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Outline 
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– Dual Pricing Algorithm Constraints  
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Background 
• Day-ahead markets aim to maximize surplus  

– Unit commitment model (MILP) 
– Contain continuous and binary bid functions 
– Startup and no load costs create non-convexities  

• Generators are guaranteed non-negative 
profits 
– Not guaranteed by LMP 
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Background 
• Pay generators uplift or make-whole 

payments  
• Who pays for these additional uplift costs? 

– Generally spread across load  
– No clear criteria 
– Only ‘roughly’ allocated to beneficiaries  
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Literature 
• Many proposals for non-convex pricing 

– LMP with uplift payments (O’Neill, Sotkiewicz, Hobbs, Rothkopf, Stewart) 
– Convex hull (Gribik, Hogan & Pope) 
– Extended LMP (Wang, Luh, Gribik, Zhang & Peng) 
– Modified LMP (Bjørndal & Jörnsten) 
– General uplift with zero-sum transfers (Motto & Galiana)  
– Semi-Lagrangean approach (Araoz & Jörnsten) 
– Primal-dual approach (Ruiz, Conejo, & Gabriel) 
– Review and internal zero-sum uplifts (Liberopoulos & Andrianesis) 
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Cost Allocation Principles  

Revenue neutrality 
• For each market 

payments equal receipts 
• Money out = money in  

Maximize surplus 
• Assumes demand can bid their value 

Non-confiscation 
• Incent participants to 

stay in the market 
• Generator profits   ≥ 0 
• Net demand value ≥ 0 

 Incentivize efficient 
investments 

• New resources such as 
consumption efficiency, 
generation or transmission 
lines 
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Outline 
• Cost Allocation  
• Historical Examples 
• Basic Formulation 
• Sample Problems and Comparisons 
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Historical Example: Canal Units 
• Canal Units on Cape Cod run daily due to long startup 

times and regional specifications  
• Units support customers on Cape Cod 

– Without that demand, they would not be needed 
• Uplift broadly allocated including Lower Southeastern 

Massachusetts (SEMA) 

Source: http://www.iso-ne.com/markets-operations/market-performance/load-costs 

− SEMA does not benefit 
− Costs should have been allocated 

primarily to Cape Cod to find a 
cheaper alternative much sooner 
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Historical Example: Upper Peninsula 
• Presque Isle Power Plant mainly powers the Upper 

Peninsula (UP) 
– Generates 90% of power in UP, 12% in Wisconsin Energy 

system 
– Sells 50% to Empire and Tilden mines  

• Used for reliability in UP  
– Costs allocated to all LSEs  
    in Wisconsin and UP on a pro 
    rata basis  
– FERC found this unjust 
   and unreasonable 

Source: Phizzy 
https://commons.wikimedia.org/wiki/File:MichiganUpperPeninsula.svg 
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Outline 
• Cost Allocation  
• Historical Examples 
• Basic Formulation 
• Sample Problems and Comparisons 
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Assumptions 
• Demand is not infinitely valued 
• Penalties will be imposed for deviating from optimal 

dispatch 
– Others suggest paying lost opportunity costs, which can be 

revenue inadequate 
• Linear constraints will not significantly change this 

analysis and are omitted  
– Transmission 
– Reserves 
– Reliability   
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Unit Commitment Market Model 

i

i

i

z
d
p Cleared energy 

Cleared demand  
Startup commitment  12 

Decision variables 

max   ∑ 𝑏𝑏𝑖𝑖𝑑𝑑𝑖𝑖 − ∑ 𝑐𝑐𝑖𝑖𝑝𝑝𝑖𝑖 + 𝑐𝑐𝑖𝑖SU𝑧𝑧𝑖𝑖𝑖𝑖∈𝐺𝐺𝑖𝑖∈𝐷𝐷     Market surplus 

∑ 𝑑𝑑𝑖𝑖 − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖∈𝐺𝐺𝑖𝑖∈𝐷𝐷 = 0    Market clearing  

