Hidden Power System Inflexibilities Imposed by Traditional Unit Commitment Formulations

Germán Morales-España[†] Benjamin F. Hobbs*

[†]Delft University of Technology, Delft, The Netherlands *Johns Hopkins University, Baltimore, MD

FERC: Increasing Market and Planning Efficiency through Improved Software

June 2016

Outline

1 Introduction

2 Assumptions: Dealing with "Certainty"

- Infeasible Energy Delivery
- Startup and Shutdown Power Trajectories
- Power Scheduling: The Power-based UC

3 Case Studies: "Ideal" Stochastic UC

4 Conclusions

Present in all day-ahead & intra-day markets around the world

- Present in all day-ahead & intra-day markets around the world
- Unit Commitment (UC): optimal tool for short-term energy planning
- Wind & Solar introduce uncertainty \Rightarrow more difficult planning:
 - Reserve-Based deterministic UC
 - Stochastic or Robust UCs (endogenous reserves)

- Present in all day-ahead & intra-day markets around the world
- Unit Commitment (UC): optimal tool for short-term energy planning
- Wind & Solar introduce uncertainty ⇒ more difficult planning:
 - Reserve-Based deterministic UC
 - Stochastic or Robust UCs (endogenous reserves)
- Optimal quantity of reserves must be scheduled
 - providing flexibility for real-time operation
 - \blacksquare \Rightarrow the system can face real-time uncertainty

- Present in all day-ahead & intra-day markets around the world
- Unit Commitment (UC): optimal tool for short-term energy planning
- Wind & Solar introduce uncertainty ⇒ more difficult planning:
 - Reserve-Based deterministic UC
 - Stochastic or Robust UCs (endogenous reserves)
- Optimal quantity of reserves must be scheduled
 - providing flexibility for real-time operation
 - \blacksquare \Rightarrow the system can face real-time uncertainty

Underlying assumption:

UC generation schedule can always deliver what it promises

Outline

1 Introduction

2 Assumptions: Dealing with "Certainty"

- Infeasible Energy Delivery
- Startup and Shutdown Power Trajectories
 Power Scheduling: The Power-based UC
- 3 Case Studies: "Ideal" Stochastic UC

4 Conclusions

Generation levels are usually considered as energy blocks.

¹X. Guan, F. Gao, and A. Svoboda, "Energy delivery capacity and generation scheduling in the deregulated electric power market," *IEEE Transactions on Power Systems*, vol. 15, no. 4, pp. 1275–1280, Nov. 2000

Generation levels are usually considered as energy blocks.

¹X. Guan, F. Gao, and A. Svoboda, "Energy delivery capacity and generation scheduling in the deregulated electric power market," *IEEE Transactions on Power Systems*, vol. 15, no. 4, pp. 1275–1280, Nov. 2000

Generation levels are usually considered as energy blocks.

¹X. Guan, F. Gao, and A. Svoboda, "Energy delivery capacity and generation scheduling in the deregulated electric power market," *IEEE Transactions on Power Systems*, vol. 15, no. 4, pp. 1275–1280, Nov. 2000

Generation levels are usually considered as energy blocks.

¹X. Guan, F. Gao, and A. Svoboda, "Energy delivery capacity and generation scheduling in the deregulated electric power market," *IEEE Transactions on Power Systems*, vol. 15, no. 4, pp. 1275–1280, Nov. 2000

Generation levels are usually considered as energy blocks.

¹X. Guan, F. Gao, and A. Svoboda, "Energy delivery capacity and generation scheduling in the deregulated electric power market," *IEEE Transactions on Power Systems*, vol. 15, no. 4, pp. 1275–1280, Nov. 2000

Generation levels are usually considered as energy blocks.

¹X. Guan, F. Gao, and A. Svoboda, "Energy delivery capacity and generation scheduling in the deregulated electric power market," *IEEE Transactions on Power Systems*, vol. 15, no. 4, pp. 1275–1280, Nov. 2000

Outline

1 Introduction

2 Assumptions: Dealing with "Certainty"

- Infeasible Energy Delivery
- Startup and Shutdown Power Trajectories
- Power Scheduling: The Power-based UC
- 3 Case Studies: "Ideal" Stochastic UC

4 Conclusions

Startup (SU) and Shutdown (SD) power trajectories are neglected in UC scheduling stage: Why?

²G. Morales-Espana, J. M. Latorre, and A. Ramos, "Tight and compact MILP formulation of start-up and shut-down ramping in unit commitment," *IEEE Transactions on Power Systems*, vol. 28, no. 2, pp. 1288–1296, 2013

Startup (SU) and Shutdown (SD) power trajectories are neglected in UC scheduling stage: Why?

²G. Morales-Espana, J. M. Latorre, and A. Ramos, "Tight and compact MILP formulation of start-up and shut-down ramping in unit commitment," *IEEE Transactions on Power Systems*, vol. 28, no. 2, pp. 1288–1296, 2013

Startup (SU) and Shutdown (SD) power trajectories are neglected in UC scheduling stage: Why?

