

Incentive Compatible Pricing Mechanisms for Meeting Expected Ramp Capability in Real-time Markets

Erik Ela eela@epri.com

FERC Software Conference

June 28, 2016

Agenda

- Current Ramp Product Design Overview
- Considerations of Ramp Product Need
- Numerical Examples
- New Market Designs
- Summary and Conclusions

CORRESPONDENCE

Industry Relevance

- Reserving flexible capacity for use in real time
- Reduce price spikes

Ramp Product & Look Ahead Dispatch

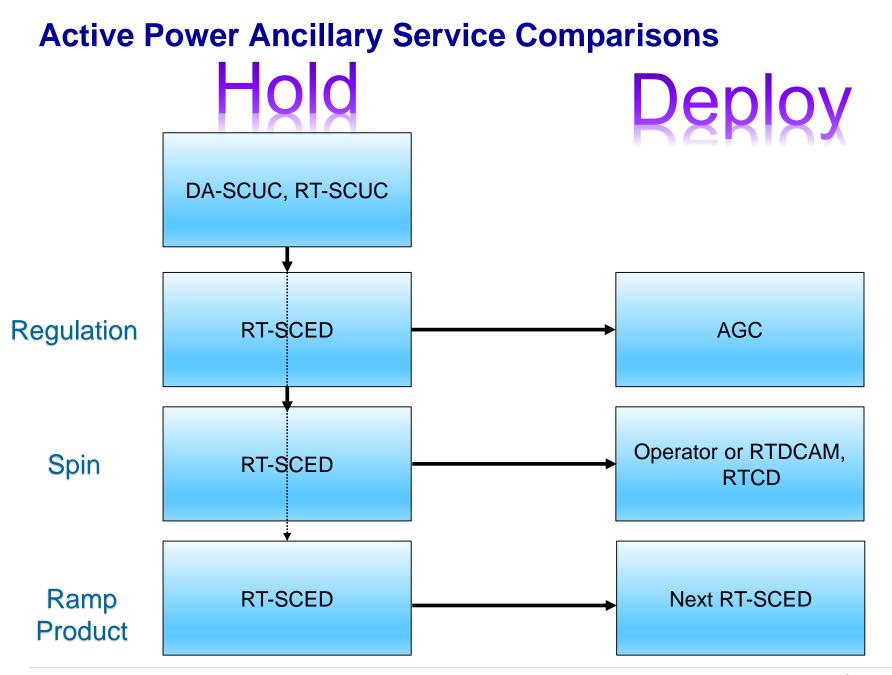
- Capability to ramp 10-minutes ahead
- Further look-ahead for ramping needs assessment

Xcel Energy® Flex Reserve

- Reserve for long-term wind ramps that are not regulation or contingency

- Wide scale reorganization of ancillary service products
- Primary frequency response, fast frequency response, inertia service
- Regulation requirements based on forecast error characteristics
- Performance-based regulation service (FERC Order 755)

Flexi-ramp/ramp Capability Product Description & Motivation


- Essentially a constraint, similar to a reserve constraint in selected or all commitment and dispatch models used for scheduling and market clearing
- Main objective to reduce the number of price spikes due to ramp unavailability
 - Reliability benefits can also be observed
 - Reduction in costs may be present as well
- Mixed Integer Programming Solver too good! Leaves no residual headroom.
 - MIP vs. LR get the (near) exact capability asked for
 - Transient price spikes set by reserve shortage prices when ramp capability is not sufficient
 - Typically not a true shortage event or in danger of actual load shedding event, offline resources available to be turned on, but not by dispatch model (may result in ACE in area)
- Ramp products accounts for variability and uncertainty
 - Multi-period dispatch also accounts for variability, but may not incentivize for ramp capability
- Pays resources for holding the capacity and ramp for this product
 - They will get paid energy price as well if used for energy with specific rules against double counting

Active Power Ancillary Service Comparisons

	Regulation	Spin and non- spin	Ramp product
What Guides Response	Automatic (AGC)	Operator-directed	SCED
Frequency of Use	Every interval	Rarely	often
What it is used for	Short-term changes in load and VER	Contingencies	Forecast errors and (several minutes timeframe) ramp events
Penalty Price	\$80-\$600 /MW-h (medium)	Typically >= \$500 /MW-h (high)	Between \$5 and \$250 /MW-h (low)
Non-zero Bids Allowed	Yes: wear and tear and efficiency costs	Sometimes	No
When Deployed	After dispatch interval (in between RTSCEDs)	After dispatch interval (sometimes through new dispatch, e.g., RTD-CAM RPU, RTCD)	Part of dispatch interval