𝑝𝑝𝑖𝑖min𝑧𝑧𝑖𝑖 ≤ 𝑝𝑝𝑖𝑖 ≤ 𝑝𝑝𝑖𝑖max𝑧𝑧𝑖𝑖 ∀𝑖𝑖 ∈ 𝐺𝐺 Generation 
bounds  

0 ≤ 𝑑𝑑𝑖𝑖 ≤ 𝑑𝑑𝑖𝑖max ∀𝑖𝑖 ∈ 𝐷𝐷 Demand bounds 

𝑧𝑧𝑖𝑖 ∈ {0,1} ∀𝑖𝑖 ∈ 𝐺𝐺 Commitment 



Post-UC Pricing Model 

i

i

i

z
d
p Cleared energy 

Cleared demand  
Startup commitment  13 

Decision variables 

max   ∑ 𝑏𝑏𝑖𝑖𝑑𝑑𝑖𝑖 − ∑ 𝑐𝑐𝑖𝑖𝑝𝑝𝑖𝑖 + 𝑐𝑐𝑖𝑖SU𝑧𝑧𝑖𝑖𝑖𝑖∈𝐺𝐺𝑖𝑖∈𝐷𝐷     Market surplus 

∑ 𝑑𝑑𝑖𝑖 − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖∈𝐺𝐺𝑖𝑖∈𝐷𝐷 = 0    𝜆𝜆 Market clearing  

𝑝𝑝𝑖𝑖min𝑧𝑧𝑖𝑖 ≤ 𝑝𝑝𝑖𝑖 ≤ 𝑝𝑝𝑖𝑖max𝑧𝑧𝑖𝑖 ∀𝑖𝑖 ∈ 𝐺𝐺 𝛽𝛽𝑖𝑖max,𝛽𝛽𝑖𝑖min Generation 
bounds  

0 ≤ 𝑑𝑑𝑖𝑖 ≤ 𝑑𝑑𝑖𝑖max ∀𝑖𝑖 ∈ 𝐷𝐷 𝛼𝛼𝑖𝑖max Demand bounds 

𝑧𝑧𝑖𝑖 = 𝑧𝑧𝑖𝑖∗ ∀𝑖𝑖 ∈ 𝐺𝐺 𝛿𝛿𝑖𝑖 Fix optimal 
schedule 



Dual Model 
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min   ∑ 𝑑𝑑𝑖𝑖max𝛼𝛼𝑖𝑖max + ∑ 𝑧𝑧𝑖𝑖∗𝛿𝛿𝑖𝑖𝑖𝑖∈𝐺𝐺𝑖𝑖∈𝐷𝐷     Resource valuation 

𝜆𝜆 + 𝛼𝛼𝑖𝑖max ≥ 𝑏𝑏𝑖𝑖  ∀𝑖𝑖 ∈ 𝐷𝐷 𝑑𝑑𝑖𝑖 Value condition 

−𝜆𝜆 + 𝛽𝛽𝑖𝑖max − 𝛽𝛽𝑖𝑖min ≥ −𝑐𝑐𝑖𝑖 ∀𝑖𝑖 ∈ 𝐺𝐺 𝑝𝑝𝑖𝑖 Profit condition 

𝛿𝛿𝑖𝑖 − 𝑝𝑝𝑖𝑖max𝛽𝛽𝑖𝑖max + 𝑝𝑝𝑖𝑖min𝛽𝛽𝑖𝑖min = −𝑐𝑐𝑖𝑖SU ∀𝑖𝑖 ∈ 𝐺𝐺 𝑣𝑣𝑖𝑖 Startup economics 

𝛼𝛼𝑖𝑖max,𝛽𝛽𝑖𝑖max,𝛽𝛽𝑖𝑖min ≥ 0 ∀𝑖𝑖 ∈ 𝐷𝐷U𝐺𝐺   Non-negativity 



New Variables 

• 𝜆𝜆DPA    : new LMP 
• 𝑢𝑢𝑖𝑖

𝑝𝑝,𝑢𝑢𝑖𝑖
𝑝𝑝𝑑𝑑: make-whole payment 

• 𝑢𝑢𝑖𝑖𝑐𝑐 ,𝑢𝑢𝑖𝑖𝑐𝑐𝑐𝑐 : make−whole charge 
 

– Allocated by resource  
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Objective 
• Minimize uplift payments  

