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Introduction

Reserves in UC

m Wind & Solar introduce uncertainty = more difficult planning
m Optimal quantity of reserves must be scheduled

m = providing flexibility to face real-time operation
= Stochastic UCs

m Implicit reserves
m | computational burden

m Reserve-based Deterministic UC

m Explicit reserves
m | computational burden
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Reserves Logic

m Feasible dispatch of the upper envelope of wind

m Guarantees that a max. wind can be accommodated, otherwise:
m readjust power-capacity reserves requirement

m Feasible dispatch of the lower envelope of wind

m Adds robustness with this worst-case scenario
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Single-level MIP for the Robust UC

m By considering dispatchable wind, the Robust UC becomes?
min b’z 4 max minc'p min b'z+4+c'p
s.t. Fx <f, x is binary s.t. Fax <f, x is binary
Hp+Jw<h VEc= = Hp+Jw<h
Ax+Bp<g VEECE Az +Bp<g
w<E VEEE ww

where uncertainty set = is defined by & € [w,,, Wyt VE€ T, b€ BY
m Which is a considerably simpler problem, we avoid

m The local optimum of the bilinear program
m Further complexity when trying to solve the two-level bilinear + MIP

26, Morales-Espana, A. Lorca, L. Ramirez-Elizondo, and M. M. de Weerdt, “Robust Unit Commitment with
Dispatchable Wind,"” Delft University of Technology, Technical Report, 2016
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Hp+Jw<h VEc= = Hp+Jw<h
Ax+Bp<g VEECE Az +Bp<g
w<E VEEE ww

where uncertainty set = is defined by & € [w,,, Wyt VE€ T, b€ BY
m Which is a considerably simpler problem, we avoid

m The local optimum of the bilinear program
m Further complexity when trying to solve the two-level bilinear + MIP

m The worst-case wind scenario can be known a priori

m this key worst-case scenario gives robustness to the UC solution

26, Morales-Espana, A. Lorca, L. Ramirez-Elizondo, and M. M. de Weerdt, “Robust Unit Commitment with
Dispatchable Wind,"” Delft University of Technology, Technical Report, 2016
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Reserves Logic

m Feasible dispatch of the upper envelope of wind

m Guarantees that a max. wind can be accommodated, otherwise:
m readjust power-capacity reserves requirement

m Feasible dispatch of the lower envelope of wind

m Adds robustness with this worst-case scenario
m readjust power-capacity reserves requirement

m The procured ramp-capability < power-capacity reserves

®m = readjust ramp-capability reserves requirement

<3
TUDelft 9/ 23



Outline

Case Studies

<3
TUDelft



Case Study

m |EEE-118 bus system

m 54 thermal units, 3 wind farms, 186 transmission lines
m 24 hours time span

<3 /
TUDelft L1yaes



Case Study

m |EEE-118 bus system
m 54 thermal units, 3 wind farms, 186 transmission lines
m 24 hours time span

m 3 Power-based UC formulations implemented:

m DetRes®: UC with traditional power-capacity reserves
m Stch: Stochastic UC
m ResRPC*: UC with Power-capacity & Ramp-capability reserves

3G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, “An MIP Formulation for Joint Market-Clearing of Energy and
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Case Study

m |EEE-118 bus system
m 54 thermal units, 3 wind farms, 186 transmission lines
m 24 hours time span

m 3 Power-based UC formulations implemented:

m DetRes®: UC with traditional power-capacity reserves
m Stch: Stochastic UC
m ResRPC*: UC with Power-capacity & Ramp-capability reserves

m All problems solved with Cplex 12.6.0, stop criteria:

m 0.05% opt. tolerance or 2h time limit
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Scheduling & Evaluation Stages

m Scheduling Stage: 20 in-sample scenarios

m Obtains hourly commitment decisions for all units
m by solving hourly network-constrained UCs

m Reserves obtained from the in-sample scenarios:
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Scheduling & Evaluation Stages

m Scheduling Stage: 20 in-sample scenarios

m Obtains hourly commitment decisions for all units
m by solving hourly network-constrained UCs
m Reserves obtained from the in-sample scenarios

m Evaluation Stage: 200 out-of-sample scenarios

m 5 min dispatch decisions for all units
m by solving 5-min network-constrained optimal dispatch
m Penalizations:

m Demand-balance violation costs: 10000 $/MWh
m Network violation costs: 5000 $/MWh
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Scheduling Performance

Scheduling (hourly)
UC Costs' [k$] | # SU

DetRes 55.49 16
Stch 54.77 12
| ResRPC | \ \

T Commitment cost
m Stch optimized the level of reserves by dispatching wind

m Scheduled less units
m Lower UC costs than DetRes
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Scheduling Performance

Scheduling (hourly)
UC Costs' [k$] | # SU

DetRes 55.49 16
Stch 54.77 12
| ResRPC | 51.98 | 14 |

T Commitment cost

m Stch optimized the level of reserves by dispatching wind

m Scheduled less units
m Lower UC costs than DetRes

m ResRPC also optimized the level of reserves
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Evaluation: 200 out-of-sample scenarios

