Dual Pricing Algorithm in Non-Convex Electricity Markets

Robin Broder Hytowitz,^{1,2} Richard P. O'Neill,¹ Anya Castillo,³ and Brent Eldridge^{1,2}

¹Federal Energy Regulatory Commission, Washington, DC ²Johns Hopkins University, Baltimore, MD ³Sandia National Laboratories, Albuquerque, NM

The views expressed are not necessarily those of the Commission.

Outline

- Non-Convex Pricing & Cost Allocation
- Historical Examples
- Basic Formulation
 - Assumptions
 - Unit commitment
 - Dual Pricing Algorithm Constraints
- Sample Problems and Comparisons
 - Convex Hull
 - Extended LMP

Background

- Day-ahead markets aim to maximize surplus
 - Unit commitment model (MILP)
 - Contain continuous and binary bid functions
 - Startup and no load costs create non-convexities
- Generators are guaranteed non-negative profits
 - Not guaranteed by LMP

Background

- Pay generators uplift or make-whole payments
- Who pays for these additional uplift costs?
 - Generally spread across load
 - No clear criteria
 - Only 'roughly' allocated to beneficiaries

Literature

- Many proposals for non-convex pricing
 - LMP with uplift payments (O'Neill, Sotkiewicz, Hobbs, Rothkopf, Stewart)
 - Convex hull (Gribik, Hogan & Pope)
 - Extended LMP (Wang, Luh, Gribik, Zhang & Peng)
 - Modified LMP (Bjørndal & Jörnsten)
 - General uplift with zero-sum transfers (Motto & Galiana)
 - Semi-Lagrangean approach (Araoz & Jörnsten)
 - Primal-dual approach (Ruiz, Conejo, & Gabriel)
 - Review and internal zero-sum uplifts (Liberopoulos & Andrianesis)

Cost Allocation Principles

Maximize surplus

Assumes demand can bid their value

Non-confiscation

- Incent participants to stay in the market
- Generator profits ≥ 0
- Net demand value ≥ 0

Revenue neutrality

- For each market payments equal receipts
- Money out = money in

Incentivize efficient investments

 New resources such as consumption efficiency, generation or transmission lines

Outline

- Cost Allocation
- Historical Examples
- Basic Formulation
- Sample Problems and Comparisons

Historical Example: Canal Units

- Canal Units on Cape Cod run daily due to long startup times and regional specifications
- Units support customers on Cape Cod
 - Without that demand, they would not be needed
- Uplift broadly allocated including Lower Southeastern Massachusetts (SEMA)
 - SEMA does not benefit
 - Costs should have been allocated primarily to Cape Cod to find a cheaper alternative much sooner

Source: http://www.iso-ne.com/markets-operations/market-performance/load-costs

Historical Example: Upper Peninsula

- Presque Isle Power Plant mainly powers the Upper Peninsula (UP)
 - Generates 90% of power in UP, 12% in Wisconsin Energy system
 - Sells 50% to Empire and Tilden mines
- Used for reliability in UP
 - Costs allocated to all LSEs in Wisconsin and UP on a pro rata basis
 - FERC found this unjust and unreasonable

Outline

- Cost Allocation
- Historical Examples
- Basic Formulation
- Sample Problems and Comparisons

Assumptions

- Demand is not infinitely valued
- Penalties will be imposed for deviating from optimal dispatch
 - Others suggest paying lost opportunity costs, which can be revenue inadequate
- Linear constraints will not significantly change this analysis and are omitted
 - Transmission
 - Reserves
 - Reliability

