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Introduction Unit Commitment

The Basic Problem

The UC Problem

Minimize
∑
t∈T

∑
j∈J
cj(pjt)

subject to ∑
j∈J
p
j
t ≥ Dt, ∀ t ∈ T

pj ∈ Πj, ∀j ∈ J.

c(pjt) gives the cost of generator j producing pjt units of electricity at
time t.

In every time periods, demand Dt must be met.

Each generator must work within its physical limits (ramping
constraints, minimum shut down times, etc.).
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Introduction Unit Commitment

Physical Constraints of Generators

Convex Production Costs

Minimum & Maximum Output Levels: If the generator is on, it
must produce between P and P units of power.

Ramping Constraints: Power output cannot change too rapidly over
a short period of time.

Minimum Up (Down) Time: When a generator is turned on (off),
it must stay on for at least UT (DT) time units.

Downtime Dependent Startup Costs: The cost of turning on a
generator is dependent on how long the generator has been off.
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Introduction Unit Commitment

Basic Approach

A strategy employed by many researchers is to investigate tight
formulations for a generic generator, i.e., tight descriptions of Π.

This work will employ the same tactic.

Main Result:

We will give a tight and compact (convex hull) description of the feasible
operating schedule of a generator. Moreover, this description is fairly
flexible and can enable a variety of additional physical constraints
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Introduction Unit Commitment

A Brief Outline

First, we will discuss some previous work on polyhedral results related
to electric generator schedules.

Then, we will move into more general polyhedral description.

Lastly, we discuss how to model cases when there are similar (and
almost similar) generators.
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Introduction Unit Commitment

Polyhedral Results for Generator Scheduling

“1-binary variable model”

I can write the feasible region of a generator using two variables
per time period.

Let pt be the (continuous) variable representing power output.

Let ut be the (binary) variable representing if the generator is
on/off.

The convex hull description of this polyhedron is known if there is
no ramping constraint, but it is large (exponential).

But, a polynomial-time cutting-plane method exists (Lee, Lueng,
Margot: 2004).
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Introduction Unit Commitment

3 Binary Variable Model

3-Bin

Now we use 4 variables per time period:

Let pt be the (continuous) variable representing power output.

Let ut be the (binary) variable representing if the generator is on
at time t.

Let vt be the (binary) variable representing if the generator is
turned on at time t.

Let wt be the (binary) variable representing if the generator is
turned off at time t.

Yes, the additional variable are redundant. But, they allow us to write
tight descriptions of the polytope with no ramping constraints (Rajan
& Takriti: 2005).
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Introduction Unit Commitment

Not Quite the Same Thing, but Nice

A slightly different approach to generator scheduling comes from
Frangioni and Gentile, who solve the single unit commitment problem
(1UC) in polynomial time using dynamic programming.

The 1UC model assumes prices are fixed, then optimizes a single unit’s
profit.

The trick: Since the prices are known, it is easy to compute the exact
production schedule at times in the interval [a, b] if is is known for
sure that the generator turns on at time a and then shuts down at
time b (Economic Dispatch Problem).

There are at most Tc2 many valid turn on/turn off time intervals, so
you only need to consider combining the corresponding production
schedules, where the only constraint is the minimum downtime
constraint.
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Introduction Unit Commitment

Economic Dispatch Problem

If it is know that the generator is turned on at a and off at b, the
profit during this time period is solved via the linear program:

p
[a,b]
i ≤ 0 ∀i < a and i > b

−p
[a,b]
i ≤ −P ∀i ∈ [a, b]

p
[a,b]
i ≤ min(P, SU+ (i− a)RU, SD+ (b− i)RD) ∀i ∈ [a, b]

p
[a,b]
i ≤ p[a,b]i−1 min(RU, SU+ (b− i)RD− P) ∀i ∈ [a+ 1, b]

p
[a,b]
i−1 ≤ p

[a,b]
i +min(RD, SU+ (i− a)RU− P) ∀i ∈ [a+ 1, b].
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An Ideal Formulation

A Dynamic Programming Approach to 1UC

The 1UC model is solved via a shortest path problem in the following
digraph:

Let s be the source node, t be the sink node.

Let v[a,b] represent the action of turning on the generator at time a
and shutting it off at time b. The cost of going through node v[a,b] is
equal to negative the profit from the economic dispatch problem.

There is an arc leaving (entering) s (t)and entering (leaving) ever
other vertex.

Arc (v[a,b], v[c,d]) exists if b+ mindowntime ≤ c.
Digraph is acyclic, shortest path is easily found.
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An Ideal Formulation

An Example: Min Up/Downtime=5

S
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T
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An Ideal Formulation

Remarks:

The dynamic programming approach to 1UC is a fantastic result, but
it hasn’t been very helpful for multi-generator models.