CAISO and MISO Approach Comparison

	MISO	CAISO
Ramp horizon time	10 minutes (2 RTSCED intervals)	5 minutes (1 RTSCED interval)
Insufficiency cost (scarcity price for ramp product)	\$5/MW-h	Stepped demand curve (\$11 to \$250/MW-h for upwards)
Requirement	Expected Variability + 2.5σ (uncertainty)	Expected variability + 95 th percentile (uncertainty)
Markets	DAM, LAC, and RTM	FMM and RTM (not DAM)
Deliverability	Post-deployment deliverability constraints	

Considerations for ramp product need

Things that may impact whether there is a need

- Regulation service with a small penalty price for small shortages
- Off-line CT and relaxed min-gen pricing
- Longer horizon real-time markets, e.g., 15-mins
- Non-spin reserves that vary with time and can meet net load ramp and forecast error
- Reserve ramp constraints that are not shared with energy ramp constraints
- 5-minute settlements
- Persistence VER forecasts vs. improved VER forecasts
- Lack of price spikes
- Lack of VER
- Lack of self scheduling
- Significant ramp capability already present

Market Design for Ramp Capability Based on Expected Ramp Capability

Market Models for Ramp Capability

Expected Variability

- Current ramp product designs can reduce short-term price spikes by pre-positioning and committing above expected real-time net load
- Look-ahead dispatch, assuming good look-ahead forecasts, can more efficiently prepare the system compared to ramp products for variability
- Look-ahead dispatch, however, can lose the incentive for pre-positioning units (no lost opportunity cost), especially if the ramp is less than expected
- Current ramp products may not respect network constraints for expected variability (exception MISO post-deployment flow constraints)

Uncertainty

- Current ramp products do not model the deployment costs ramping, which may be higher than the capacity costs
- It is possible for look-ahead dispatch to also prepare for uncertainty; however, constraint relaxations (penalty prices) across become important
- Multi-scenario models (e.g., stochastic programming) can prepare for uncertainty more efficiently than current ramp products and model deployment costs [Wang & Hobbs 2014]
- Ramp products for uncertainty may be duplicating regulation reserve, unless regulating reserve can be reduced
- Because of the interplay between regulation reserve and ramp products, ramp products may not have a substantial reliability improvement
- Unless focused in the day-ahead commitment with day-ahead uncertainty, ramp products are unlikely to have a significant impact on production costs

Single Period (SP)

	Cost	Ramp	Capacity
G1	20\$/MWh	2 MW/min	100 MW
G2	30\$/MWh	2 MW/min	100 MW
G3	80\$/MWh	2 MW/min	100 MW

Load	11	12
Scenario 1	200	219
Scenario 2	100	119

Single Period No Flex constraint

I1	12	Scenario 2	I 1	12
100	100	G1	100	100
100	100	G2	0	10
0	10	G3	0	9
30	1000	LMP (\$/MWh)	20	80
N/A	N/A Penalty	Flexi price (\$/MWh)	N/A	N/A -
	100 100 0 30 N/A	100 100 100 100 0 10 30 1000 N/A N/A	100 G1 100 0 100 0 0 10 30 100 N/A N/A	100 100 G1 100 100 100 G2 0 0 10 G3 0 30 1000 LMP (\$/MWh) 20

Time-Coupled Multi-Period (TCMP) Market Model

	Cost	Ramp	Capacity
G1	20\$/MWh	2 MW/min	100 MW
G2	30\$/MWh	2 MW/min	100 MW
G3	80\$/MWh	2 MW/min	100 MW

Load	l1	12
Scenario 1	200	219
Scenario 2	100	119

Time Coupled Multi-Period No Flex constraint

Scenario 1	I1	I2 (adv.)		Scenario 2	11	12 (adv.)
G1	100	100		G1	91	100
G2	91	100		G2	9	19
G3	9	19		G3	0	0
LMP (\$/MWh)	30	(130)80		LMP (\$/MWh)	20	(40)30
Flexi price (\$/MWh)	N/A	N/A		Flexi price (\$/MWh)	N/A	N/A
		© 2015 Electric Power Re	esearch Instit	tute, Inc. All rights reserved.		RESEARCH INSTITUTE

© 2015 Electric Power Research Institute, Inc. All rights reserved.

Single Period Ramp Capability Product (SPRC)

	Cost	Ramp	Capacity
G1	20\$/MWh	2 MW/min	100 MW
G2	30\$/MWh	2 MW/min	100 MW
G3	80\$/MWh	2 MW/min	100 MW

Load	l1	12
Scenario 1	200	219
Scenario 2	100	119

Single Period With Flex ramping constraint

11	12		Scenario 2	l1	12
100/0	100		G1 (Sched/Flex)	100/0	100
91/9	100		G2 (Sched/Flex)	0/10	10
9/10	19		G3 (Sched/Flex)	0/10	9
80	80		LMP (\$/MWh)	20	80
50			Flexi price (\$/MWh)	0	
	100/0 91/9 9/10 80	100/010091/91009/10198080	100/010091/91009/10198080	100/0 100 91/9 100 9/10 19 80 80	100/0 100 91/9 100 9/10 19 63 (Sched/Flex) 0/10 80 80

© 2015 Electric Power Research Institute, Inc. All rights reserved.