Insignificant impact is assumed? To avoid complex models?

²G. Morales-Espana, J. M. Latorre, and A. Ramos, "Tight and compact MILP formulation of start-up and shut-down ramping in unit commitment," *IEEE Transactions on Power Systems*, vol. 28, no. 2, pp. 1288–1296, 2013

Startup (SU) and Shutdown (SD) power trajectories are neglected in UC scheduling stage: Why?

Insignificant impact is assumed? To avoid complex models?
 Ignoring them changes commitment decisions ⇒ ↑ costs²

²G. Morales-Espana, J. M. Latorre, and A. Ramos, "Tight and compact MILP formulation of start-up and shut-down ramping in unit commitment," *IEEE Transactions on Power Systems*, vol. 28, no. 2, pp. 1288–1296, 2013

Outline

1 Introduction

2 Assumptions: Dealing with "Certainty"

- Infeasible Energy Delivery
- Startup and Shutdown Power Trajectories
- Power Scheduling: The Power-based UC
- 3 Case Studies: "Ideal" Stochastic UC

4 Conclusions

Energy vs. Power Profiles

Demand Example

Demand requirements

	Hour	D1	D2
Ramp [MW/h]	9-10	50	100
Ramp [MW/h]	10-11	50	0

³G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, "An MIP formulation for joint market-clearing of energy and reserves based on ramp scheduling," IEEE Transactions on Power Systems, vol. 29, no. 1, pp. 476-488, 2014

Energy vs. Power Profiles

Demand Example

Demand requirements

	Hour	D1	D2
Ramp [MW/h]	9-10	50	100
Ramp [MW/h]	10-11	50	0
Max P [MW]	10-11	1500	1475
Min P [MW]	15-16	1000	1025

Planning 1 **Energy** Profile \Rightarrow cannot guarantee the final power profile³

³G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, "An MIP formulation for joint market-clearing of energy and reserves based on ramp scheduling," *IEEE Transactions on Power Systems*, vol. 29, no. 1, pp. 476–488, 2014

Energy vs. Power Profiles

Demand Example

Demand requirements

	Hour	D1	D2	
Ramp [MW/h]	9-10	50	100	
Ramp [MW/h]	10-11	50	0	
Max P [MW]	10-11	1500	1475	
Min P [MW]	15-16	1000	1025	
				ľ

∜

Planning 1 Energy Profile \Rightarrow cannot guarantee the final power profile³ Planning 1 Power Profile \Rightarrow guarantees the unique energy profile³

³G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, "An MIP formulation for joint market-clearing of energy and reserves based on ramp scheduling," *IEEE Transactions on Power Systems*, vol. 29, no. 1, pp. 476–488, 2014

Power Scheduling: Power-Based UC

UC was reformulated for better scheduling $(\downarrow \text{ costs})^{4,5}$

- New features:
 - Clear distinction: energy vs. power

⁴G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, "An MIP formulation for joint market-clearing of energy and reserves based on ramp scheduling," *IEEE Transactions on Power Systems*, vol. 29, no. 1, pp. 476–488, 2014

⁵G. Morales-España, C. Gentile, and A. Ramos, "Tight MIP formulations of the power-based unit commitment problem," en, *OR Spectrum*, pp. 1–22, May 2015

Power Scheduling: Power-Based UC

UC was reformulated for better scheduling $(\downarrow \text{ costs})^{4,5}$

New features:

- Clear distinction: energy vs. power
- Linear piecewise power scheduling
 - Power demand balance
- SU & SD power trajectories⁶

⁴G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, "An MIP formulation for joint market-clearing of energy and reserves based on ramp scheduling," *IEEE Transactions on Power Systems*, vol. 29, no. 1, pp. 476–488, 2014

⁵G. Morales-España, C. Gentile, and A. Ramos, "Tight MIP formulations of the power-based unit commitment problem," en, *OR Spectrum*, pp. 1–22, May 2015

⁶G. Morales-Espana, J. M. Latorre, and A. Ramos, "Tight and compact MILP formulation of start-up and shut-down ramping in unit commitment," *IEEE Transactions on Power Systems*, vol. 28, no. 2, pp. 1288–1296, 2013

Outline

1 Introduction

2 Assumptions: Dealing with "Certainty'

- Infeasible Energy Delivery
- Startup and Shutdown Power Trajectories
- Power Scheduling: The Power-based UC

3 Case Studies: "Ideal" Stochastic UC

4 Conclusions

IEEE-118 Bus System

■ 54 thermal units; 118 buses; 186 transmission lines; 91 loads

- + 10 Quick-start units (\sim 10x more expensive)
- 24 hours time span
- 3 wind farms, 20 wind power scenarios

Case Study

■ 3 Stochastic UC formulations implemented:

- **E-UC**: Traditional Energy-based UC
- **Es-UC**: Energy-based UC + SU/SD trajectories

