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Outline 

 Our background is in HPC optimization solvers 

– Targeting very large-scale optimization problems (billions of decisions variables and 
constraints)  

– Making the best use of the problem structure to parallelize optimization and 
computations 

 PIPS parallel solvers suite as the result of several years of development 

– Structured problems such as stochastic optimization  

– Security-constrained AC OPF has similar structure 

 

 StructJuMP is the front-end for problem specification, a.k.a. algebraic modelling 

– Easy-to-use yet fully parallel and HPC ready 
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Goal: provide a complete modeling+solving HPC framework for 
solving large-scale optimization problems. 



Block-angular optimization problems 
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Example: stochastic optimization problems 

Large instances with 1000s of scenarios could have billions of variables and 
constraints, requiring memory distributed parallel computing. 



Parallel optimization solvers 
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      Structured optimization problems result in structured linear systems 

 

PIPS suite of solvers for (continuous) structured optimization 
PIPS-IPM, PIPS-NLP (interior point), and PIPS-S (simplex) 
 
https://github.com/Argonne-National-Laboratory/PIPS/ 
  

https://github.com/Argonne-National-Laboratory/PIPS/
https://github.com/Argonne-National-Laboratory/PIPS/
https://github.com/Argonne-National-Laboratory/PIPS/
https://github.com/Argonne-National-Laboratory/PIPS/
https://github.com/Argonne-National-Laboratory/PIPS/


The matrix                                                     is the Schur-complement 
of the diagonal                         block.  

Schur complement decomposition of linear algebra 
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Block elimination    



Weak scaling efficiency – Titan @ Oak Ridge National Lab 

6 

Largest instance has 4.08 billion decision variables and 4.12 billion constraints. 
16K nodes (128K cores) used in the largest run. 



Strong scaling – Titan and “Piz Daint” (@ Swiss National 
Computing Center)  
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The instance used in the XK7 runs has 4.08 billion decision variables 
and 4.12 billion constraints. 
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Structure-exploiting solvers generally scale. 

 
                   
 
                     Does the modelling scale? 



Modelling structured optimization problems efficiently in 
parallel – a wish list  

 Algebraic modelling language/framework 

– easy-to-express syntax, similar to the mathematical abstractions 

– “high performance” 

• scalable and efficient models generation in parallel (data distributed and localized) 

• code speed – ideally C/Fortran speed 

• minimum I/O 

– transparently passes structure to the optimization solver, yet solver agnostic  

– quick development;  easy to specialize and/or extend  

– plug-and-play with optimization solvers (generally Fortran, C, C++ codes) 

 

 Existing modelling frameworks with parallel capabilities: SML (Grothey et al., 
2009), PySP (Watson et al, 2012), PSMG (Qiang and Grothey, 2014) 
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What is an algebraic modeling language (AML) for 
optimization? 

 Aimed at quickly specifying  the optimization problem by domain specialists with 
no knowledge about optimization algorithms/software and computing, and 
minimal programming skills. 

 Offers concise, mathematical-like syntax to allow closed-form (algebraic) 
expressions for constraints and objective 

 

 Separates the mathematical model from the input data 

 

 Automatic computations of  objective, constraints and their derivatives needed by 
the optimization solver 

 

 Solver-agnostic, can switch between different solver codes 

– achieved based on generic solver interface  

 

 Examples: Ampl, Gams, Xpress, etc.  
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JuMP – an Algebraic Modeling Language in Julia 

 Mathematically natural syntax for problem specification 

 

 

 

 

 

 

 

 

 Open source, C/C++ like performance 

 

 

 Allows using different optimization solvers (via MathProgBase.jl) and can be easily 
embedded in domain-specific applications 

 

 Developed by collaborators at MIT (Miles Lubin, Iain Dunning, Joey Huchette) 
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#maximize revenue subject to prescribed capacity 

m = Model(:Max)  

@variable(m, 0 <= x[1:N] <= 1)  

@objective(m, sum{profit[j] * x[j], j=1:N})  

@constraint(m, sum{weight[j]* x[j], j=1:N} <= C)  

 

solve(m) #solving using Ipopt 



Julia 

 Fresh approach for technical computing (http://julialang.org/) 

 User friendly and syntax is similar to Matlab 

– Dynamic language with interactive command-line Read-eval-print loop 

 C-like performance. 

– Just-In-Time compilation and generate native assembly code 

 Open source with a large and fast growing community behind 

 Runs on workstations, clusters, cloud and HPC platforms 

 

 JuMP performance 
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StructJuMP – Parallel AML for Structured Optimization 
Problems 

 Uses full syntax features from JuMP: 

– Eg. @variable, @constraint, @NLconstraint, etc. 