Why? The DP only considers Tc2 specific schedules, not all possible
production schedules. There hasn’t been an obvious way of extending
this idea to more general methods.

Fundamental Problem:

Extend this result to general UC models.
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An Ideal Formulation

How This Helps UC

The dynamic programming problem, provides framework that allows
us to build a schedule by visiting different nodes in the graph.

If I visit node v[a,b], I can produce in periods [a, b].

However, I have constraints on how I build my solution! If I visit v[a,b]
I cannot visit v[a+1,b]!

This restriction can be modeled by adding constraints on the γ terms
(where γ represents if I visit a node or not).
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An Ideal Formulation

Sums of Dispatch Polytope

Let γ[a,b] represent if the generator is on during the interval [a, b].

Generator Polytope

D
def
=



A[a,b]p[a,b] ≤ b[a.b]γ[a,b] ∀[a, b] ∈ T∑
[a,b]∈T

p[a,b] = p

∑
{[a,b]∈T | i∈[a,b+mindowntime]}

γ[a,b] ≤ 1 ∀i. ∈ T

γ[a,b] ≥ 0
p[a,b] ∈ Rn+.
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An Ideal Formulation

Remarks

There is a compact & tight formulation for generators. Moreover, this
a very general framework. Any additional constraints can be added so
long as Γ remains integer and the feasible dispatch problem remains a
polytope.

Allows for:

Arbitrary startup costs
On-time dependent ramping constraints (to model startup and
shutdown trajectories)
Multistage Stochastic UC
and more!

Cons of this approach:

Tight but large! Tc3 many variables per generator. (Though only T
many binomial variables are required).
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An Ideal Formulation

Lift and Project Cuts

Using the full model results in a huge linear programming problem.
The LP takes too long to solve!

Another idea is to use the 3-bin model in the formulation but use the
convex hull description to generate cuts.

This is called lift and project
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An Ideal Formulation

Computational Results

0 200 400 600 800 1000 1200 1400 1600
Runtime (s)

No User Cuts

Ramping Polytope Cuts

Figure: Computational Results for FERC Model (High Wind)
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Identical Generators

Identical Generators

Sometimes there are identical generators in the UC problem.

Unfortunately, we cannot aggregate all generators into the 3-bin
model.

We can aggregate if there are no ramping constraints outside of startup
and shutdown!

However, we can easily account for additional identical generators in
the extended formulation!

Using the dynamic program context, this can be seen by performing
multiple walks along the network.
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Identical Generators

A Picture
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Identical Generators

How Often Are There Identical Generators?

Looking at a test case from California ISO (CAISO):

Of 610 generators, 465 are unique, giving a reduction of 20%!
Performing this aggregation solves problems 40% faster (from about 2
minutes to about 1 minute)!
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Identical Generators

How About Almost Identical?

Consider the following 2 generators (actually in the CAISO set!):

Name Min Max a b c

GEN 1264 11.1375 24.75 0.23224 2.71508 0.0003066
GEN 1477 11.43 25.4 0.23834 1.89607 0.0002988

Are they really different?

This happens a lot in the data!

Solution: relax the data so they appear identical!
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Identical Generators

How About Almost Identical?

Turn this:

Name Min Max a b c

GEN 1264 11.1375 24.75 0.23224 2.71508 0.0003066
GEN 1477 11.43 25.4 0.23834 1.89607 0.0002988

Into this:

Name Min Max a b c

GEN 1264 11.1375 25.75 0.23224 1.89607 0.0002988
GEN 1477 11.1375 25.75 0.23224 1.89607 0.0002988

To tighten things up a bit, we can add the constraint:

c1264+1477 ≥ 1.89607p1264+1477
c1264+1477 ≥ b+ 2.71508p1264+1477
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Identical Generators

Results

The data shows: There are a lot of almost identical generators.

Aggregating near identical generators can reduce the number of
generators from 610 to 315, for a 48% decrease (compared to 24%
exactly identical).

Solving the relaxed problems will be, we hope, much faster!

The solutions are not always feasible, but they can be easily modified
to become feasible.

These modified solutions tend to be very close to the optimal solution
(bases on limited tests, within 0.1%).
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Identical Generators

Computational Results
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Figure: Computational Results for Almost Identical: CAISO
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Identical Generators

Future Work & Conclusions

Future Work

We are in the process of trying to use the almost identical
relaxation in order to find an exact optimal solution to the UC.

To date we have ignored transmission. These ideas are still
applicable even if generators are in different locations!

Conclusions

We were able to come up with a compact convex hull description
of a very important problem.

This model allowed us to exploit the special structure in these Unit
Commitment problems.
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