Scheduling (hourly) Real-time dispatch (5-min)
UC Costs' [k$] | # SU Costs* [k§] | # Tot. Viol.
DetRes 55.49 16 857.20 611
Stch 54.77 12 808.97 259
| ResRPC | 51.98 | 14 | \ |

T Commitment cost *average dispatch + penalty costs of the 200 scenarios

m Compared with Stch, DetRes presented

m 6% higher average dispatch costs
m 2.4x more violations
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Evaluation: 200 out-of-sample scenarios

Scheduling (hourly) Real-time dispatch (5-min)
UC Costs' [k$] | # SU Costs* [k§] | # Tot. Viol.
DetRes 55.49 16 857.20 611
Stch 54.77 12 808.97 259
| ResRPC | 51.98 | 14 | 77082 | 2 \

T Commitment cost *average dispatch + penalty costs of the 200 scenarios

m Compared with Stch, DetRes presented
m 6% higher average dispatch costs
m 2.4x more violations

m Compared with Stch, ResRPC presented

m 5% lower average dispatch costs

m 99% less violations
m mainly due to the robustness of ResRPC
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Evaluation: 20 in-sample scenarios

Scheduling (hourly) Real-time dispatch (5-min)
UC Costs' [k$] | # SU Costs* [k§] | # Tot. Viol.
DetRes 55.49 16 803.46 611
Stch 54.77 12 768.79 12
| ResRPC | 51.98 | 14 | 77086 | 1

T Commitment cost *average dispatch + penalty costs of the 20 scenarios

m Compared with ResRPC, Stch presented

m 0.3% lower average dispatch costs
m even with 12x more violations
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Power- vs. Energy-based UC: o-of-s evaluation

Scheduling (hourly) Real-time dispatch (5-min)
UC Costs' [k$] | # SU Costs* [k$] | # Tot. Viol.
DetRes 55.49 16 857.2 611
Stch 54.77 12 808.97 259
| ResRPC | 51.98 | 14 | 77082 | 2 \
| E-Stch | 33.73 | 10 | 1166.67 | 1382 |
T Commitment cost *average dispatch + penalty costs of the 200 scenarios

m Compared with a traditional Energy-based stochastic UC E-Stch,
DetRes

m presented 27% lower average dispatch costs
m presented 56% less violations
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Power- vs. Energy-based UC: o-of-s evaluation

Scheduling (hourly) Real-time dispatch (5-min)
UC Costs' [k$] | # SU Costs* [k$] | # Tot. Viol.
DetRes 55.49 16 857.2 611
Stch 54.77 12 808.97 259
| ResRPC | 51.98 | 14 | 77082 | 2 \
| E-Stch | 33.73 | 10 | 1166.67 | 1382 |
T Commitment cost *average dispatch + penalty costs of the 200 scenarios

m Compared with a traditional Energy-based stochastic UC E-Stch,
DetRes
m presented 27% lower average dispatch costs

m presented 56% less violations
m and solved 23.6x faster
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Computational Burden

m The power-based formulations DetRes®, Stch, ResRPC®

m include startup and shutdown power trajectories’

m are built upon a convex-hull®
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Computational Burden

m The power-based formulations DetRes®, Stch, ResRPC®

m include startup and shutdown power trajectories’

m are built upon a convex-hull®

m Two energy-based UC formulations:

m E-Stch?, also based on a convex-hul
m TE-Stch!!, Traditional formulation, var. startup costs'?
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Computational Burden

| MIP Time [s] | LP relaxation [s] |

DetRes 8.8 0.34
Stch 867.8 38.1
ResRPC | 90.4 \ 16.8 \
E-Stch 206.5 22.1
TE-Stch

m ResRPC solved

m 10.3x slower than DetRes
m but 9.6x faster than Stch
m and 2.3x faster than E-Stch
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Computational Burden

| MIP Time [s] | LP relaxation [s] |

DetRes 8.8 0.34
Stch 867.8 38.1
ResRPC | 90.4 \ 16.8 \
E-Stch 206.5 22.1
TE-Stch 7200 246.8

m ResRPC solved

m 10.3x slower than DetRes
m but 9.6x faster than Stch
m and 2.3x faster than E-Stch
m E-Stch could not reach 0.05% within the 2h time limit
m ResRPC, Stch and DetRes TE-Stch solved the MIP before E-Stch
solved the LP
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Conclusions

Conclusions

m A power-based UC with Power-capacity and Ramp-capability
reserves
better represents requirements to accommodate wind
outperforms a power-based UC with traditional reserves

|

|

m can beat a stochastic power-based UC

m is deterministic = | computational burden

m Compared with traditional energy-based UC, the deterministic
power-based UCs

m presented lower average costs and fewer violations in the
out-of-sample 5/min dispatch evaluation
m while solving MIP problems faster
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Conclusions

Questions

Thank you for your attention

Contact Information:
g.a.moralesespama@tudelft.nl
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