Cost and Reliability Results

	Cost	Ramp	Capacity
G1	20\$/MWh	2 MW/min	100 MW
G2	30\$/MWh	2 MW/min	100 MW
G3	80\$/MWh	2 MW/min	100 MW

Load	11	12
Scenario 1	200	219
Scenario 2	100	119

Scenario 1	cost	penalty
Single period	\$19,800	9
Multi-period	\$11.970	
Flex ramp product	\$11,970	

Scenario 2	cost	penalty
Single period	\$5,020	
Multi-period	\$4,660	
Flex ramp product	\$5,020	

Incentive Compatibility

Scenario 1 (<u>Same Costs,</u> <u>Same Schedules</u>)	Time-coupled multi-period	Flex ramping capability product
G1 cost	\$4,000	\$4,000
G1 revenue	\$11,000	\$16,000
G1 profit (rev – cost)	\$7,000	\$12,000
G2 cost	\$5,730	\$5,730
G2 revenue	\$10,730	\$15,730
G2 profit (rev – cost)	\$5,000	\$10,000
G3 cost	\$2,240	\$2,240
G3 revenue	\$1,790	\$2,740
G3 profit (rev – cost)	\$-450	\$500

Negative Pricing

	Cost	Ramp	Capacity
G1	20\$/MWh	2 MW/min	100 MW
G2	30\$/MWh	2 MW/min	100 MW
G3	80\$/MWh	2 MW/min	100 MW

Load	l1	12
Scenario 3	100	129

Time Coupled Multi-Period No Flex constraint

Scenario 1	I1	12
G1	91	100
G2	10	20
G3	0	9
LMP (\$/MWh)	-20	80

Importance of Look-Ahead

	Cost	Ramp	Capacity
G1	20\$/MWh	2 MW/min	100 MW
G2	30\$/MWh	2 MW/min	100 MW
G3	80\$/MWh	2 MW/min	100 MW

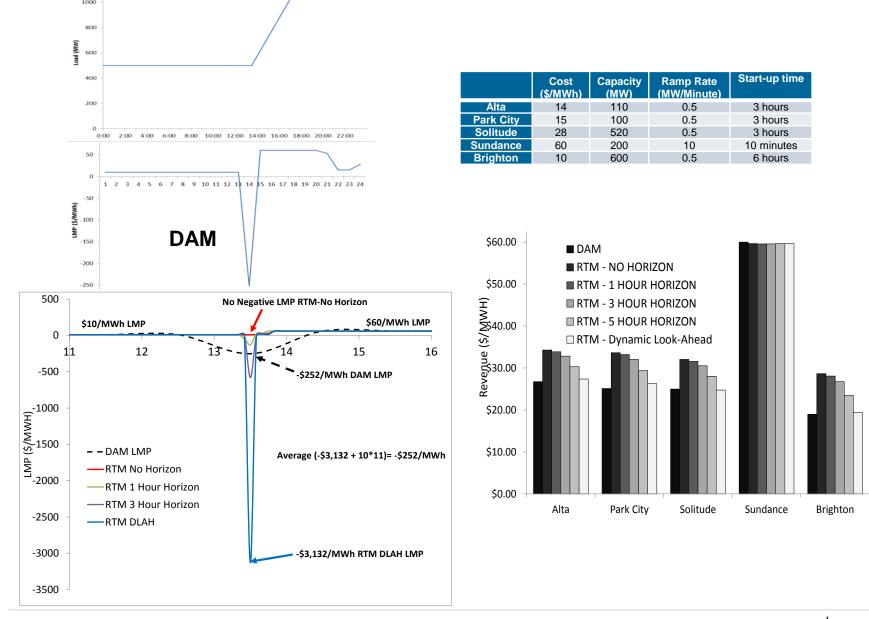
Load	I 1	12	13
Scenario 3	100	129	-
Scenario 3A	100	129	129
Scenario 3B	100	129	139
Scenario 3C	100	129	149

