
Modelling and solving SC-ACOPF in parallel

Cosmin G. Petra
Argonne National Laboratory

Joint work with

Feng Qiang (ANL), Joey Huchette (MIT), Miles Lubin (MIT),
Mihai Anitescu (ANL)

FERC Technical Conference on Increasing Market and Planning
Efficiency through Improved Software

June 28, 2016

Washington DC

Outline

 Our background is in HPC optimization solvers

– Targeting very large-scale optimization problems (billions of decisions variables and
constraints)

– Making the best use of the problem structure to parallelize optimization and
computations

 PIPS parallel solvers suite as the result of several years of development

– Structured problems such as stochastic optimization

– Security-constrained AC OPF has similar structure

 StructJuMP is the front-end for problem specification, a.k.a. algebraic modelling

– Easy-to-use yet fully parallel and HPC ready

2

Goal: provide a complete modeling+solving HPC framework for
solving large-scale optimization problems.

Block-angular optimization problems

3

Example: stochastic optimization problems

Large instances with 1000s of scenarios could have billions of variables and
constraints, requiring memory distributed parallel computing.

Parallel optimization solvers

4

 Structured optimization problems result in structured linear systems

PIPS suite of solvers for (continuous) structured optimization
PIPS-IPM, PIPS-NLP (interior point), and PIPS-S (simplex)

https://github.com/Argonne-National-Laboratory/PIPS/

https://github.com/Argonne-National-Laboratory/PIPS/
https://github.com/Argonne-National-Laboratory/PIPS/
https://github.com/Argonne-National-Laboratory/PIPS/
https://github.com/Argonne-National-Laboratory/PIPS/
https://github.com/Argonne-National-Laboratory/PIPS/

The matrix is the Schur-complement
of the diagonal block.

Schur complement decomposition of linear algebra

5

Block elimination

Weak scaling efficiency – Titan @ Oak Ridge National Lab

6

Largest instance has 4.08 billion decision variables and 4.12 billion constraints.
16K nodes (128K cores) used in the largest run.

Strong scaling – Titan and “Piz Daint” (@ Swiss National
Computing Center)

7

The instance used in the XK7 runs has 4.08 billion decision variables
and 4.12 billion constraints.

8

Structure-exploiting solvers generally scale.

 Does the modelling scale?

Modelling structured optimization problems efficiently in
parallel – a wish list

 Algebraic modelling language/framework

– easy-to-express syntax, similar to the mathematical abstractions

– “high performance”

• scalable and efficient models generation in parallel (data distributed and localized)

• code speed – ideally C/Fortran speed

• minimum I/O

– transparently passes structure to the optimization solver, yet solver agnostic

– quick development; easy to specialize and/or extend

– plug-and-play with optimization solvers (generally Fortran, C, C++ codes)

 Existing modelling frameworks with parallel capabilities: SML (Grothey et al.,
2009), PySP (Watson et al, 2012), PSMG (Qiang and Grothey, 2014)

9

What is an algebraic modeling language (AML) for
optimization?

 Aimed at quickly specifying the optimization problem by domain specialists with
no knowledge about optimization algorithms/software and computing, and
minimal programming skills.

 Offers concise, mathematical-like syntax to allow closed-form (algebraic)
expressions for constraints and objective

 Separates the mathematical model from the input data

 Automatic computations of objective, constraints and their derivatives needed by
the optimization solver

 Solver-agnostic, can switch between different solver codes

– achieved based on generic solver interface

 Examples: Ampl, Gams, Xpress, etc.

10

JuMP – an Algebraic Modeling Language in Julia

 Mathematically natural syntax for problem specification

 Open source, C/C++ like performance

 Allows using different optimization solvers (via MathProgBase.jl) and can be easily
embedded in domain-specific applications

 Developed by collaborators at MIT (Miles Lubin, Iain Dunning, Joey Huchette)
11

#maximize revenue subject to prescribed capacity

m = Model(:Max)

@variable(m, 0 <= x[1:N] <= 1)

@objective(m, sum{profit[j] * x[j], j=1:N})

@constraint(m, sum{weight[j]* x[j], j=1:N} <= C)

solve(m) #solving using Ipopt

Julia

 Fresh approach for technical computing (http://julialang.org/)

 User friendly and syntax is similar to Matlab

– Dynamic language with interactive command-line Read-eval-print loop

 C-like performance.

– Just-In-Time compilation and generate native assembly code

 Open source with a large and fast growing community behind

 Runs on workstations, clusters, cloud and HPC platforms

 JuMP performance

12

StructJuMP – Parallel AML for Structured Optimization
Problems

 Uses full syntax features from JuMP:

– Eg. @variable, @constraint, @NLconstraint, etc.

