Power-Capacity and Ramp-Capability Reserves for Wind Integration in Power-based Unit Commitment¹

Germán Morales-España[†] Ross Baldick*, Javier García-Gonzalez[‡], and Andres Ramos[‡]

> [†]Delft University of Technology, Delft, The Netherlands *University of Texas, Austin, Texas [‡]Universidad Pontificia Comillas, Madrid, Spain

FERC: Increasing Market and Planning Efficiency through Improved Software

June 2016

¹G. Morales-España, R. Baldick, J. García-González, and A. Ramos, "Power-Capacity and Ramp-Capability Reserves for Wind Integration in Power-Based UC,", *IEEE Transactions on Sustainable Energy*, vol. 7, no. 2, pp. 614–624, Apr. 2016

Outline

1 Introduction

2 Power-Capacity and Ramp-Capability Reserves

- Why Ramp-Capability Reserves?
- Reserves Logic

3 Case Studies

4 Conclusions

■ Wind & Solar introduce uncertainty ⇒ more difficult planning

- Wind & Solar introduce uncertainty ⇒ more difficult planning
- Optimal quantity of <u>reserves</u> must be scheduled
 - $\blacksquare \Rightarrow$ providing flexibility to face real-time operation

- Wind & Solar introduce uncertainty ⇒ more difficult planning
- Optimal quantity of <u>reserves</u> must be scheduled
 - $\blacksquare \Rightarrow$ providing flexibility to face real-time operation
- Stochastic UCs
 - Implicit reserves
 - \uparrow computational burden

- Wind & Solar introduce uncertainty ⇒ more difficult planning
- Optimal quantity of <u>reserves</u> must be scheduled
 - $\blacksquare \Rightarrow$ providing flexibility to face real-time operation

Stochastic UCs

- Implicit reserves
- computational burden

Reserve-based Deterministic UC

- Explicit reserves
- $\blacksquare \downarrow$ computational burden

Outline

1 Introduction

2 Power-Capacity and Ramp-Capability ReservesWhy Ramp-Capability Reserves?

Reserves Logic

3 Case Studies

4 Conclusions

Stochastic

Implicitly guarantees availability of resources for a capacity and ramp range

Stochastic

Implicitly guarantees availability of resources for a capacity and ramp range

Stochastic

Implicitly guarantees availability of resources for a capacity and ramp range

Capacity & Ramp Reserves

Explicitly guarantee availability of resources for capacity and ramp reserves requierements

Need for a clear difference between Power-Capacity and Ramp-Capability Requirements

Stochastic

Implicitly guarantees availability of resources for a capacity and ramp range

Capacity & Ramp Reserves

Explicitly guarantee availability of resources for capacity and ramp reserves requierements

Need for a clear difference between Power-Capacity and Ramp-Capability Requirements

Outline

1 Introduction

2 Power-Capacity and Ramp-Capability Reserves Why Ramp-Capability Reserves? Reserves Logic

3 Case Studies

4 Conclusions

Reserves Logic

- Feasible dispatch of the upper envelope of wind
 - Guarantees that a max. wind can be accommodated, otherwise:
 - readjust power-capacity reserves requirement

Reserves Logic

- Feasible dispatch of the upper envelope of wind
 - Guarantees that a max. wind can be accommodated, otherwise:readjust power-capacity reserves requirement
- Feasible dispatch of the lower envelope of wind
 - Adds robustness with this worst-case scenario

