line ratings:
 - 1. Higher loading of equipment by developing more accurate thermal models.
 - 2. A better understanding of equipment thermal response is achieved resulting in higher reliability.

DLR Determination Methods

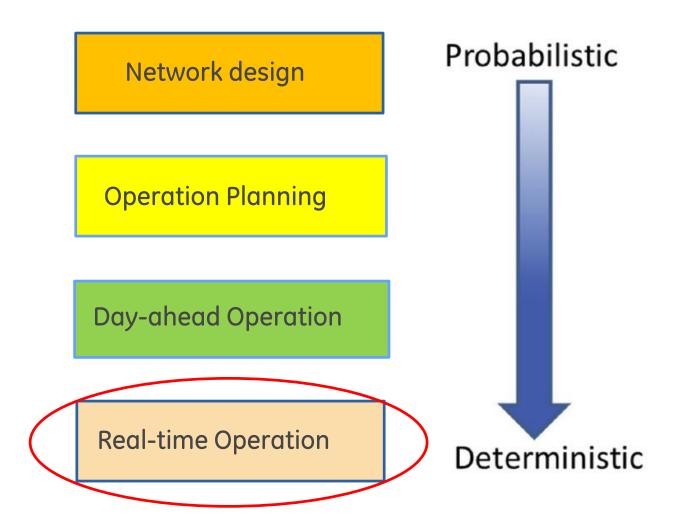
Weather-based methods


- Rely on monitoring e.g. ambient weather
- Line temperature and sag are determined by theoretical models and calculation

Temperature-based methods

 Based on direct conductor temperature measurements in combination with other measurements.

Sag monitoring methods


 Measuring some characteristic of the line (e.g. tension) to determine the sag

Dynamic thermal ratings realize circuit load limits Douglass, D.A. ; Lawry, D.C. ; Edris, A.-A. ; Bascom, E.C. Computer Applications in Power, IEEE Volume: 13 , Issue: 1

DLR Approach for Real-time Operation

Heat-Balance Model for Transmission Lines

- The line rating represents the line current which corresponds to the maximum allowable conductor temperature for a particular line without clearance infringements or significant loss in conductor tensile strength.
- Transmission line ratings are determined using the conductor's heat balance and are dependent on the cooling effect of wind, warming due to line current, air temperature and solar heating.

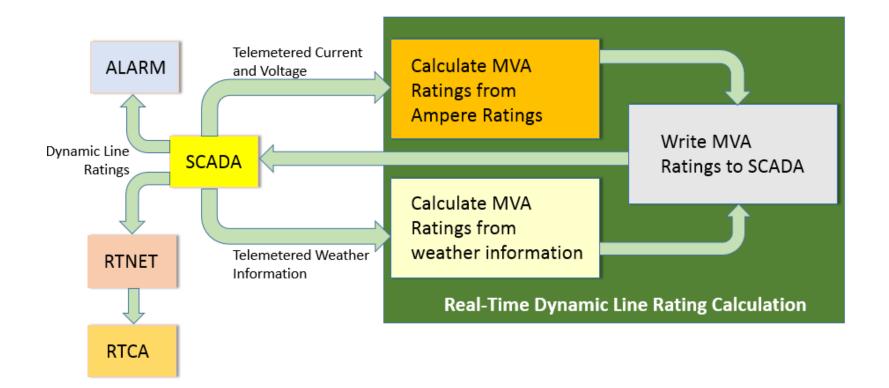
$$q_{J}(T_{c}) + q_{s} + q_{c}$$

$$= m_{c}c_{c}\frac{dT_{c}}{dt} + q_{r}(T_{c}, T_{A}) + q_{k}(T_{c}, T_{A}, V_{s}, V_{D}) + q_{e}(P, H, P_{a}),$$

where

 V_D : wind direction conductor mass, m_c : C_c : precipitation *P* : conductor heat capacity, T_C : conductor temperature, humidity H: T_A : ambient temperature, atmospheric pressure P_a : wind speed V_S :