Time Coupled Multi-Period No Flex constraint

LMP (\$/MWh)	I 1	12	13
3	-20	80	-
3A	-20	80	30
3B	-40	80	50
3C	-70	80	80

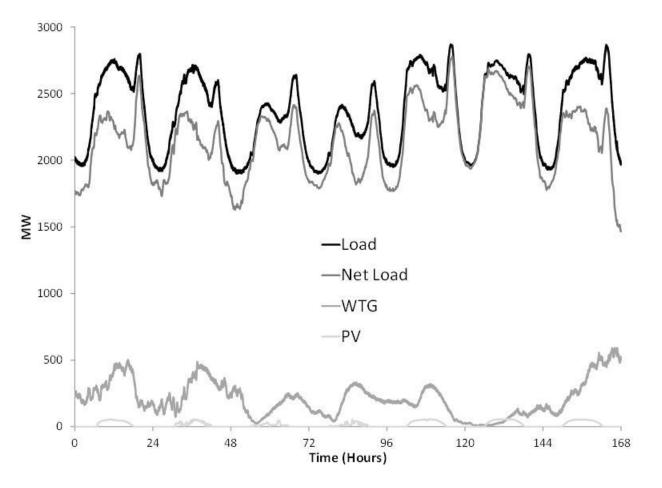
Summary

- TCMP and SPRC improve reliability (ACE) and reduce price spikes compared to SP
- TCMP performs better than SPRC in terms of production cost efficiency
- SPRC better incentivizes resources (and reduces negative profits/uplift) compared to TCMP
 - KEY: When advisory intervals are wiped out, units providing a reserve for future advisory intervals, are not getting paid for that reserve
- Negative prices can occur due to ramp constraints
- The length of look-ahead horizon can have an influence over the binding (first) interval price


New Solutions

- Cross Interval Marginal Price (CIMP) prices based on marginal cost of binding interval due to increment demand in future intervals
 - Incentivizes resources to start their ramp when the binding interval LMP is below their costs
 - $CIMP_t = \frac{\partial \mathcal{L}(P_{i,1})}{\partial L_T}, \ T \neq 1$
 - $CIMPRev_t = (P_{i,T}^{RT-ADV}) * CIMP_t$
 - **Key**: Since the first interval decision is binding, incentive must be commensurate with cost
 - Locational CIMP: Can be calculated similarly to LMP based on number of marginal units
- Dynamic Look-ahead Horizon (DLAH) where the look-ahead can guarantee it has information to create prices based on true marginal costs

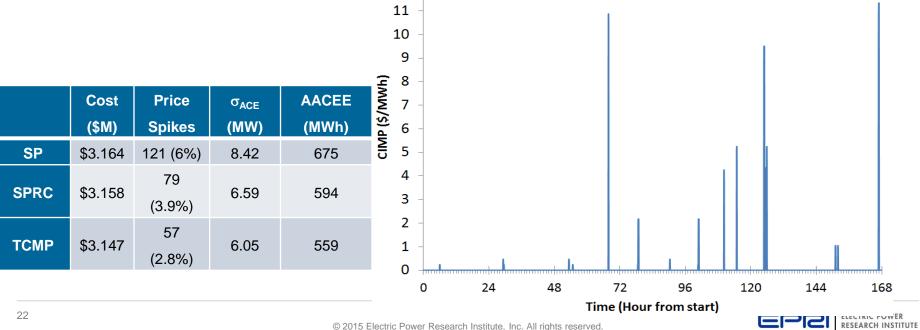
•
$$I_{END} = time(now) + \max_{i \in NG} \frac{(P_i^{max} - P_{i,act})}{RR_i}$$
, $\frac{(P_{i,act} - P_i^{min})}{RR_i}$



Negative LMP and Dynamic Look-ahead Dispatch

Case Study - CIMP

IEEE Reliability Test System: 1 week, with VG, daily DASCUC, 15-minute RTSCUC, 5-minute RTSCED, 4-sec AGC


Reliability Test System Task Force, "The IEEE reliability test system-1996," IEEE

Trans. Power Syst., vol. 14, no. 3, pp. 1010-1020, Aug. 1999.

CIMP

	Without	With	%
Unit-intervals with negative profit	CIMP	CIMP	reduction
Overall	9160	9038	1.3%
Eliminate no-load cost from total costs	3372	2979	11.6%
Eliminate no-load cost from total costs and all unit-intervals where unit is at P _{min}	560	280	50%

Summary and Conclusions

- Ramp products provide benefits for price spike reduction
- Many different potential reasons for whether a ramp product is needed or not (devil is in the details)
- There may be some further evolution in providing for a more efficient, reliable, incentive compatible product for providing ramp in energy markets
- Ramp products may provide better incentives, Time-coupled dispatch provide more efficient solutions.
- New slight modifications to the current market design may provide efficient solutions that meet multiple objectives
- Designs may need to be evaluated in the case of uncertainty and based on the various different market designs in practice (again, devil is in the details)

Together...Shaping the Future of Electricity