Single-level MIP for the Robust UC

By considering dispatchable wind, the Robust UC becomes²

$$\begin{array}{lll} \min & \mathbf{b}^{\top} \boldsymbol{x} + \max \min \mathbf{c}^{\top} \boldsymbol{p} & \min & \mathbf{b}^{\top} \boldsymbol{x} + \mathbf{c}^{\top} \boldsymbol{p} \\ \text{s.t.} & \mathbf{F} \boldsymbol{x} \leq \mathbf{f}, \ \boldsymbol{x} \text{ is binary} & \text{s.t.} & \mathbf{F} \boldsymbol{x} \leq \mathbf{f}, \ \boldsymbol{x} \text{ is binary} \\ \mathbf{H} \boldsymbol{p} + \mathbf{J} \boldsymbol{w} \leq \mathbf{h}, \ \forall \boldsymbol{\xi} \in \Xi & = & \mathbf{H} \boldsymbol{p} + \mathbf{J} \boldsymbol{w} \leq \mathbf{h} \\ \mathbf{A} \boldsymbol{x} + \mathbf{B} \boldsymbol{p} \leq \mathbf{g}, \ \forall \boldsymbol{\xi} \in \Xi & \mathbf{A} \boldsymbol{x} + \mathbf{B} \boldsymbol{p} \leq \mathbf{g} \\ \boldsymbol{w} \leq \boldsymbol{\xi}, \ \forall \boldsymbol{\xi} \in \Xi & \boldsymbol{w} \leq \underline{\mathbf{w}} \end{array}$$

where uncertainty set Ξ is defined by $\xi_{bt} \in [\underline{w}_{bt}, \overline{w}_{bt}] \ \forall t \in \mathcal{T}, \ b \in \mathcal{B}^w$

Which is a considerably simpler problem, we avoid

The local optimum of the bilinear program

Further complexity when trying to solve the two-level bilinear + MIP

²G. Morales-Espana, A. Lorca, L. Ramírez-Elizondo, and M. M. de Weerdt, "Robust Unit Commitment with Dispatchable Wind," Delft University of Technology, Technical Report, 2016

Single-level MIP for the Robust UC

By considering dispatchable wind, the Robust UC becomes²

$$\begin{array}{lll} \min & \mathbf{b}^{\top} \boldsymbol{x} + \max \min \mathbf{c}^{\top} \boldsymbol{p} & \min & \mathbf{b}^{\top} \boldsymbol{x} + \mathbf{c}^{\top} \boldsymbol{p} \\ \text{s.t.} & \mathbf{F} \boldsymbol{x} \leq \mathbf{f}, \ \boldsymbol{x} \text{ is binary} & \text{s.t.} & \mathbf{F} \boldsymbol{x} \leq \mathbf{f}, \ \boldsymbol{x} \text{ is binary} \\ \mathbf{H} \boldsymbol{p} + \mathbf{J} \boldsymbol{w} \leq \mathbf{h}, \ \forall \boldsymbol{\xi} \in \Xi & = & \mathbf{H} \boldsymbol{p} + \mathbf{J} \boldsymbol{w} \leq \mathbf{h} \\ \mathbf{A} \boldsymbol{x} + \mathbf{B} \boldsymbol{p} \leq \mathbf{g}, \ \forall \boldsymbol{\xi} \in \Xi & \mathbf{A} \boldsymbol{x} + \mathbf{B} \boldsymbol{p} \leq \mathbf{g} \\ \boldsymbol{w} \leq \boldsymbol{\xi}, \ \forall \boldsymbol{\xi} \in \Xi & \boldsymbol{w} \leq \underline{\mathbf{w}} \end{array}$$

where uncertainty set Ξ is defined by $\xi_{bt} \in [\underline{w}_{bt}, \overline{w}_{bt}] \ \forall t \in \mathcal{T}, \ b \in \mathcal{B}^w$

Which is a considerably simpler problem, we avoid

The local optimum of the bilinear program

- Further complexity when trying to solve the two-level bilinear + MIP
- The worst-case wind scenario can be known a priori
 - this key worst-case scenario gives robustness to the UC solution

²G. Morales-Espana, A. Lorca, L. Ramírez-Elizondo, and M. M. de Weerdt, "Robust Unit Commitment with Dispatchable Wind," Delft University of Technology, Technical Report, 2016