 Minimal additional syntax

 Parallel model manipulation and function/derivatives evaluation using MPI

 Targeted at block angular structures, both LP and NLP

– Stochastic optimization is one such example

13

Availability

14

StructJuMP.jl:
https://github.com/StructJuMP/StructJuMP.jl

StructJuMPSolverInterface.jl:
https://github.com/StructJuMP/StructJuMPSolverInterface.jl

https://github.com/joehuchette/StructJuMP.jl
https://github.com/joehuchette/StructJuMP.jl
https://github.com/joehuchette/StructJuMP.jl
https://github.com/Argonne-National-Laboratory/StructJuMPSolverInterface.jl
https://github.com/Argonne-National-Laboratory/StructJuMPSolverInterface.jl
https://github.com/Argonne-National-Laboratory/StructJuMPSolverInterface.jl

SC-ACOPF Model – variables definitions

15

opfdata = opf_loaddata(casename)

...

opfmodel = StructuredModel(num_scenarios=nscen)

…

nbus = length(buses); nline = length(lines); ngen = length(generators);

YffR,YffI,YttR,YttI,YftR,YftI,YtfR,YtfI,YshR,YshI = computeAdmitances(lines,

buses, baseMVA)

@variable(opfmodel, gens[i].Pmin <= Pg[i=1:ngen] <= gens[i].Pmax)

@variable(opfmodel, -0.05*gen[i].Pmax <=extra[i=1:ngen]<=0.05*gen[i].Pmax)

@variable(opfmodel, gens[i].Qmin <= Qg[i=1:ngen] <= gens[i].Qmax)

@variable(opfmodel, buses[i].Vmin <= Vm[i=1:nbus] <= buses[i].Vmax)

@variable(opfmodel,Va[1:nbus])

#fix the voltage angle at the reference bus

setlowerbound(Va[opfdata.bus_ref], buses[opfdata.bus_ref].Va)

setupperbound(Va[opfdata.bus_ref], buses[opfdata.bus_ref].Va)

#objective function

@NLobjective(opfmodel, Min, (1/(nscen+1))*

 sum{gens[i].coeff[gens[i].n-2]*(baseMVA*(Pg[i] + extra[i]))^2

 +gens[i].coeff[gens[i].n-1]*(baseMVA*(Pg[i]+extra[i]))

 +gens[i].coeff[gens[i].n], i=1:ngen})

 # generator min and max output
@constraint(opfmodel, mmo[i=1:ngen], gens[i].Pmin <= Pg[i]+extra[i] <=

gens[i].Pmax)

SC-ACOPF Model – power flow balance

16

power flow balance

for b in 1:nbus

#real part

@NLconstraint(opfmodel,

 (sum{ YffR[l], l in FromLines[b]} + sum{ YttR[l], l in ToLines[b]} + YshR[b])*Vm[b]^2

 +sum{ Vm[b]*Vm[busIdx[lines[l].to]] *(YftR[l]*cos(Va[b]-Va[busIdx[lines[l].to]])

 + YftI[l]*sin(Va[b]-Va[busIdx[lines[l].to]])), l in FromLines[b] }

 +sum{ Vm[b]*Vm[busIdx[lines[l].from]]*(YtfR[l]*cos(Va[b]-Va[busIdx[lines[l].from]])

 + YtfI[l]*sin(Va[b]-Va[busIdx[lines[l].from]])), l in ToLines[b] }

 -(sum{baseMVA*(Pg[g]+extra[g]), g in BusGeners[b]} - buses[b].Pd) / baseMVA

 ==0)

#imaginary part

@NLconstraint(opfmodel,

 (sum{-YffI[l], l in FromLines[b]} + sum{-YttI[l], l in ToLines[b]} - YshI[b])*Vm[b]^2

 +sum{ Vm[b]*Vm[busIdx[lines[l].to]] *(-YftI[l]*cos(Va[b]-Va[busIdx[lines[l].to]])

 + YftR[l]*sin(Va[b]-Va[busIdx[lines[l].to]])), l in FromLines[b] }

 +sum{ Vm[b]*Vm[busIdx[lines[l].from]]*(-YtfI[l]*cos(Va[b]-Va[busIdx[lines[l].from]])

 + YtfR[l]*sin(Va[b]-Va[busIdx[lines[l].from]])), l in ToLines[b] }

 -(sum{baseMVA*Qg[g], g in BusGeners[b]} - buses[b].Qd) / baseMVA

 ==0)

end

SC-ACOPF Model – branch flow limits

17

branch/lines flow limits

nlinelim=0

for l in 1:nline

 if lines[l].rateA!=0 && lines[l].rateA<1.0e10

 nlinelim += 1

 flowmax=(lines[l].rateA/baseMVA)^2

 Yff_abs2=YffR[l]^2+YffI[l]^2; Yft_abs2=YftR[l]^2+YftI[l]^2

 Yre=YffR[l]*YftR[l]+YffI[l]*YftI[l]; Yim=-YffR[l]*YftI[l]+YffI[l]*YftR[l]