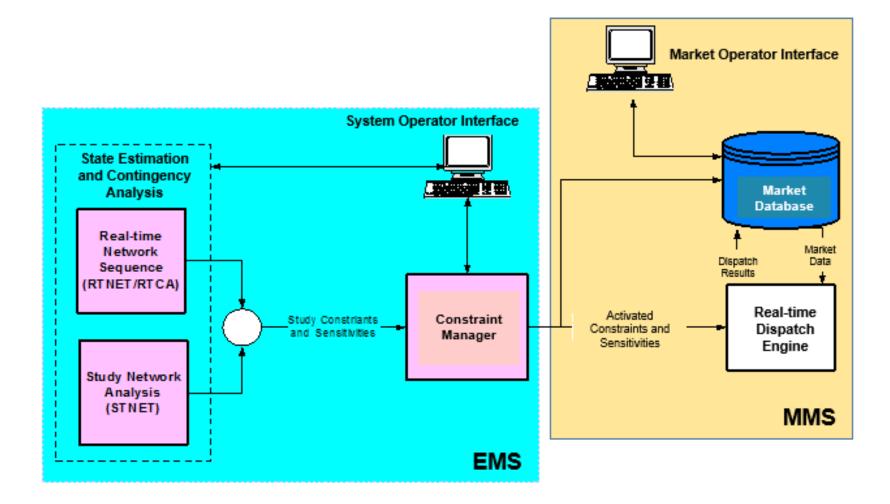
Maximum Permissible Current


- Real-time dispatch has typically a look-ahead time horizon of 15 minutes
- The thermal time constants for overhead conductor are also in the range of 10-15 minutes.
- Assumption: Quasi-steady-state thermal equilibrium is reached

$$I_{\max} = \sqrt{\frac{q_r(T_c^{\max}, T_A) + q_k(T_c^{\max}, T_A, V_s, V_D) + q_e(P, H, P_a) - q_s - q_c}{R(T_c^{\max})}}$$

 T_C^{max} : conductor's maximum operating temperature

Functional Modules of DLR in EMS



- Introduction
- Weather-based Dynamic Line Ratings
- Real-time Security Constrained Economic Dispatch (SCED)
- Numerical Examples
- Conclusions

Real-time SCED System

SCED Formulation

 $\min c(P) + co(O) - cd(D)$

subject to the following constraints:

• System power balance

$$(\lambda) \quad \sum_{i} (P_i - D_i) - FD - P_L = 0$$

• Reserve requirement

$$(\gamma_o) \qquad \sum_i O_i \ge O^{\max}$$

- Generator minimum generation limit $(\tau_i^{\min}) \quad P_i \ge P_i^{\min}$
- Generator joint maximum generation limit $(\tau_i^{\max}) \quad P_i + O_i \leq P_i^{\max}$
- Price-responsive load dispatch range $(\eta_i^{\max}) \quad 0 \le D_i \le D_i^{\max}$
- Generator ramp-rate limit $(\phi_i) \mid P_i - P_i^0 \mid \leq RR_i^{\max}$
- Grid base-case and contingency

$$(\mu_l) \qquad \sum_i a_{l,i} (P_i - D_i - d_i \times FD) \le L_i^{\max} \checkmark$$

Locational Marginal Price

$$LMP_{i} = \lambda - \lambda \frac{\partial P_{L}}{\partial P_{i}} - \sum_{l} a_{l,i} \mu_{l}$$

Impacted by DLR determination

- Introduction
- Weather-based Dynamic Line Ratings
- Real-time Security Constrained Economic Dispatch (SCED)
- Numerical Examples
- Conclusions

Numerical Examples

• Ambient weather conditions of a 345kV high-voltage transmission line that is about 12 km long in Ohio.