Reserves Logic

Feasible dispatch of the upper envelope of wind

- Guarantees that a max. wind can be accommodated, otherwise:
 readjust power-capacity reserves requirement
- Feasible dispatch of the lower envelope of wind
 - Adds robustness with this worst-case scenario
 - readjust power-capacity reserves requirement

Reserves Logic

Feasible dispatch of the upper envelope of wind

- Guarantees that a max. wind can be accommodated, otherwise:
- readjust power-capacity reserves requirement
- Feasible dispatch of the lower envelope of wind
 - Adds robustness with this worst-case scenario
 - readjust power-capacity reserves requirement
- The procured ramp-capability ≤ power-capacity reserves
 - $\blacksquare \Rightarrow readjust ramp-capability reserves requirement$

Outline

1 Introduction

2 Power-Capacity and Ramp-Capability Reserves

- Why Ramp-Capability Reserves?
- Reserves Logic

3 Case Studies

4 Conclusions

Case Study

IEEE-118 bus system

- 54 thermal units, 3 wind farms, 186 transmission lines
- 24 hours time span

Case Study

IEEE-118 bus system

- 54 thermal units, 3 wind farms, 186 transmission lines
- 24 hours time span

■ 3 Power-based UC formulations implemented:

- DetRes³: UC with traditional power-capacity reserves
- **Stch**: Stochastic UC
- ResRPC⁴: UC with Power-capacity & Ramp-capability reserves

³G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, "An MIP Formulation for Joint Market-Clearing of Energy and Reserves Based on Ramp Scheduling," *IEEE Transactions on Power Systems*, vol. 29, no. 1, pp. 476–488, 2014

⁴G. Morales-España, R. Baldick, J. García-González, and A. Ramos, "Power-Capacity and Ramp-Capability Reserves for Wind Integration in Power-Based UC,", *IEEE Transactions on Sustainable Energy*, vol. 7, no. 2, pp. 614–624, Apr. 2016

Case Study

IEEE-118 bus system

- 54 thermal units, 3 wind farms, 186 transmission lines
- 24 hours time span
- 3 Power-based UC formulations implemented:
 - DetRes³: UC with traditional power-capacity reserves
 - Stch: Stochastic UC
 - ResRPC⁴: UC with Power-capacity & Ramp-capability reserves
- All problems solved with Cplex 12.6.0, stop criteria:
 - 0.05% opt. tolerance or 2h time limit

³G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, "An MIP Formulation for Joint Market-Clearing of Energy and Reserves Based on Ramp Scheduling," *IEEE Transactions on Power Systems*, vol. 29, no. 1, pp. 476–488, 2014

⁴G. Morales-España, R. Baldick, J. García-González, and A. Ramos, "Power-Capacity and Ramp-Capability Reserves for Wind Integration in Power-Based UC,", *IEEE Transactions on Sustainable Energy*, vol. 7, no. 2, pp. 614–624, Apr. 2016

Scheduling & Evaluation Stages

Scheduling Stage: 20 in-sample scenarios

- Obtains hourly commitment decisions for all units
- by solving hourly network-constrained UCs
- Reserves obtained from the in-sample scenarios:

Scheduling & Evaluation Stages

Scheduling Stage: 20 in-sample scenarios

- Obtains hourly commitment decisions for all units
- by solving hourly network-constrained UCs
- Reserves obtained from the in-sample scenarios

Evaluation Stage: 200 out-of-sample scenarios

- **5** min dispatch decisions for all units
- by solving **5-min** network-constrained optimal dispatch
- Penalizations:
 - Demand-balance violation costs: 10000 \$/MWh
 - Network violation costs: 5000 \$/MWh

Scheduling Performance

	Scheduling (hourly)		
	UC Costs† [k\$]	# SU	
DetRes	55.49	16	
Stch	54.77	12	
ResRPC			

[†]Commitment cost

Stch optimized the level of reserves by dispatching wind

- Scheduled less units
- Lower UC costs than DetRes

Scheduling Performance

	Scheduling (hourly)		
	UC Costs† [k\$]	# SU	
DetRes	55.49	16	
Stch	54.77	12	
ResRPC	51.98	14	