 Minimal additional syntax  

 

 Parallel model manipulation and function/derivatives evaluation using MPI 

 

 Targeted at block angular structures, both LP and NLP 

– Stochastic optimization is one such example 
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Availability 
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StructJuMP.jl: 
https://github.com/StructJuMP/StructJuMP.jl 

StructJuMPSolverInterface.jl:  
https://github.com/StructJuMP/StructJuMPSolverInterface.jl 

https://github.com/joehuchette/StructJuMP.jl
https://github.com/joehuchette/StructJuMP.jl
https://github.com/joehuchette/StructJuMP.jl
https://github.com/Argonne-National-Laboratory/StructJuMPSolverInterface.jl
https://github.com/Argonne-National-Laboratory/StructJuMPSolverInterface.jl
https://github.com/Argonne-National-Laboratory/StructJuMPSolverInterface.jl


SC-ACOPF Model – variables definitions 
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opfdata = opf_loaddata(casename)  

... 

opfmodel = StructuredModel(num_scenarios=nscen) 

… 

nbus = length(buses); nline = length(lines); ngen = length(generators); 

 

YffR,YffI,YttR,YttI,YftR,YftI,YtfR,YtfI,YshR,YshI = computeAdmitances(lines, 

buses, baseMVA)  

 

@variable(opfmodel, gens[i].Pmin <= Pg[i=1:ngen] <= gens[i].Pmax)  

@variable(opfmodel, -0.05*gen[i].Pmax <=extra[i=1:ngen]<=0.05*gen[i].Pmax)  

@variable(opfmodel, gens[i].Qmin <= Qg[i=1:ngen] <= gens[i].Qmax)  

@variable(opfmodel, buses[i].Vmin <= Vm[i=1:nbus] <= buses[i].Vmax)  

@variable(opfmodel,Va[1:nbus])  

#fix the voltage angle at the reference bus  

setlowerbound(Va[opfdata.bus_ref], buses[opfdata.bus_ref].Va)  

setupperbound(Va[opfdata.bus_ref], buses[opfdata.bus_ref].Va)  

#objective function  

@NLobjective(opfmodel, Min, (1/(nscen+1))*  

          sum{gens[i].coeff[gens[i].n-2]*(baseMVA*(Pg[i] + extra[i]))^2 

 +gens[i].coeff[gens[i].n-1]*(baseMVA*(Pg[i]+extra[i])) 

 +gens[i].coeff[gens[i].n ], i=1:ngen}) 

 # generator min and max output  
@constraint(opfmodel, mmo[i=1:ngen], gens[i].Pmin <= Pg[i]+extra[i] <= 

gens[i].Pmax)   

 



SC-ACOPF Model – power flow balance 
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# power flow balance  

for b in 1:nbus  

#real part 

@NLconstraint( opfmodel,  

   (sum{ YffR[l], l in FromLines[b]} + sum{ YttR[l], l in ToLines[b]} + YshR[b] )*Vm[b]^2  

   +sum{ Vm[b]*Vm[busIdx[lines[l].to]] *( YftR[l]*cos(Va[b]-Va[busIdx[lines[l].to]] )  

                 + YftI[l]*sin(Va[b]-Va[busIdx[lines[l].to]] )), l in FromLines[b] }  

   +sum{ Vm[b]*Vm[busIdx[lines[l].from]]*( YtfR[l]*cos(Va[b]-Va[busIdx[lines[l].from]])  

                 + YtfI[l]*sin(Va[b]-Va[busIdx[lines[l].from]])), l in ToLines[b] }  

   -(sum{baseMVA*(Pg[g]+extra[g]), g in BusGeners[b]} - buses[b].Pd ) / baseMVA 

   ==0) 

#imaginary part 

@NLconstraint( opfmodel,  

   (sum{-YffI[l], l in FromLines[b]} + sum{-YttI[l], l in ToLines[b]} - YshI[b] )*Vm[b]^2  

   +sum{ Vm[b]*Vm[busIdx[lines[l].to]] *(-YftI[l]*cos(Va[b]-Va[busIdx[lines[l].to]] )  

                 + YftR[l]*sin(Va[b]-Va[busIdx[lines[l].to]] )), l in FromLines[b] }  

   +sum{ Vm[b]*Vm[busIdx[lines[l].from]]*(-YtfI[l]*cos(Va[b]-Va[busIdx[lines[l].from]]) 

                 + YtfR[l]*sin(Va[b]-Va[busIdx[lines[l].from]])), l in ToLines[b] }  

   -(sum{baseMVA*Qg[g], g in BusGeners[b]} - buses[b].Qd ) / baseMVA  

   ==0)  

end  

 
 



SC-ACOPF Model – branch flow limits 
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# branch/lines flow limits  

nlinelim=0  

for l in 1:nline  

  if lines[l].rateA!=0 && lines[l].rateA<1.0e10  

   nlinelim += 1  

   flowmax=(lines[l].rateA/baseMVA)^2  

   Yff_abs2=YffR[l]^2+YffI[l]^2; Yft_abs2=YftR[l]^2+YftI[l]^2  

   Yre=YffR[l]*YftR[l]+YffI[l]*YftI[l]; Yim=-YffR[l]*YftI[l]+YffI[l]*YftR[l]  

