Edge-Based Formulation

Strengthened Edge-Based Formulation

Case Studies

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion

Strengthened MILP Formulation for the Edge-based Combined-Cycle Unit Model

Yongpei Guan

Department of Industrial & Systems Engineering University of Florida

The 2016 FERC Technical Conference

Joint work with Lei Fan (GE), Kai Pan (UF), Yonghong Chen (MISO), and Xing Wang (GE)

\bigcirc				
Introduction 0000000	Edge-Based Formulation	Strengthened Edge-Based Formulation	Case Studies	Conclusion

1 Introduction

uume

- Introduction
- Motivation

2 Edge-Based Formulation

- Transition Graph Representation
- Operating Constraints

3 Strengthened Edge-Based Formulation

- Tighter Constraints
- Strong Valid Inequalities

4 Case Studies

5 Conclusion

Introduction	Edge-Based Formulation	Strengthened Edge-Based Formulation	Case Studies	Conclusion
Outline				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1 Introduction

- Introduction
- Motivation

2 Edge-Based Formulation

- Transition Graph Representation
- Operating Constraints

3 Strengthened Edge-Based Formulation

- Tighter Constraints
- Strong Valid Inequalities

4 Case Studies

5 Conclusion

Introduction ••••••	Edge-Based Formulation	Strengthened Edge-Based Formulation	Case Studies	Conclusion
Combin	ed-Cycle Units			

- Combustion Turbines: use natural gas, produce electricity and heat.
- Heat Recovery Steam Generator: produce steam.
- Steam Turbines: use steam to produce electricity.

Introduction 000000	Edge-Based Formulation	Strengthened Edge-Based Formulation	Case Studies	Conclusion
Current	Practice			

- Aggregated modeling approach [1]:
 - Treats the whole combined-cycle unit as a traditional thermal unit.
 - Less decision variables.
 - Cannot reflect the relationship between CT and ST.
- Pseudo unit approach [2]:
 - Associates each combustion turbine (CT) with a portion of the steam turbine (ST).
 - Less decision variables.
 - Cannot capture the transition process.
- Configuration-based model [3],[4],[5],[6]:
 - Represents each combination of CTs and STs as a configuration.
 - Cannot capture the operating constraints such as min-up/-down constraints for each turbine.

Introduction Edge-Based Formulation Strengthened Edge-Based Formula 000000000000000000000000000000000000	tion Case Studies Conclusion

Configruation-Based Model

- \blacksquare Work at different typical configurations: 0CT + 0ST, 1CT + 0ST, 2CTs + 0ST, 1CT + 1ST, and 2CTs + 1ST
- Each configuration is treated as a pseudo unit: generation limits, ramping rates, and min-up/-down constraints.

Figure: Transition Graph for 2CTs + 1ST

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Edge-Based Formulation

Strengthened Edge-Based Formulation

tion Case Studies

Conclusion

Challenges

Figure: Transition Graph for 2CTs + 1ST

- Time *t*, Configuration 1 online
- Time t + 2 Load increases, Generation amount increases, ST starts up, Configuration 2 online
- Time t + 3 Works at Configuration 2 for several time periods (e.g., 4 time periods).
- If load increases dramatically, it might be more than the capacity of Configuration 2 at time t + 3, t + 4.
- Second CT can start up, if this CT satisfies it own min-down time requirement.

Introduction 0000000	Edge-Based Formulation	Strengthened Edge-Based Formulation	Case Studies	Conclusion
Challeng	ges			

Figure: Transition Graph for 2CTs + 1ST

- Improve flexibility?
- Design the min-up/-down constraints for each turbine instead of each configuration.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Edge-Based Combined-Cycle Unit Model

Motivation

- Improved the accuracy of the configuration-based model [7].
- Method
 - Proposed an edge-based formulation based on the transition graph.