[†]Commitment cost

Stch optimized the level of reserves by dispatching wind

- Scheduled less units
- Lower UC costs than DetRes

ResRPC also optimized the level of reserves

Evaluation: 200 out-of-sample scenarios

	Scheduling (hourly)		Real-time dispatch (5-min)	
	UC Costs† [k\$]	# SU	Costs* [k\$]	# Tot. Viol.
DetRes	55.49	16	857.20	611
Stch	54.77	12	808.97	259
ResRPC	51.98	14		

[†]Commitment cost

*average dispatch + penalty costs of the 200 scenarios

- Compared with Stch, DetRes presented
 - **6%** higher average dispatch costs
 - 2.4x more violations

Evaluation: 200 out-of-sample scenarios

	Scheduling (hourly)		Real-time dispatch (5-min)	
	UC Costs† [k\$]	# SU	Costs* [k\$]	# Tot. Viol.
DetRes	55.49	16	857.20	611
Stch	54.77	12	808.97	259
ResRPC	51.98	14	770.82	2

[†]Commitment cost

* average dispatch + penalty costs of the 200 scenarios

- Compared with Stch, DetRes presented
 - **6%** higher average dispatch costs
 - 2.4x more violations
- Compared with Stch, ResRPC presented
 - **5%** lower average dispatch costs
 - 99% less violations

Evaluation: 200 out-of-sample scenarios

	Scheduling (hourly)		Real-time dispatch (5-min)	
	UC Costs† [k\$]	# SU	Costs* [k\$]	# Tot. Viol.
DetRes	55.49	16	857.20	611
Stch	54.77	12	808.97	259
ResRPC	51.98	14	770.82	2

[†]Commitment cost

* average dispatch + penalty costs of the 200 scenarios

- Compared with Stch, DetRes presented
 - **6%** higher average dispatch costs
 - 2.4x more violations
- Compared with Stch, ResRPC presented
 - **5%** lower average dispatch costs
 - 99% less violations
 - mainly due to the robustness of ResRPC

Evaluation: 20 in-sample scenarios

	Scheduling (hourly)		Real-time dispatch (5-min)	
	UC Costs† [k\$]	# SU	Costs* [k\$]	# Tot. Viol.
DetRes	55.49	16	803.46	611
Stch	54.77	12	768.79	12
ResRPC	51.98	14	770.86	1

[†]Commitment cost

* average dispatch + penalty costs of the 20 scenarios

Compared with ResRPC, Stch presented

- **0.3%** lower average dispatch costs
- even with 12x more violations

Power- vs. Energy-based UC: o-of-s evaluation

	Scheduling (hourly)		Real-time dispatch (5-min)	
	UC Costs† [k\$]	# SU	Costs* [k\$]	# Tot. Viol.
DetRes	55.49	16	857.2	611
Stch	54.77	12	808.97	259
ResRPC	51.98	14	770.82	2
E-Stch	33.73	10	1166.67	1382

[†]Commitment cost

* average dispatch + penalty costs of the 200 scenarios

Compared with a traditional Energy-based stochastic UC E-Stch, DetRes

- presented 27% lower average dispatch costs
- presented 56% less violations

Power- vs. Energy-based UC: o-of-s evaluation

	Scheduling (hourly)		Real-time dispatch (5-min)	
	UC Costs† [k\$]	# SU	Costs* [k\$]	# Tot. Viol.
DetRes	55.49	16	857.2	611
Stch	54.77	12	808.97	259
ResRPC	51.98	14	770.82	2
E-Stch	33.73	10	1166.67	1382

[†]Commitment cost

* average dispatch + penalty costs of the 200 scenarios

Compared with a traditional Energy-based stochastic UC E-Stch, DetRes

- presented 27% lower average dispatch costs
- presented 56% less violations
- and solved **23.6x** faster