   @NLconstraint(opfmodel,  

       Vm[busIdx[lines[l].from]]^2 *  

          (Yff_abs2*Vm[busIdx[lines[l].from]]^2 + Yft_abs2*Vm[busIdx[lines[l].to]]^2  

           +2*Vm[busIdx[lines[l].from]]*Vm[busIdx[lines[l].to]]* 

                ( Yre*cos(Va[busIdx[lines[l].from]]-Va[busIdx[lines[l].to]]) 

                 -Yim*sin(Va[busIdx[lines[l].from]]-Va[busIdx[lines[l].to]]))  

          )  

        - flowmax <=0) 

  

   Ytf_abs2=YtfR[l]^2+YtfI[l]^2;  

   Ytt_abs2=YttR[l]^2+YttI[l]^2 Yre=YtfR[l]*YttR[l]+YtfI[l]*YttI[l];  

   Yim=-YtfR[l]*YttI[l]+YtfI[l]*YttR[l]  

   @NLconstraint( opfmodel,  

       Vm[busIdx[lines[l].to]]^2 *  

           (Ytf_abs2*Vm[busIdx[lines[l].from]]^2 + Ytt_abs2*Vm[busIdx[lines[l].to]]^2  

            +2*Vm[busIdx[lines[l].from]]*Vm[busIdx[lines[l].to]]* 

                 ( Yre*cos(Va[busIdx[lines[l].from]]-Va[busIdx[lines[l].to]]) 

                  -Yim*sin(Va[busIdx[lines[l].from]]-Va[busIdx[lines[l].to]]))  

            )  

       - flowmax <=0)  

     end  

end 



SC-ACOPF Model – security constrained part 
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for cont_num in getLocalChildrenIds(opfmodel) 

  #set-up the system with on line off 

  opfdata_cont = scopf_loaddata(opfdata, sd.lines_off[cont_num])  

  ... 

  #compute second stage system parameters 

  ... 

  opfmodel_cont = StructuredModel(parent=opfmodel,id=cont_num)  

  #variables and constraints for the system with the line off 

  ...  

  #power flow constraints as on the previous slides  

  ... 

  #line limits constraints as on the previous slides 

  ... 

end 

 

 getLocalChildrenIds(opfmodel) returns a list of scenario ids assigned on the 
local MPI processes/rank 

 

 The SC-OPF model is a collection of AC-OPF (sub)models 



Parallel Computational Paradigm 

 Each process has a subset of scenarios ( ie. getLocalChildrenIds ) 

 Objective and constraints, derivatives are computed for the local scenarios only.  

– MPI-based implementation.  

 This matches solver distribution of the scenarios across nodes.  

 

 No parallel computing knowledge is needed from the user 

– Everything is implemented under the hood 

 Solving with PIPS-NLP in parallel 

– mpiexec –np 48 julia  scopf.jl  
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Model data 

  MatPower ACOPF test cases used as the base for the SC-ACOPF problems 

 

 

 Dataloader in Julia loads directly “.m” MatPower files 

– Other ACOPF formats  can also be supported. 

– No change of model is required 
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Generating SC-ACOPF problems 

 SC problems are setup for line contingencies and target N-1 SC-ACOPF 

 

 Can solve all the AC-OPF problems (including the 9,241-bus pegase system) 

 

 Difficult to find a list of contingencies for which Matpower systems are feasible 

 Even with a corrective formulation (allows for contingency-related redispatch) 

– References: Monticelli et al., Capitanescu et al.  

 None of the Matpower cases are feasible under N-1 line contingency 

 

 For the 300 bus system we found about 50 lines by trial-and-error for which the 
SC-ACOPF model remains feasible 
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Preliminary Results – 300-bus system with 48 
contingencies on up to 48 nodes on “Blues” cluster @ANL 
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#procs 

Model 
initiation 
(seconds) 

Structure 
building 

(seconds) 

Function & 
derivative 

evaluation 
(seconds) 

Total time 
(seconds) 

1 7.56 14.02 1002.90 1367.55 

2 6.44 7.26 468.77 770.80 

4 5.82 4.22 285.36 604.64 

8 5.65 2.65 136.76 407.40 

16 7.72 1.91 69.79 329.95 

24 8.48 1.58 51.21 315.53 

48 6.06 1.32 28.96 216.85 

300 buses, 411 lines, 69 generators 



Future work 

 Further code optimization 

 Support for linking constraints (already supported by PIPS) 

 

 Realistic, larger power systems  

 

 Support for dynamics (e.g., transient stability)  

– rapid and scalable specification of transient constraints  

– streamlined integration with state-of-the-art time integrators and 
optimization solvers 
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