Contribution

- Exactly described the physical constraints (in particular, min-up/-down restrictions for each turbine) and transition costs between different configurations.
- Increased the flexibility of the combined-cycle units in terms of unit commitment.
- Explored the structure of the state transition graph for combined-cycle units (such as the network flow structure) that commercial optimization solvers, e.g., CPLEX, can recognize.

Strengthened Edge-Based Combined-Cycle Unit Model

Motivation

- Reduce the computational time in the day-ahead unit commitment engine caused by combined-cycle units.
- Method
 - Cutting plane method.

Contribution

- Derived tighter min-up/-down and ramping rate constraints for a combined-cycle unit.
- Provided several families of stronger valid inequalities of ramping rates for a combined-cycle unit by exploring the structure of the transition graph.

Introduction 0000000	Edge-Based Formulation	Strengthened Edge-Based Formulation	Case Studies	Conclusion
Outline				

1 Introduction

- Introduction
- Motivation

2 Edge-Based Formulation

- Transition Graph Representation
- Operating Constraints

3 Strengthened Edge-Based Formulation

- Tighter Constraints
- Strong Valid Inequalities

4 Case Studies

5 Conclusion

Edge-Based Formulation

Strengthened Edge-Based Formulation

tion Case Studies

Conclu

Transition Graph

Figure: Complete Transition Graph for 2CTs + 1ST

- Use complete transition graph (distinguish two CTs).
- Edge binary variables
 (z_t^a): transition action at each time period.

Unique constraints:

$$\sum_{a\in\mathcal{A}} z_t^a = 1, \forall t. \qquad (1)$$

Introduction 0000000	Edge-Based Formulation	Strengthened Edge-Based Formulation	Case Studies	Conclusion
Network	Flow			

Configuration Status

$$\sum_{a \in (\mathcal{A}_k^{\rm in} \bigcup \mathcal{A}_k^{\rm sl})} z_t^a$$

Logical Constraints

$$\sum_{a \in (\mathcal{A}_k^{\rm in} \bigcup \mathcal{A}_k^{\rm sl})} z_t^a = \sum_{a \in (\mathcal{A}_k^{\rm out} \bigcup \mathcal{A}_k^{\rm sl})} z_{t+1}^a, \forall k \in \mathcal{C}, \forall t.$$
(3)

(2)

Figure: Edges of One Node

Introduction 0000000	Edge-Based Formulation	Strengthened Edge-Based Formulation	Case Studies	Conclusion
Min up	Time			

 CT1 Starts up: a01, a05, a25, a46

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Figure: Start-up CT1

N 4 ·	.			
Introduction 0000000	Edge-Based Formulation	Strengthened Edge-Based Formulation	Case Studies	Conclusion

Min-up Time

- CT1 starts up: a01, a05, a25, a46
- CT1 cannot shut down: a10, a50, a52, a64

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Figure: Start-up CT1

Introduction	

Edge-Based Formulation

Strengthened Edge-Based Formulation

ulation Case Studies

s C

Min-up Time

- CT1 starts up: a01, a05, a25, a46
- CT1 cannot shut down: *a*10, *a*50, *a*52, *a*64
- Configurations without CT1 cannot be online: Config 0, Config 2, Config 4

Figure: Start-up CT1

Introduction	

Edge-Based Formulation

Strengthened Edge-Based Formulation

lation Case Studies

Co

Min-up Time

Figure: Start-up CT1

- CT1 starts up: a01, a05, a25, a46
- CT1 cannot shut down: *a*10, *a*50, *a*52, *a*64
- Configurations without CT1 cannot be online: Config 0, Config 2, Config 4
- Edges connected with Red configurations cannot be active.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Edge-Based Formulation