■ The power-based formulations DetRes⁵, Stch, ResRPC⁶

- include startup and shutdown power trajectories⁷
- are built upon a convex-hull⁸

⁷G. Morales-Espana, J. M. Latorre, and A. Ramos, "Tight and Compact MILP Formulation of Start-Up and Shut-Down Ramping in Unit Commitment," *IEEE Transactions on Power Systems*, vol. 28, no. 2, pp. 1288–1296, 2013

⁸G. Morales-España, C. Gentile, and A. Ramos, "Tight MIP formulations of the power-based unit commitment problem," en, *OR Spectrum*, vol. 37, no. 4, pp. 929–950, May 2015

⁵G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, "An MIP Formulation for Joint Market-Clearing of Energy and Reserves Based on Ramp Scheduling," *IEEE Transactions on Power Systems*, vol. 29, no. 1, pp. 476–488, 2014

⁶G. Morales-España, R. Baldick, J. García-González, and A. Ramos, "Power-Capacity and Ramp-Capability Reserves for Wind Integration in Power-Based UC,", *IEEE Transactions on Sustainable Energy*, vol. 7, no. 2, pp. 614–624, Apr. 2016

■ The power-based formulations DetRes⁵, Stch, ResRPC⁶

- include startup and shutdown power trajectories⁷
- are built upon a convex-hull⁸
- Two energy-based UC formulations:
 - E-Stch⁹, also based on a convex-hull¹⁰
 - **TE-Stch**¹¹, Traditional formulation, var. startup costs¹²

⁵G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, "An MIP Formulation for Joint Market-Clearing of Energy and Reserves Based on Ramp Scheduling," *IEEE Transactions on Power Systems*, vol. 29, no. 1, pp. 476–488, 2014

⁶G. Morales-España, R. Baldick, J. García-González, and A. Ramos, "Power-Capacity and Ramp-Capability Reserves for Wind Integration in Power-Based UC,", *IEEE Transactions on Sustainable Energy*, vol. 7, no. 2, pp. 614–624, Apr. 2016

⁷G. Morales-Espana, J. M. Latorre, and A. Ramos, "Tight and Compact MILP Formulation of Start-Up and Shut-Down Ramping in Unit Commitment," *IEEE Transactions on Power Systems*, vol. 28, no. 2, pp. 1288–1296, 2013

⁸G. Morales-España, C. Gentile, and A. Ramos, "Tight MIP formulations of the power-based unit commitment problem," en, *OR Spectrum*, vol. 37, no. 4, pp. 929–950, May 2015

⁹G. Morales-Espana, J. M. Latorre, and A. Ramos, "Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem," *IEEE Transactions on Power Systems*, vol. 28, no. 4, pp. 4897–4908, Nov. 2013

¹⁰C. Gentile, G. Morales-España, and A. Ramos, "A tight MIP formulation of the unit commitment problem with start-up and shut-down constraints," en, EURO Journal on Computational Optimization, pp. 1–25, Apr. 2016

¹¹FERC, "RTO Unit Commitment Test System," Federal Energy and Regulatory Commission, Washington DC, USA, Tech. Rep., Jul. 2012, p. 55

¹²M. Carrion and J. Arroyo, "A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem," *IEEE Transactions on Power Systems*, vol. 21, no. 3, pp. 1371–1378, 2006

	MIP Time [s]	LP relaxation [s]
DetRes	8.8	0.34
Stch	867.8	38.1
ResRPC	90.4	16.8
E-Stch	206.5	22.1
TE-Stch		

ResRPC solved

- 10.3x slower than DetRes
- but 9.6x faster than Stch
- and 2.3x faster than E-Stch

	MIP Time [s]	LP relaxation [s]
DetRes	8.8	0.34
Stch	867.8	38.1
ResRPC	90.4	16.8
E-Stch	206.5	22.1
TE-Stch	7200	246.8