Unit Commitment Market Model

$$\max \sum_{i \in D} b_i d_i - \sum_{i \in G} (c_i p_i + c_i^{SU} z_i)$$

$$\sum_{i \in D} d_i - \sum_{i \in G} p_i = 0$$

$$p_i^{\min} z_i \leq p_i \leq p_i^{\max} z_i \qquad \forall i \in G$$

$$0 \leq d_i \leq d_i^{\max} \qquad \forall i \in D$$

$$z_i \in \{0,1\} \qquad \forall i \in G$$

Market surplus Market clearing Generation bounds Demand bounds Commitment

Decision variables

- p_i Cleared energy
- d_i Cleared demand
- z_i Startup commitment

Post-UC Pricing Model

$$\begin{array}{ll} \max \ \sum_{i \in D} b_i d_i - \sum_{i \in G} \left(c_i p_i + c_i^{\mathrm{SU}} z_i \right) & \text{Market surplus} \\ \sum_{i \in D} d_i - \sum_{i \in G} p_i = 0 & \lambda & \text{Market clearing} \\ p_i^{\min} z_i \leq p_i \leq p_i^{\max} z_i & \forall i \in G & \beta_i^{\max}, \beta_i^{\min} & \text{Generation} \\ 0 \leq d_i \leq d_i^{\max} & \forall i \in D & \alpha_i^{\max} & \text{Demand bounds} \\ z_i = z_i^* & \forall i \in G & \delta_i & \text{Fix optimal} \\ \text{schedule} \end{array}$$

Decision variables

- p_i Cleared energy
- d_i Cleared demand
- z_i Startup commitment

Dual Model

$$\begin{array}{ll} \min \ \sum_{i \in D} d_i^{\max} \alpha_i^{\max} + \sum_{i \in G} z_i^* \delta_i & \text{Resource valuation} \\ \lambda + \alpha_i^{\max} \ge b_i & \forall i \in D & d_i & \text{Value condition} \\ -\lambda + \beta_i^{\max} - \beta_i^{\min} \ge -c_i & \forall i \in G & p_i & \text{Profit condition} \\ \delta_i - p_i^{\max} \beta_i^{\max} + p_i^{\min} \beta_i^{\min} = -c_i^{\text{SU}} & \forall i \in G & v_i & \text{Startup economics} \\ \alpha_i^{\max}, \beta_i^{\max}, \beta_i^{\min} \ge 0 & \forall i \in D \cup G & \text{Non-negativity} \end{array}$$

New Variables

- λ^{DPA} : new LMP
- u_i^p , u_i^{pd} : make-whole payment
- u_i^c , u_i^{cd} : make-whole charge

Objective

- Minimize uplift payments
 - min $\sum_{i \in D^+} d_i^* u_i^{pd} + \sum_{i \in G^+} p_i^* u_i^p$
 - Uplift payments from demand and generation

Market Surplus

- Maintain optimal market surplus
 - $\sum_{i\in D} \Psi_i + \sum_{i\in G} \Pi_i = MS^*$
 - Use optimal dispatch, making it a redundant constraint

Maximize market surplus

Profit Definition

• From complementary slackness of the generation bounds and the profit condition, combining with the startup economics, we calculate the linear surplus of generator *i*

•
$$\delta_i = p_i^* (\lambda - c_i) - c_i^{SU}$$

- dispatch*(LMP marginal cost) startup cost
- To ensure non-confiscation, the linear surplus and uplift payments must be non-negative

•
$$\Pi_i = \delta_i + p_i^* \left(u_i^p - u_i^c \right) \ge 0$$

Value Definition

• From complementary slackness of the value condition, and non-negativity of variables, demand *i*

•
$$d_i^*(b_i - \lambda) = d_i^* \alpha_i^{max*} \ge 0$$

• To ensure non-confiscation, the value and uplift payments must be non-negative

•
$$\Psi_i = d_i^* \alpha_i^{max*} + d_i^* \left(u_i^p - u_i^c \right) \ge 0$$

Non-confiscation

Additional constraints

• Revenue neutrality

•
$$\sum_{i\in D^+} d_i^* \left(u_i^{\mathrm{pd}} - u_i^{\mathrm{cd}} \right) + \sum_{i\in G^+} p_i^* \left(u_i^{\mathrm{p}} - u_i^{\mathrm{c}} \right) = 0$$

- Non-recourse of demand not selected
 - $\lambda^{\text{DPA}} \geq b_i$
 - Value of new LMP not entice out-of-market demand to consume

Revenue neutrality

Formulation: Dual Pricing Algorithm

Properties of the DPA

- Non-confiscation
- Revenue neutral (and adequate)
- Feasible solution with optimal feasible UC
- Does not change optimal dispatch solution
- Easy to implement in present ISO software
- Problem is linear computationally efficient
- Solution is non-unique
 - Can be conditioned depending on operator preference

Non-Unique Prices

- Conditioning
 - Allows the market operator to adjust LMP based on regional policies
- Example: tie new LMP to LMP from dispatch run