Strengthened Edge-Based Formulation

nulation Case Studies

Conclus

Min-up Time Constraints

$$\sum_{a \in \bigcup_{k \in \mathcal{C}_{i}^{\text{off}}} \mathcal{A}_{k}^{\text{all}}} z_{\tau}^{a} \leq 1 - \sum_{a \in \mathcal{A}_{i}^{\text{su}}} z_{t}^{a}, \forall i \in \mathcal{U}^{\text{CT}} \cup \mathcal{U}^{\text{ST}},$$
$$\forall \tau \in \{t + 1, \cdots, \min\{\mathcal{T}_{\text{end}}, \mathcal{T}_{\text{mu}}^{i} + t - 1\}\}, \forall t.$$
(4)

 Introduction
 Edge-Based Formulation
 Strengthened Edge-Based Formulation
 Case Studies

 0000000
 0000000000
 0000000000
 Case Studies

es Con

Min-down Time Constraints

$$\sum_{a \in \bigcup_{k \in \mathcal{C}_{i}^{\text{on}}} \mathcal{A}_{k}^{\text{all}}} z_{\tau}^{a} \leq 1 - \sum_{a \in \mathcal{A}_{i}^{\text{sd}}} z_{t}^{a}, \forall i \in \mathcal{U}^{\text{CT}} \cup \mathcal{U}^{\text{ST}},$$
$$\tau \in \{t + 1, \cdots, \min\{\mathcal{T}_{\text{end}}, \mathcal{T}_{\text{md}}^{i} + t - 1\}\}, \forall t.$$
(5)

Introduction 0000000	Edge-Based Formulation ○○○○○○○●○	Strengthened Edge-Based Formulation	Case Studies	Conclusion
Ramping	g Constraints			

- If this particular edge is not active (i.e., z^a_{t+1} = 0), this ramping constraint is relaxed, following the definition of P^{cap}
- Otherwise, if this edge is active (i.e., z^a_{t+1} = 1), this edge provides the ramping limit for the whole combined-cycle unit, because only one of the edges can be active at each time period.

$$p_{t+1} - p_t \le \mathsf{RU}_a z_{t+1}^a + P^{\mathsf{cap}}(1 - z_{t+1}^a), \forall a \in \mathcal{A}, \forall t,$$

$$p_t - p_{t+1} \le \mathsf{RD}_a z_{t+1}^a + P^{\mathsf{cap}}(1 - z_{t+1}^a), \forall a \in \mathcal{A}, \forall t.$$
(6)
$$(7)$$

Edge-Based Formulation

Strengthened Edge-Based Formulation

ulation Case Studies

Conclu

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Reduced State Transition Graph

Figure: Reduced State Transition Graph for 2CT+1ST

Introduction
0000000

dge-Based Formulation

Outline

1 Introduction

- Introduction
- Motivation

2 Edge-Based Formulation

- Transition Graph Representation
- Operating Constraints

3 Strengthened Edge-Based Formulation

- Tighter Constraints
- Strong Valid Inequalities

4 Case Studies

5 Conclusion

Introduction 0000000	Edge-Based Formulation	Strengthened Edge-Based Formulation	Case Studies	Conclusion
Cutting	Planes			

Strong valid inequalities to cut off fractional solutions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 0000000	Edge-Based Formulation	Strengthened Edge-Based Formulation	Case Studies	Conclusion
Cutting	Planes			

Strong valid inequalities to cut off fractional solutions.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Introduction 0000000	Edge-Based Formulation	Strengthened Edge-Based Formulation	Case Studies	Conclusion
Convex	Hull			

The smallest convex feasible region containing all feasible integer solutions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 0000000	Edge-Based Formulation	Strengthened Edge-Based Formulation	Case Studies	Conclusion
Min-up	Time Constrai	ints		

- If turbine *i* is online at time period *t*, then this turbine starts up at most once during time interval [t Tⁱ_{mu} + 1, t 1].
- If turbine *i* starts up at time interval [t Tⁱ_{mu} + 1, t 1], then the configurations without turbine *i* cannot be online at time period t.