 @NLconstraint(opfmodel,

 Vm[busIdx[lines[l].from]]^2 *

 (Yff_abs2*Vm[busIdx[lines[l].from]]^2 + Yft_abs2*Vm[busIdx[lines[l].to]]^2

 +2*Vm[busIdx[lines[l].from]]*Vm[busIdx[lines[l].to]]*

 (Yre*cos(Va[busIdx[lines[l].from]]-Va[busIdx[lines[l].to]])

 -Yim*sin(Va[busIdx[lines[l].from]]-Va[busIdx[lines[l].to]]))

)

 - flowmax <=0)

 Ytf_abs2=YtfR[l]^2+YtfI[l]^2;

 Ytt_abs2=YttR[l]^2+YttI[l]^2 Yre=YtfR[l]*YttR[l]+YtfI[l]*YttI[l];

 Yim=-YtfR[l]*YttI[l]+YtfI[l]*YttR[l]

 @NLconstraint(opfmodel,

 Vm[busIdx[lines[l].to]]^2 *

 (Ytf_abs2*Vm[busIdx[lines[l].from]]^2 + Ytt_abs2*Vm[busIdx[lines[l].to]]^2

 +2*Vm[busIdx[lines[l].from]]*Vm[busIdx[lines[l].to]]*

 (Yre*cos(Va[busIdx[lines[l].from]]-Va[busIdx[lines[l].to]])

 -Yim*sin(Va[busIdx[lines[l].from]]-Va[busIdx[lines[l].to]]))

)

 - flowmax <=0)

 end

end

SC-ACOPF Model – security constrained part

18

for cont_num in getLocalChildrenIds(opfmodel)

 #set-up the system with on line off

 opfdata_cont = scopf_loaddata(opfdata, sd.lines_off[cont_num])

 ...

 #compute second stage system parameters

 ...

 opfmodel_cont = StructuredModel(parent=opfmodel,id=cont_num)

 #variables and constraints for the system with the line off

 ...

 #power flow constraints as on the previous slides

 ...

 #line limits constraints as on the previous slides

 ...

end

 getLocalChildrenIds(opfmodel) returns a list of scenario ids assigned on the
local MPI processes/rank

 The SC-OPF model is a collection of AC-OPF (sub)models

Parallel Computational Paradigm

 Each process has a subset of scenarios (ie. getLocalChildrenIds)

 Objective and constraints, derivatives are computed for the local scenarios only.

– MPI-based implementation.

 This matches solver distribution of the scenarios across nodes.

 No parallel computing knowledge is needed from the user

– Everything is implemented under the hood

 Solving with PIPS-NLP in parallel

– mpiexec –np 48 julia scopf.jl

19

Model data

 MatPower ACOPF test cases used as the base for the SC-ACOPF problems

 Dataloader in Julia loads directly “.m” MatPower files

– Other ACOPF formats can also be supported.

– No change of model is required

20

Generating SC-ACOPF problems

 SC problems are setup for line contingencies and target N-1 SC-ACOPF

 Can solve all the AC-OPF problems (including the 9,241-bus pegase system)

 Difficult to find a list of contingencies for which Matpower systems are feasible

 Even with a corrective formulation (allows for contingency-related redispatch)

– References: Monticelli et al., Capitanescu et al.

 None of the Matpower cases are feasible under N-1 line contingency

 For the 300 bus system we found about 50 lines by trial-and-error for which the
SC-ACOPF model remains feasible

21

Preliminary Results – 300-bus system with 48
contingencies on up to 48 nodes on “Blues” cluster @ANL

22

#procs

Model
initiation
(seconds)

Structure
building

(seconds)

Function &
derivative

evaluation
(seconds)

Total time
(seconds)

1 7.56 14.02 1002.90 1367.55

2 6.44 7.26 468.77 770.80

4 5.82 4.22 285.36 604.64

8 5.65 2.65 136.76 407.40

16 7.72 1.91 69.79 329.95

24 8.48 1.58 51.21 315.53

48 6.06 1.32 28.96 216.85

300 buses, 411 lines, 69 generators

Future work

 Further code optimization

 Support for linking constraints (already supported by PIPS)

 Realistic, larger power systems

 Support for dynamics (e.g., transient stability)

– rapid and scalable specification of transient constraints

– streamlined integration with state-of-the-art time integrators and
optimization solvers

23