• New constraint:
$$\frac{(\lambda^{DPA} - \lambda^*)}{\lambda^*} - \lambda^{up} + \lambda^{dn} = 0$$

• New Objective:

$$\min \sum_{i \in D} d_i^* u_i^{pd} + \sum_{i \in G} p_i^* u_i^p + c^{up} \lambda^{up} + c^{dn} \lambda^{dn}$$

Outline

- Cost Allocation
- Historical Examples
- Basic Formulation
- Sample Problems and Comparisons

Resulting UC Solution

Results of DPA

λ^{DPA}		Make w	Make whole payment		Unallocated make whole payment		
65.56		76.67			0		
Gen	Marg. Cost	u ^p	uc				
Α	40	0	0		u_i^p	Make whole	
В	60	0	0		u_i^c	Make whole	
Buyer	Value	u ^p	uc		λ^{DPA}	charge New LMP	
1	100	0	0.767				
2	63	2.556	0				

Results of DPA

		Post-UC	Value (\$)	Value under DPA (\$)		
LMF	γ (λ)	6	0	65.56		
		Unit (\$/MWh)	Total	Unit (\$/MWh)	Total	
Profit	Gen A	20	300	25.56 (+28%)	522.22 (+74%)	
, iont	Gen B	0	-500	5.56	0	

Comparison to Convex Hull

- Convex hull formulation finds a uniform price that minimizes side payments
 - Not all side payments minimized
 - Not well understood
- Formulation based on [1]

[1] D.A. Schiro, T. Zheng, F. Zhao, and E. Litvinov, "Convex Hull Pricing in Electricity Markets: Formulation, Analysis, and Implementation Challenges," ISO-NE. [Online] Available: http://www.optimizationonline.org/DB_FILE/2015/03/4830.pdf

Resulting CH Solution

Results Comparison

		Original Value		Value ur	nder DPA	Value under Convex Hull	
LMP λ (\$/MWh)		60		65.56		62.50	
		Unit (\$/MWh)	Total	Unit (\$/MWh)	Total	Unit (\$/MWh)	Total
Profit	Gen A (\$40/MWh)	20 (-)	300 (-)	25.56 (+28%)	522.22 (+74%)	22.50 (+13%)	400 (+33%)
	Gen B (\$60/MWh)	0	-500	5.56	0	2.50	-275
Value	Buyer 1 (\$100/MWh)	40 (-)	4000 (-)	33.678 (-19%)	3367 (-19%)	37.50 (-6%)	3750 (-6%)
	Buyer 2 (\$63/MWh)	3	90	0	0	0.50	15

ELMP Pricing Run

- ELMP determined after the dispatch run
- Relaxes the commitment variables
 - $0 \le z_i \le 1$
- Uses incremental costs instead of marginal costs
 - $IncCost_i = Mc_i + (Su_i^{cost} / dispatch_i)$

Price Comparison

	Price
Post-UC	60
DPA	65.56
Convex Hull	62.50
ELMP	68.056

- ELMP is above the bid for demand 2
- Gens A&B are dispatched to meet demand 1
- With inelastic demand, not problematic

Conclusions

- Cost allocation can be problematic if costs are spread across all load
- DPA is
 - Easy to implement
 - Linear and computationally efficient
 - Revenue neutral
 - Non-confiscatory
 - Does not change optimal solution
 - Performs well against other formulations
- Additional simulations and extensions (multi-period, multinode) can further explore dual pricing

Thank you!

Questions?

robin.hytowitz@ferc.gov

Revenue Adequacy and LOCs

Market surplus = \$200

Gen	Marginal Cost (\$/MWh)	Start Up Cost	Linear Profit (\$)	Dispatch (MWh)	Max Capacity (MW)	Total Cost (\$)		
А	30	900	1100	0	200	0		
В	40	100	-100	60	200	2500		
LMP = \$40/MWh Uplift = -\$100 Avg. socialized uplift = -\$1.67/MWh								
Buyer	Value (\$/MWh)	Load (MWh)	Max demand (MW)	Marginal Value (\$/MWh)	Total Value (\$)	Gross Value (\$)		
	45 60							

200 MWh(\$40/MWh-\$30/MWh)-\$900 = \$1100 = LOC > MS = \$206