$$\sum_{\kappa=1}^{T_{\text{mu}}^{i}-1} \sum_{a \in \mathcal{A}_{i}^{\text{su}}} z_{t-\kappa}^{a} \leq 1 - \sum_{a \in \bigcup_{k \in \mathcal{C}_{i}^{\text{off}}} \mathcal{A}_{k}^{\text{all}}} z_{t}^{a}, \qquad (8)$$
$$\forall i \in \mathcal{U}^{\text{CT}} \cup \mathcal{U}^{\text{ST}}, \forall t \in \{T_{\text{mu}}^{i}, \cdots, \mathcal{T}_{\text{end}}\}.$$

0000000	000000000	000000000	
Min do	we Time Cone	trainta	

Min-down Time Constraints

- If one of the arcs in Aⁱ_{sd}, representing the shut-down process of turbine *i*, is active during time interval [t − Tⁱ_{md} + 1, t − 1], then arcs ∪_{k∈C^{on}_i} A^{all}_k connected to the configurations (C^{on}_i) with turbine *i* cannot be active.
- The configurations with turbine *i* must be offline at time period *t* when turbine *i* shuts down at time interval $[t T_{md}^{i} + 1, t 1]$.

$$\sum_{\kappa=1}^{T_{\rm md}^{i}-1} \sum_{a \in \mathcal{A}_{i}^{\rm sd}} z_{t-\kappa}^{a} \leq 1 - \sum_{a \in \bigcup_{k \in \mathcal{C}_{i}^{\rm on}} \mathcal{A}_{k}^{\rm all}} z_{t}^{a},$$

$$\forall i \in \mathcal{U}^{\rm CT} \cup \mathcal{U}^{\rm ST}, \forall t \in \{T_{\rm md}^{i}, \cdots, T_{\rm end}\}.$$
 (9)

Introduction 0000000	Edge-Based Formulation	Strengthened Edge-Based Formulation	Case Studies	Conclusion
Ramping	Rate Constra	ints		

- Since only one of the arcs in the transition graph can be active at each time period t, only one item in the right-hand side of (10) can be positive and all others would be zeros.
- The positive item represents the active arc that provides the ramping up rate limit. The same analysis can be applied to ramping down constraints (11)

$$p_{t+1} - p_t \le \sum_{a \in \mathcal{A}} \mathsf{RU}_a z_{t+1}^a, \forall t \in \mathcal{T},$$
 (10)

$$p_t - p_{t+1} \le \sum_{a \in \mathcal{A}} \mathsf{RD}_a z_{t+1}^a, \forall t \in \mathcal{T}.$$
 (11)

dge-Based Formulation

Strengthened Edge-Based Formulation

nulation Case Studies

Conclusion

Single-Arc Ramping Up Rate Inequalities

$$p_{t+1}^{m} - p_{t}^{n} \leq \mathsf{RU}^{\mathfrak{a}(n,m)} z_{t+1}^{\mathfrak{a}(n,m)} + \overline{P_{m}} \Big(\sum_{a \in (\mathcal{A}_{m}^{\text{in}} \bigcup \mathcal{A}_{m}^{\text{sl}})} z_{t+1}^{a} \Big) - \underline{P_{n}} \Big(\sum_{a \in (\mathcal{A}_{n}^{\text{in}} \bigcup \mathcal{A}_{n}^{\text{sl}})} z_{t}^{a} \Big) + (\underline{P_{n}} - \overline{P_{m}}) z_{t+1}^{\mathfrak{a}(n,m)}, \forall \mathfrak{a}(n,m) \in \mathcal{A}, \forall t \in \mathcal{T},$$
(12)

Table: Validity of Ramping Up Inequalities (12)