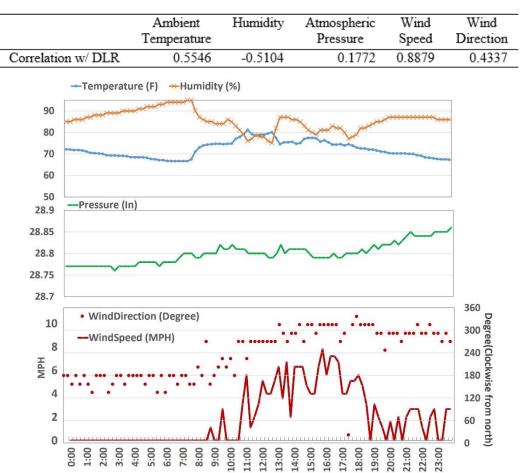
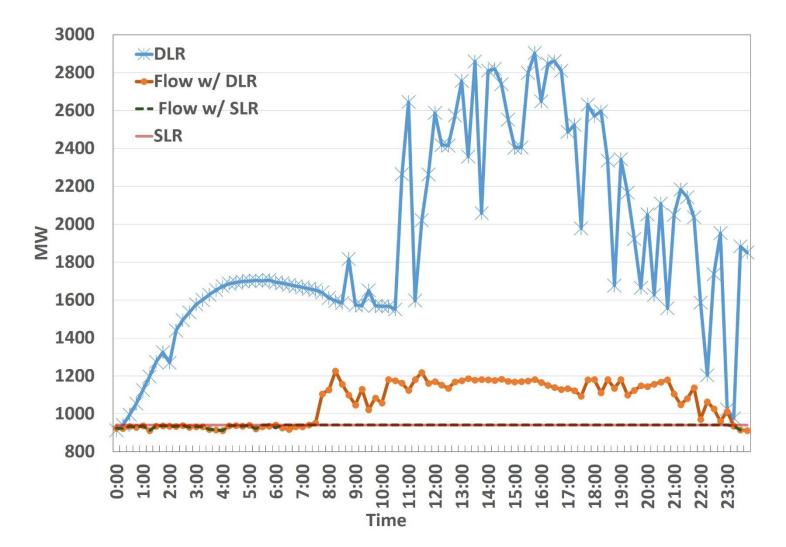
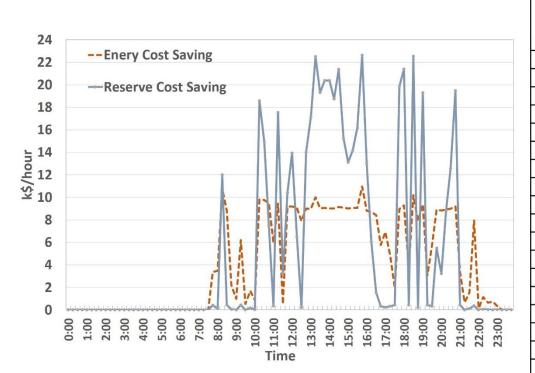



TABLE I CORRELATION COEFFICIENTS BETWEEN DLR AND WEATHER MEASUREMENTS


Numerical Examples (Cont'd)

Numerical Examples (Cont'd)

• Applied DLR to the RT-SCED process for a very large power system with more than 37,000 buses and 48,000 transmission lines.

	Solutions using			Solutions using		
	Static Line Rating			Dynamic Line Rating		
			Reserve			Reserve
	Energy	Reserve	Scarcity	Energy	Reserve	Scarcity
Time	Cost (\$)	Cost (\$)	Cost (\$)	Cost (\$)	Cost (\$)	Cost(\$)
0:00	553179	2031	0	553179	2031	0
1:00	480005	2078	0	480005	2078	0
2:00	446669	2136	0	446669	2136	0
3:00	404903	2210	0	404903	2210	0
4:00	381255	2252	0	381255	2252	0
5:00	406548	2220	0	406548	2220	0
6:00	461884	2117	0	461884	2117	0
7:00	609011	2073	0	608168	1968	0
8:00	832161	2036	3254	825842	1739	390
9:00	706032	1817	1727	703686	1654	1727
10:00	656503	1924	11805	649022	1745	1727
11:00	630146	2028	9449	623873	1863	1727
12:00	616593	1997	10273	607815	1874	1727
13:00	610286	1918	21583	601012	1934	1727
14:00	612961	1929	20654	603901	1924	1727
15:00	618795	1935	18218	609263	1905	1727
16:00	609657	2042	6780	601730	1869	1727
17:00	607506	2122	6692	601831	1874	1727
18:00	616534	2043	12731	608737	1899	1727
19:00	620616	2101	7889	613849	1881	1727
20:00	615093	1971	12635	606109	1881	1727
21:00	615558	1993	1727	612174	1759	1727
22:00	721318	1682	1584	720653	1665	1584
23:00	776200	1825	0	776116	1818	0

Conclusions

- DLR is incorporated into the real-time dispatch process of market system operations.
- A weather-based method is proposed to calculate the DLR using a deterministic approach and the calculated DLRs are applied to a large-scale power system.
- Simulation results indicated that tremendous savings could be achieved by better utilization of actual transmission capacity without compromising any system reliability.
- Consistent framework of DLR needs to be in place for both real-time market and day-ahead market in order to avoid price order reversal between the two markets.
- Incorporating DLR with a probabilistic model in the day-ahead market would be an interesting future topic of R&D.

Kwok W. Cheung kwok.cheung@ge.com