• min∑ 𝑑𝑑𝑖𝑖∗𝑢𝑢𝑖𝑖
pd

𝑖𝑖∈𝐷𝐷+ + ∑ 𝑝𝑝𝑖𝑖∗𝑖𝑖∈𝐺𝐺+ 𝑢𝑢𝑖𝑖
p 

• Uplift payments from demand and generation 
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Market Surplus 
• Maintain optimal market surplus 

• ∑ Ψ𝑖𝑖𝑖𝑖∈𝐷𝐷 + ∑ Π𝑖𝑖𝑖𝑖∈𝐺𝐺 = 𝑀𝑀𝑆𝑆∗ 
• Use optimal dispatch, making it a redundant 

constraint 

17 

Maximize market 
surplus 



Profit Definition 
• From complementary slackness of the generation 

bounds and the profit condition, combining with the 
startup economics, we calculate the linear surplus of 
generator i 
• 𝛿𝛿𝑖𝑖 = 𝑝𝑝𝑖𝑖∗ 𝜆𝜆 − 𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑆𝑆𝑆𝑆 
•       dispatch*(LMP – marginal cost) – startup cost 

• To ensure non-confiscation, the linear surplus and uplift 
payments must be non-negative 
• Π𝑖𝑖 = 𝛿𝛿𝑖𝑖 + 𝑝𝑝𝑖𝑖∗ 𝑢𝑢𝑖𝑖

𝑝𝑝 − 𝑢𝑢𝑖𝑖𝑐𝑐 ≥ 0 
 18 
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Value Definition 
• From complementary slackness of the value 

condition, and non-negativity of variables, demand  i 
• 𝑑𝑑𝑖𝑖∗ 𝑏𝑏𝑖𝑖 − 𝜆𝜆 = 𝑑𝑑𝑖𝑖∗𝛼𝛼𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚∗ ≥ 0 

• To ensure non-confiscation, the value and uplift 
payments must be non-negative 

• Ψ𝑖𝑖 = 𝑑𝑑𝑖𝑖∗𝛼𝛼𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚∗ + 𝑑𝑑𝑖𝑖∗ 𝑢𝑢𝑖𝑖
𝑝𝑝 − 𝑢𝑢𝑖𝑖𝑐𝑐 ≥ 0 
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Additional constraints 
• Revenue neutrality  

• ∑ 𝑑𝑑𝑖𝑖∗ 𝑢𝑢𝑖𝑖
pd − 𝑢𝑢𝑖𝑖cd𝑖𝑖∈𝐷𝐷+ + ∑ 𝑝𝑝𝑖𝑖∗𝑖𝑖∈𝐺𝐺+ 𝑢𝑢𝑖𝑖

p − 𝑢𝑢𝑖𝑖c = 0 

• Non-recourse of demand not selected 
• 𝜆𝜆DPA ≥ 𝑏𝑏𝑖𝑖 
• Value of new LMP not entice out-of-market 

demand to consume  

20 

Revenue neutrality 



Formulation: Dual Pricing Algorithm 
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min∑ 𝑑𝑑𝑖𝑖∗𝑢𝑢𝑖𝑖
pd