Case	Value of	Binary Variables		Inequ	ality
Case	$\sum_{a \in (\mathcal{A}_n^{in} \cup \mathcal{A}_n^{sl})} z_t^a$	$\sum_{a \in (\mathcal{A}_m^{in} \cup \mathcal{A}_m^{sl})} z_{t+1}^a$	$z_{t+1}^{a(n,m)}$	LHS	RHS
1	1	1	1	$p_{t+1}^m - p_t^n$	RU ^{a(n,m)}
2	1	0	0	$-p_t^n$	$-\underline{P_n}$
3	0	1	0	p_{t+1}^m	$\overline{P_m}$
4	0	0	0, 🛛	0,	, ,0_, ,

900

roduction Edge-Ba

lge-Based Formulation

Strengthened Edge-Based Formulation

ulation Case Studies

Conclusion

Single-Arc Ramping Down Rate Inequalities

$$p_{t}^{n} - p_{t+1}^{m} \leq \mathsf{RD}^{a(n,m)} z_{t+1}^{a(n,m)} + \overline{P_{n}} \Big(\sum_{a \in (\mathcal{A}_{n}^{in} \bigcup \mathcal{A}_{n}^{sl})} z_{t}^{a} \Big)$$
$$- \underline{P_{m}} \Big(\sum_{a \in (\mathcal{A}_{m}^{in} \bigcup \mathcal{A}_{m}^{sl})} z_{t+1}^{a} \Big) + (\underline{P_{m}} - \overline{P_{n}}) z_{t+1}^{a(n,m)},$$
$$\forall a(n,m) \in \mathcal{A}, \forall t \in \mathcal{T}.$$

Table: Validity of Ramping Down Inequalities (13)

Case	Value of	Binary Variables		Inequ	ality
Case	$\sum_{a \in (\mathcal{A}_n^{in} \cup \mathcal{A}_n^{sl})} z_t^a$	$\sum_{a \in (\mathcal{A}_m^{in} \cup \mathcal{A}_m^{sl})} z_{t+1}^a$	$z_{t+1}^{a(n,m)}$	LHS	RHS
1	1	1	1	$p_t^n - p_{t+1}^m$	RD ^{a(n,m)}
2	1	0	0	p_t^n	$\overline{P_n}$
3	0	1	0	$-p_{t+1}^m$	$-P_m$
4	0	0	0, 🛛	↓	▶ 0

900

(13)

Multi-Configuration Ramping Rate Inequalities

• Suppose that the combined-cycle unit works on Configuration m at time period t + 1. As shown in the following figure, we know one of the incoming arcs $(a_{n_1,m}, a_{n_2,m}, a_{n_3,m})$ or the self-loop arc $a_{m,m}$ must be active at time period t + 1.

Figure: Configuration Transition Graph for Configuration m

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction Edge-Based Formulation Case Studies

Multi-Configuration Ramping Up Rate Inequalities

$$p_{t+1}^{m} - \sum_{n \in \mathcal{C}_{\to m}} p_{t}^{n} \leq \sum_{n \in \mathcal{C}_{\to m}} \mathsf{RU}^{a(n,m)} z_{t+1}^{a(n,m)}$$

$$- \sum_{n \in \mathcal{C}_{\to m}} \underline{P_{n}} \Big(\Big(\sum_{a \in (\mathcal{A}_{n}^{in} \bigcup \mathcal{A}_{n}^{sl})} z_{t}^{a} \Big) - z_{t+1}^{a(n,m)} \Big), \forall m \in \mathcal{C}, \forall t.$$
(14)

Table: Validity of Ramping Up Inequalities (14)

Case	Value o	of Binary Variables	Inequ	ality
Case	$\sum_{n\in\mathcal{C}_{ ightarrow m}} z_{t+1}^{a(n,m)}$	$\sum_{n \in \mathcal{C}_{\rightarrow m}} \sum_{a \in (\mathcal{A}_n^{in} \bigcup \mathcal{A}_n^{sl})} z_t^a$	LHS	RHS
1	1	1	$p^m_{t+1} - p^{ar{n}}_t$	RU ^{a(n̄,m)}
2	0	1	$-p_t^{ar{n}}$	$-P_{\bar{n}}$
3	0	0	0	0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

