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Wind & Solar introduce uncertainty ⇒ more difficult planning

Optimal quantity of reserves must be scheduled

⇒ providing flexibility to face real-time operation

Stochastic UCs

Implicit reserves
↑ computational burden

Reserve-based Deterministic UC

Explicit reserves
↓ computational burden
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Capacity & Ramp Reserves Reserve Logic

Single-level MIP for the Robust UC

By considering dispatchable wind, the Robust UC becomes2

min b⊤x + max min c⊤p

s.t. Fx ≤ f , x is binary
Hp + Jw ≤ h, ∀ξ ∈ Ξ
Ax + Bp ≤ g, ∀ξ ∈ Ξ
w ≤ ξ, ∀ξ ∈ Ξ

≡

min b⊤x + c⊤p

s.t. Fx ≤ f , x is binary
Hp + Jw ≤ h

Ax + Bp ≤ g

w ≤ w

where uncertainty set Ξ is defined by ξbt ∈ [w
bt

, wbt] ∀t ∈ T , b ∈ Bw

Which is a considerably simpler problem, we avoid

The local optimum of the bilinear program
Further complexity when trying to solve the two-level bilinear + MIP

2G. Morales-Espana, A. Lorca, L. Ramírez-Elizondo, and M. M. de Weerdt, “Robust Unit Commitment with
Dispatchable Wind,” Delft University of Technology, Technical Report, 2016
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bt

, wbt] ∀t ∈ T , b ∈ Bw

Which is a considerably simpler problem, we avoid

The local optimum of the bilinear program
Further complexity when trying to solve the two-level bilinear + MIP

The worst-case wind scenario can be known a priori

this key worst-case scenario gives robustness to the UC solution
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Reserves Logic

Feasible dispatch of the upper envelope of wind

Guarantees that a max. wind can be accommodated, otherwise:
readjust power-capacity reserves requirement

Feasible dispatch of the lower envelope of wind

Adds robustness with this worst-case scenario
readjust power-capacity reserves requirement

The procured ramp-capability ≤ power-capacity reserves

⇒ readjust ramp-capability reserves requirement
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54 thermal units, 3 wind farms, 186 transmission lines
24 hours time span

3 Power-based UC formulations implemented:

DetRes3: UC with traditional power-capacity reserves
Stch: Stochastic UC
ResRPC4: UC with Power-capacity & Ramp-capability reserves

All problems solved with Cplex 12.6.0, stop criteria:

0.05% opt. tolerance or 2h time limit
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Case Studies

Scheduling & Evaluation Stages

Scheduling Stage: 20 in-sample scenarios

Obtains hourly commitment decisions for all units
by solving hourly network-constrained UCs
Reserves obtained from the in-sample scenarios:
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Case Studies

Scheduling & Evaluation Stages

Scheduling Stage: 20 in-sample scenarios

Obtains hourly commitment decisions for all units
by solving hourly network-constrained UCs
Reserves obtained from the in-sample scenarios

Evaluation Stage: 200 out-of-sample scenarios

5 min dispatch decisions for all units
by solving 5-min network-constrained optimal dispatch
Penalizations:

Demand-balance violation costs: 10000 $/MWh
Network violation costs: 5000 $/MWh
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ResRPC 51.98 14
†Commitment cost
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Compared with Stch, DetRes presented

6% higher average dispatch costs
2.4x more violations

Compared with Stch, ResRPC presented

5% lower average dispatch costs
99% less violations
mainly due to the robustness of ResRPC
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Case Studies

Evaluation: 20 in-sample scenarios

Scheduling (hourly) Real-time dispatch (5-min)
UC Costs† [k$] # SU Costs∗ [k$] # Tot. Viol.

DetRes 55.49 16 803.46 611

Stch 54.77 12 768.79 12

ResRPC 51.98 14 770.86 1
†Commitment cost ∗average dispatch + penalty costs of the 20 scenarios

Compared with ResRPC, Stch presented

0.3% lower average dispatch costs
even with 12x more violations
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Power- vs. Energy-based UC: o-of-s evaluation

Scheduling (hourly) Real-time dispatch (5-min)
UC Costs† [k$] # SU Costs∗ [k$] # Tot. Viol.
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Stch 54.77 12 808.97 259
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Compared with a traditional Energy-based stochastic UC E-Stch,
DetRes

presented 27% lower average dispatch costs
presented 56% less violations
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UC Costs† [k$] # SU Costs∗ [k$] # Tot. Viol.

DetRes 55.49 16 857.2 611

Stch 54.77 12 808.97 259

ResRPC 51.98 14 770.82 2

E-Stch 33.73 10 1166.67 1382
†Commitment cost ∗average dispatch + penalty costs of the 200 scenarios

Compared with a traditional Energy-based stochastic UC E-Stch,
DetRes

presented 27% lower average dispatch costs
presented 56% less violations
and solved 23.6x faster
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Case Studies

Computational Burden
The power-based formulations DetRes5, Stch, ResRPC6

include startup and shutdown power trajectories7

are built upon a convex-hull8
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are built upon a convex-hull8

Two energy-based UC formulations:

E-Stch9, also based on a convex-hull10

TE-Stch11, Traditional formulation, var. startup costs12
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MIP Time [s] LP relaxation [s]

DetRes 8.8 0.34

Stch 867.8 38.1
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TE-Stch 7200 246.8

ResRPC solved

10.3x slower than DetRes
but 9.6x faster than Stch
and 2.3x faster than E-Stch

E-Stch could not reach 0.05% within the 2h time limit

ResRPC, Stch and DetRes TE-Stch solved the MIP before E-Stch
solved the LP
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Conclusions

Conclusions

A power-based UC with Power-capacity and Ramp-capability
reserves

better represents requirements to accommodate wind
outperforms a power-based UC with traditional reserves
can beat a stochastic power-based UC
is deterministic ⇒ ↓ computational burden

Compared with traditional energy-based UC, the deterministic
power-based UCs

presented lower average costs and fewer violations in the
out-of-sample 5/min dispatch evaluation
while solving MIP problems faster
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Conclusions

Questions

Thank you for your attention

Contact Information:
g.a.moralesespama@tudelft.nl
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