𝑖𝑖∈𝐷𝐷 + ∑ 𝑝𝑝𝑖𝑖∗𝑖𝑖∈𝐺𝐺 𝑢𝑢𝑖𝑖
p  Uplift 

minimization 

∑ 𝑑𝑑𝑖𝑖∗ 𝑢𝑢𝑖𝑖
pd − 𝑢𝑢𝑖𝑖cd𝑖𝑖∈𝐷𝐷 + ∑ 𝑝𝑝𝑖𝑖∗𝑖𝑖∈𝐺𝐺 𝑢𝑢𝑖𝑖

p − 𝑢𝑢𝑖𝑖c = 0  
  

Uplift revenue 
neutrality 

Ψ𝑖𝑖 = 𝑑𝑑𝑖𝑖∗ 𝑏𝑏𝑖𝑖 − 𝜆𝜆DPA + 𝑢𝑢𝑖𝑖
pd − 𝑢𝑢𝑖𝑖cd  ∀𝑖𝑖 ∈ 𝐷𝐷+ Value definition 

Π𝑖𝑖 = 𝑝𝑝𝑖𝑖∗ 𝜆𝜆DPA − 𝑐𝑐𝑖𝑖 + 𝑢𝑢𝑖𝑖
p − 𝑢𝑢𝑖𝑖c − 𝑐𝑐𝑖𝑖SU ∀𝑖𝑖 ∈ 𝐺𝐺+ Profit definition 

𝜆𝜆DPA ≥ 𝑏𝑏𝑖𝑖 ∀𝑖𝑖 ∈ 𝐷𝐷0 Non-recourse 
condition 

Ψ𝑖𝑖 ,Π𝑖𝑖 ≥ 0 ∀𝑖𝑖 ∈ 𝐷𝐷+U𝐺𝐺+ Value 
conditions 

𝑢𝑢𝑖𝑖
p,𝑢𝑢𝑖𝑖c,𝑢𝑢𝑖𝑖

pd,𝑢𝑢𝑖𝑖cd ≥ 0 ∀𝑖𝑖 ∈ 𝐷𝐷+U𝐺𝐺+ Non-negativity 



Properties of the DPA 
• Non-confiscation 
• Revenue neutral (and adequate) 
• Feasible solution with optimal feasible UC 
• Does not change optimal dispatch solution 
• Easy to implement in present ISO software 
• Problem is linear – computationally efficient  
• Solution is non-unique 

– Can be conditioned depending on operator preference  
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Non-Unique Prices 
• Conditioning 

• Allows the market operator to adjust LMP based on 
regional policies 

• Example: tie new LMP to LMP from dispatch run 

• New constraint: 𝜆𝜆
DPA−𝜆𝜆∗

𝜆𝜆∗
− 𝜆𝜆up + 𝜆𝜆dn = 0 

• New Objective:  
min� 𝑑𝑑𝑖𝑖∗𝑢𝑢𝑖𝑖

pd

𝑖𝑖∈𝐷𝐷
+ � 𝑝𝑝𝑖𝑖∗

𝑖𝑖∈𝐺𝐺
𝑢𝑢𝑖𝑖
p + 𝑐𝑐up𝜆𝜆up + 𝑐𝑐dn𝜆𝜆dn 
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Outline 
• Cost Allocation  
• Historical Examples 
• Basic Formulation 
• Sample Problems and Comparisons 
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Example: Single node, single period 

A B 

100 $/MWh 
[0,100] MW 

63 $/MWh 
[0,30] MW 

40 $/MWh 
500 $/start 
[0,40] MW 

60 $/MWh 
500 $/start 

[10,200] 
MW 

1 2 
25 



Resulting UC Solution 

A B 

100 $/MWh 
100 MW 

63 $/MWh 
30 MW 

40 $/MWh 
500 $/start 

40 MW 

60 $/MWh 
500 $/start 

90 MW 

60 
$/M
Wh 

Market surplus = $3830  

Gen Margin  
($/MWh) 

Profit 
($) 

A 20 300 
B 0 -500 

Buye
r 

Margin 
($/MWh) 

Net 
Value 

($) 
1 40 4000 
2 3 90 

1 2 

Price = $60/MWh       
Uplift = $500         

Avg. socialized uplift = $3.85/MWh 
Payment = 63.85 $/MWh 26 



Results of DPA 

Gen 
Marg. 
Cost up uc 

A 40 0 0 

B 60 0 0 

Buyer Value up uc 

1 100 0 0.767 

2 63 2.556 0 

λDPA Make whole payment Unallocated make whole 
payment 

65.56 76.67 0 

p
iu Make whole  

payment 
Make whole  
charge 
New LMP DPAλ

c
iu
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Results of DPA 

Post-UC Value ($) Value under DPA ($) 

LMP (λ) 60 65.56 

Unit ($/MWh) Total Unit ($/MWh) Total 

Profit 
Gen A 20 300 25.56 

(+28%) 
522.22 (+74%) 