dge-Based Formulation

Strengthened Edge-Based Formulation

mulation Case Studies

es Conc

Multi-Configuration Ramping Down Rate Inequalities

$$\sum_{n \in \mathcal{C}_{\to m}} p_t^n - p_{t+1}^m \leq \sum_{n \in \mathcal{C}_{\to m}} \mathsf{RD}^{a(n,m)} z_{t+1}^{a(n,m)}$$

$$+ \sum_{n \in \mathcal{C}_{\to m}} \overline{P_n} \Big(\Big(\sum_{a \in (\mathcal{A}_n^{in} \bigcup \mathcal{A}_n^{sl})} z_t^a \Big) - z_{t+1}^{a(n,m)} \Big), \forall m \in \mathcal{C}, \forall t.$$
(15)

Table: Validity of Ramping Down Inequalities (15)

Case	Value o	of Binary Variables	Inequ	ality
Case	$\sum_{n\in\mathcal{C}_{ ightarrow m}} z_{t+1}^{a(n,m)}$	$\sum_{n \in \mathcal{C}_{\rightarrow m}} \sum_{a \in (\mathcal{A}_n^{in} \cup \mathcal{A}_n^{sl})} z_t^a$	LHS	RHS
1	1	1	$p_t^{ar{n}} - p_{t+1}^m$	$RD^{a(\bar{n},m)}$
2	0	1	$p_t^{\bar{n}}$	<u>P</u> _n
3	0	0	0	0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Multi-Configuration Ramping Rate Inequalities

• Suppose that the combined-cycle unit works on Configuration n at time period t in the following figure. Then, one of the outgoing arcs $(a_{n,m_1}, a_{n,m_2}, a_{n,m_3})$ or the self-loop arc $a_{n,n}$ must be active at time period t + 1.

Figure: Configuration Transition Graph for Configuration n

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction Edge-Based Formulation Strengthened Edge-Based Formulation Case Studies Conclusion

Multi-Configuration Ramping Up Rate Inequalities

$$\sum_{m \in \mathcal{C}_{n \to}} p_{t+1}^m - p_t^n \leq \sum_{m \in \mathcal{C}_{n \to}} \mathsf{RU}^{a(n,m)} z_{t+1}^{a(n,m)}$$

$$+ \sum_{m \in \mathcal{C}_{n \to}} \overline{P}_m \Big(\Big(\sum_{a \in (\mathcal{A}_m^{\text{in}} \bigcup \mathcal{A}_m^{\text{sl}})} z_{t+1}^a \Big) - z_{t+1}^{a(n,m)} \Big), \forall n \in \mathcal{C}, \forall t.$$
(16)

Table: Validity of Ramping Up Inequalities (16)

Case	Value	Inequ	ality	
Case	$\sum_{m \in \mathcal{C}_{n \to}} z_{t+1}^{a(n,m)}$	$\overline{z_{t+1}^{a(n,m)}} \sum_{m \in \mathcal{C}_{n \to}} \sum_{a \in (\mathcal{A}_m^{in} \bigcup \mathcal{A}_m^{sl})} z_{t+1}^{a}$		RHS
1	1	1	$p_{t+1}^{ar{m}}-p_t^n$	RU ^{a(n,m̄)}
2	0	1	$p_t^{\bar{m}}$	$\overline{P_{\bar{m}}}$
3	0	0	0	0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Introduction Edge-Based Formulation Strengthened Edge-Based Formulation Case Studies Conclusion