ResRPC solved

- 10.3x slower than DetRes
- but 9.6x faster than Stch
- and 2.3x faster than E-Stch

■ E-Stch could not reach 0.05% within the 2h time limit

	MIP Time [s]	LP relaxation [s]
DetRes	8.8	0.34
Stch	867.8	38.1
ResRPC	90.4	16.8
E-Stch	206.5	22.1
TE-Stch	7200	246.8

ResRPC solved

- 10.3x slower than DetRes
- but 9.6x faster than Stch
- and 2.3x faster than E-Stch
- E-Stch could not reach 0.05% within the 2h time limit
- ResRPC, Stch and DetRes TE-Stch solved the MIP before E-Stch solved the LP

Outline

1 Introduction

2 Power-Capacity and Ramp-Capability Reserves

- Why Ramp-Capability Reserves?
- Reserves Logic

3 Case Studies

4 Conclusions

Conclusions

A power-based UC with Power-capacity and Ramp-capability reserves

- better represents requirements to accommodate wind
- outperforms a power-based UC with traditional reserves
- can beat a stochastic power-based UC

Conclusions

A power-based UC with Power-capacity and Ramp-capability reserves

- better represents requirements to accommodate wind
- outperforms a power-based UC with traditional reserves
- can beat a stochastic power-based UC
- is deterministic $\Rightarrow \downarrow$ computational burden

Conclusions

A power-based UC with Power-capacity and Ramp-capability reserves

- better represents requirements to accommodate wind
- outperforms a power-based UC with traditional reserves
- can beat a stochastic power-based UC
- is deterministic $\Rightarrow \downarrow$ computational burden
- Compared with traditional energy-based UC, the deterministic power-based UCs
 - presented lower average costs and fewer violations in the out-of-sample 5/min dispatch evaluation
 - while solving MIP problems faster

Questions

Thank you for your attention

Contact Information: g.a.moralesespama@tudelft.nl

For Further Reading

M. Carrion and J. Arroyo, "A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem," *IEEE Transactions on Power Systems*, vol. 21, no. 3, pp. 1371–1378, 2006.

- FERC, "RTO Unit Commitment Test System," Federal Energy and Regulatory Commission, Washington DC, USA, Tech. Rep., Jul. 2012, p. 55.
- C. Gentile, G. Morales-España, and A. Ramos, "A tight MIP formulation of the unit commitment problem with start-up and shut-down constraints," en, *EURO Journal on Computational Optimization*, pp. 1–25, Apr. 2016.

G. Morales-España, R. Baldick, J. García-González, and A. Ramos, "Power-Capacity and Ramp-Capability Reserves for Wind Integration in Power-Based UC," *IEEE Transactions on Sustainable Energy*, vol. 7, no. 2, pp. 614–624, Apr. 2016.

G. Morales-Espana, J. M. Latorre, and A. Ramos, "Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem," *IEEE Transactions on Power Systems*, vol. 28, no. 4, pp. 4897–4908, Nov. 2013.

For Further Reading (cont.)

G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, "An MIP Formulation for Joint Market-Clearing of Energy and Reserves Based on Ramp Scheduling," *IEEE Transactions on Power Systems*, vol. 29, no. 1, pp. 476–488, 2014.

G. Morales-España, C. Gentile, and A. Ramos, "Tight MIP formulations of the power-based unit commitment problem," en, *OR Spectrum*, vol. 37, no. 4, pp. 929–950, May 2015.

G. Morales-Espana, J. M. Latorre, and A. Ramos, "Tight and Compact MILP Formulation of Start-Up and Shut-Down Ramping in Unit Commitment," *IEEE Transactions on Power Systems*, vol. 28, no. 2, pp. 1288–1296, 2013.

G. Morales-Espana, A. Lorca, L. Ramírez-Elizondo, and M. M. de Weerdt, "Robust Unit Commitment with Dispatchable Wind," Delft University of Technology, Technical Report, 2016.