Gen B 0 -500 5.56 0 

Value  
Buyer 1 40 4000 33.678 

(-19%) 
3367  
(-19%) 

Buyer 2 3 90 0 0 
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Comparison to Convex Hull 
• Convex hull formulation finds a uniform price that 

minimizes side payments 
– Not all side payments minimized 
– Not well understood  

• Formulation based on [1] 

[1] D.A. Schiro, T. Zheng, F. Zhao, and E. Litvinov, “Convex Hull Pricing in Electricity Markets: Formulation, 
Analysis, and Implementation Challenges,” ISO-NE. [Online] Available: http://www.optimization-
online.org/DB_FILE/2015/03/4830.pdf 29 



Resulting CH Solution 

A B 

100 $/MWh 
100 MW 

63 $/MWh 
30 MW 

40 $/MWh 
500 $/start 

40 MW 

60 $/MWh 
500 $/start 

90 MW 

62.5 
$/MWh 

Market surplus = $4165  

Gen Margin  
($/MWh) 

Profit 
($) 

A 20 400 
B 0 -275 

Buye
r 

Margin 
($/MWh) 

Net 
Value 

($) 
1 40 3750 
2 3 15 

1 2 

Price = $62.50/MWh       
Uplift = $275 

Avg. socialized uplift = $2.12/MWh 
Payment = 64.62 $/MWh 30 



Results Comparison 

Original Value Value under DPA Value under Convex Hull 

LMP λ ($/MWh) 60 65.56 62.50 

Unit 
($/MWh) Total Unit 

($/MWh) Total Unit 
($/MWh) Total 

Profit 

Gen A 
($40/MWh) 

20 
(-) 

300 
(-) 

25.56 
(+28%) 

522.22 
(+74%) 

22.50 
(+13%) 

400 
(+33%) 

Gen B 
($60/MWh) 0 -500 5.56 0 2.50 -275 

Value  

Buyer 1 
($100/MWh) 

40 
(-) 

4000 
(-) 

33.678 
(-19%) 

3367  
(-19%) 

37.50 
(-6%) 

3750 
(-6%) 

Buyer 2 
($63/MWh) 3 90 0 0 0.50 15 
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ELMP Pricing Run 
• ELMP determined after the dispatch run 
• Relaxes the commitment variables 

–   0≤ zi ≤ 1 
• Uses incremental costs instead of marginal 

costs 
– IncCosti = Mci + (Sui

cost  / dispatchi) 
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Price Comparison 

• ELMP is above the bid 
for demand 2 

• Gens A&B are 
dispatched to meet 
demand 1 

• With inelastic 
demand, not 
problematic  

Price 

Post-UC 60 

DPA 65.56 

Convex Hull 62.50 

ELMP 68.056 

33 



Conclusions 
• Cost allocation can be problematic if costs are spread across 

all load 
• DPA is  

– Easy to implement 
– Linear and computationally efficient  
– Revenue neutral 
– Non-confiscatory  
– Does not change optimal solution 
– Performs well against other formulations  

• Additional simulations and extensions (multi-period, multi-
node) can further explore dual pricing  
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Thank you! 
 

Questions? 
 

robin.hytowitz@ferc.gov 
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Revenue Adequacy and LOCs 
Market surplus = $200  

Gen 
Marginal 

Cost  
($/MWh) 

Start Up 
Cost 

Linear Profit 
($) 

Dispatch 
(MWh) 

Max Capacity 
(MW) 

Total Cost 
($) 

A 30 900 1100 0 200 0 
B 40 100 -100 60 200 2500 

LMP = $40/MWh       Uplift = -$100        Avg. socialized uplift = -$1.67/MWh 

Buyer Value 
($/MWh) 

Load 
(MWh) 

Max demand 
(MW) 

Marginal 
Value 

($/MWh) 

Total Value 
($) 

Gross Value 
($) 

1 45 60 60 5 300 2700 

200 MWh($40/MWh-$30/MWh)-$900 = $1100 = LOC > MS = $200 36 
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