Multi-Configuration Ramping Down Rate Inequalities

$$p_{n}^{t} - \sum_{m \in \mathcal{C}_{n \to}} p_{t+1}^{m} \leq \sum_{m \in \mathcal{C}_{n \to}} \mathsf{RD}^{\mathfrak{s}(n,m)} z_{t+1}^{\mathfrak{s}(n,m)}$$

$$- \sum_{m \in \mathcal{C}_{n \to}} \underline{P_{m}} \Big(\Big(\sum_{\mathfrak{a} \in (\mathcal{A}_{m}^{\mathrm{in}} \bigcup \mathcal{A}_{m}^{\mathfrak{s})}} z_{t+1}^{\mathfrak{a}} \Big) - z_{t+1}^{\mathfrak{s}(n,m)} \Big), \forall n \in \mathcal{C}, \forall t.$$

$$(17)$$

Table: Validity of Ramping Down Inequalities (17)

Case	Value	Inequality		
Case	$\sum_{m\in\mathcal{C}_{n\to}} z_{t+1}^{a(n,m)}$	$\sum_{m \in \mathcal{C}_{n \to}} \sum_{a \in (\mathcal{A}_m^{\text{in}} \cup \mathcal{A}_m^{\text{sl}})} z_{t+1}^a$	LHS	RHS
1	1	1	$p_t^n - p_{t+1}^{\bar{m}}$	$RD^{a(n,\bar{m})}$
2	0	1	$-p_t^{\bar{m}}$	$-P_{\bar{m}}$
3	0	0	0	0

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Introduction 0000000	Edge-Based Formulation	Strengthened Edge-Based Formulation	Case Studies	Conclusion
Outline				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1 Introduction

- Introduction
- Motivation

2 Edge-Based Formulation

- Transition Graph Representation
- Operating Constraints

3 Strengthened Edge-Based Formulation

- Tighter Constraints
- Strong Valid Inequalities

4 Case Studies

5 Conclusion

Introduction 0000000	Edge-Based Formulation	Strengthened Edge-Based Formulation	Case Studies	Conclusion
Experim	ent Setting			

- IEEE 118 Bus System: 54 traditional thermal units and 12 combined-cycle units.
- 10 different load scenarios.
- Intel(R) Core(TM) i7-4500U 1.8GHz with 8G memory and CPLEX 12.5.
- EBF: Edge-based formulation.
- TEBF: The edge-based formulation with min-up/-down constraints
 (4) and (5) replaced by tighter min-up/-down constraints (8) and (9).
- REBF: The edge-based formulation with ramping constraints (6) and
 (7) replaced by tighter ramping constraints (10) (17).
- SEBF: Strengthened edge-based formulation.

Edge-Based Formulation

trengthened Edge-Based Formulation

tion Case Studies

Conc

Computational Results

Table: Root Node Information

Cases		L	LP Objective Values (\$)			Integrality Gap (10^{-4})		-4)	
Case	:5	EBF	TEBF	REBF	SEBF	EBF	TEBF	REBF	SEBF
	1	1879876	1880212	1880451	1880774	9.92	8.11	6.85	5.14
	2	1879103	1879456	1879698	1880031	10.15	8.30	7.10	5.34
G-I	3	1885160	1885489	1885739	1886056	10.01	8.29	6.93	5.26
	4	1876169	1876512	1876746	1877070	10.01	8.19	6.96	5.15
	5	1887136	1887470	1887715	1888032	9.39	7.84	6.53	4.74
	1	3615129	3615571	3616036	3616440	9.18	8.08	6.90	6.68
	2	3606929	3607372	3607865	3608274	9.98	7.72	6.68	6.05
G-II	3	3602757	3603224	3603670	3604094	11.47	8.79	7.30	6.2
	4	3609224	3609688	3610134	3610562	9.89	9.09	7.34	6.75
	5	3607151	3607576	3608070	3608472	11.45	9.25	7.89	6.17

▲ロト ▲圖 → ▲ 国 ト ▲ 国 - の Q @

Edge-Based Formulation

trengthened Edge-Based Formulation

ion Case Studies

Conclusio

Computational Results

Table: Computational Times

Cases		Time			Number of Nodes			5	
		EBF	TEBF	REBF	SEBF	EBF	TEBF	REBF	SEBF
	1	1668.92	1478.32	1208.08	650.23	4526	3315	2537	1064
	2	1383.41	985.74	538.77	604.61	4570	2562	644	828
G-I	3	1474.76	1569.19	483.59	400.15	3683	5895	1218	952
	4	1282.29	903.13	502.99	335.69	2899	2471	640	442
	5	1240.13	811.17	317.38	407.5	4375	2154	299	572
	1	1114.08	945.24	999.92	797.65	1184	1197	377	316
	2	***	884.34	489.7	666.86	1206	1248	0	0
G-II	3	***	***	833.12	828.68	1213	1190	174	126
	4	2512.31	3411.7	1820.3	798.59	1251	1233	1134	204
	5	***	3231.19	702.01	834.63	1157	1486	0	152

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

dge-Based Formulation

Strengthened Edge-Based Formulation

ation Case Studies

- 日本 - 1 日本 - 日本 - 日本

Conclusio

Convergence Process

Figure: Convergence evolution of Case 1 in One-Day UC

dge-Based Formulation 000000000 Strengthened Edge-Based Formulation

Case Studies

Conclusion

Convergence Process

Figure: Convergence evolution of Case 1 in Two-Day UC

・ロト・日本・日本・日本・日本・日本

Introduction 0000000	Edge-Based Formulation	Strengthened Edge-Based Formulation	Case Studies	Conclusion
Outline				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1 Introduction

- Introduction
- Motivation

2 Edge-Based Formulation

- Transition Graph Representation
- Operating Constraints

3 Strengthened Edge-Based Formulation

- Tighter Constraints
- Strong Valid Inequalities

4 Case Studies

5 Conclusion

Introduction	Edge-Based Formulation	Strengthened Edge-Based Formulation	Case S

Contributions

 Increase the accuracy. Exactly describe the physical constraints (in particular, min-up/-down restrictions for each turbine) and transition costs between different configurations.

Conclusion

udies

- Increase the flexibility by tracking the status of each turbine.
- A better computational performance.

Introduction 0000000	Edge-Based Formulation	Strengthened Edge-Based Formulation	Case Studies	Conclusion
Reference	ce			

- H. Hui, C.-N. Yu, F. Gao, and R. Surendran, "Combined cycle resource scheduling in ERCOT nodal market," in *Proc. of 2011 IEEE Power and Energy Society General Meeting*, pp. 1–8.
- S. Ammari and K. Cheung, "Advanced combined-cycle modeling," in *PowerTech* (*POWERTECH*), 2013 IEEE Grenoble, pp. 1–5.
 - M. Tamayo, X. Yu, X. Wang, and J. Zhang, "Configuration based combined cycle model in market resource commitment," in *Proc. of 2013 IEEE Power and Energy Society General Meeting*, pp. 1–5.
 - C. Liu, M. Shahidehpour, Z. Li, and M. Fotuhi-Firuzabad, "Component and mode models for the short-term scheduling of combined-cycle units," *IEEE Trans. Power Syst.*, vol. 24, no. 2, pp. 976–990, 2009.
- A. Papavasiliou, Y. He, and A. Svoboda, "Self-commitment of combined cycle units under electricity price uncertainty," *IEEE Trans. Power Syst.*, vol. 30, no. 4, pp. 1690–1701, 2015.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

G. Morales-España, C. M. Correa-Posada, and A. Ramos, "Tight and compact mip formulation of configuration-based combined-cycle units," *IEEE Transactions on Power Systems*, vol. 31, no. 2, pp. 1350–1359, 2016.

L. Fan and Y. Guan, "An edge-based formulation for combined-cycle units," *IEEE Transactions on Power Systems*, vol. 31, no. 3, pp. 1809–1819, 2016.

Introduction 0000000	Edge-Based Formulation	Strengthened Edge-Based Formulation	Case Studies	Conclusion
Q&A				

Email: guan@ise.ufl.edu

Thank you!