Case Study

■ 3 Stochastic UC formulations implemented:

- **E-UC**: Traditional Energy-based UC
- **Es-UC**: Energy-based UC + SU/SD trajectories
- **Ps-UC**: Power-based UC + SU/SD trajectories

Case Study

3 Stochastic UC formulations implemented:

- **E-UC**: Traditional Energy-based UC
- **Es-UC**: Energy-based UC + SU/SD trajectories
- Ps-UC: Power-based UC + SU/SD trajectories

All problems solved with Cplex 12.6.0, stop criteria:

0.05% opt. tolerance or 24h time limit

Scheduling Stage:

- Obtains hourly commitment decisions for slow-start units
- by solving hourly network-constrained slow-start UCs

Scheduling Stage:

- Obtains hourly commitment decisions for slow-start units
- by solving hourly network-constrained slow-start UCs

Evaluation Stage: Simulating "ideal" stochastic UCs

■ by Using in-sample wind power scenarios

Scheduling Stage:

- Obtains hourly commitment decisions for slow-start units
- by solving hourly network-constrained slow-start UCs

Evaluation Stage: Simulating "ideal" stochastic UCs

- by Using in-sample wind power scenarios
- **5 min** dispatch decisions for all units
- + Quick-start units' commitment decisions
- by solving 5-min network-constrained quick-start UC

Scheduling Stage:

- Obtains hourly commitment decisions for slow-start units
- by solving hourly network-constrained slow-start UCs

Evaluation Stage: Simulating "ideal" stochastic UCs

- by Using in-sample wind power scenarios
- **5 min** dispatch decisions for all units
- + Quick-start units' commitment decisions
- by solving 5-min network-constrained quick-start UC
- Penalizations:
 - Demand-balance violation costs: 10000 \$/MWh
 - Network violation costs: 5000 \$/MWh
 - Negative wind bids: -50 \$/MWh

Energy-Based vs. Power-based UC: Scheduling

	Scheduling (hourly)		
	Costs [†] [k\$] Curt [%]		
E-UC	747.3	1.3	
Es-UC	739.7	2.5	
Ps-UC			

 $^{\dagger}\mathsf{Commitment} + \mathsf{dispatch} + \mathsf{penalty} \ \mathsf{costs}$

Including SU/SD trajectories

- Decreases Total Costs
- and decreases system flexibility (↑ wind curtailment)

Energy-Based vs. Power-based UC: Scheduling

	Scheduling (hourly)		
	Costs† [k\$]	Curt [%]	
E-UC	747.3	1.3	
Es-UC	739.7	2.5	
Ps-UC	734.3	5.0	

[†]Commitment + dispatch + penalty costs

Including SU/SD trajectories

- Decreases Total Costs
- and decreases system flexibility (↑ wind curtailment)

Power-based UC seems to be less flexible (↑ wind curtailment)

	Schedulin	g (hourly)	Real-time di	spatch (5-min)
	Costs† [k\$]	Curt [%]	Costs† [k\$]	Curt [%]
E-UC	747.3	1.3	804.2	8.1
Es-UC	739.7	2.5	774.4	5.1
Ps-UC	734.3	5.0		

 † Commitment + dispatch + penalty costs

- In the evaluation stage: the E-UC
 - Increased Total Costs by 7.6% and Wind Curt. by 523%

	Schedulin	g (hourly)	Real-time di	spatch (5-min)
	Costs† [k\$]	Curt [%]	Costs† [k\$]	Curt [%]
E-UC	747.3	1.3	804.2	8.1
Es-UC	739.7	2.5	774.4	5.1
Ps-UC	734.3	5.0		

 † Commitment + dispatch + penalty costs

In the evaluation stage: the E-UC

Increased Total Costs by 7.6% and Wind Curt. by 523%

■ the Es-UC

Increased Total Costs by 4.7% and Wind Curt. by 104%

	Schedulin	g (hourly)	Real-time di	spatch (5-min)
	Costs† [k\$]	Curt [%]	Costs† [k\$]	Curt [%]
E-UC	747.3	1.3	804.2	8.1
Es-UC	739.7	2.5	774.4	5.1
Ps-UC	734.3	5.0	766.1	5.4

 $^{\dagger}\mathsf{Commitment} + \mathsf{dispatch} + \mathsf{penalty} \ \mathsf{costs}$

In the evaluation stage: the E-UC

Increased Total Costs by 7.6% and Wind Curt. by 523%

the Es-UC

Increased Total Costs by 4.7% and Wind Curt. by 104%

and the Ps-UC

Increased Total Costs by 4.3% and Wind Curt. by 7.4%

	Schedulin	g (hourly)	Real-time di	spatch (5-min)
	Costs† [k\$]	Curt [%]	Costs† [k\$]	Curt [%]
E-UC	747.3	1.3	804.2	8.1
Es-UC	739.7	2.5	774.4	5.1
Ps-UC	734.3	5.0	766.1	5.4

[†]Commitment + dispatch + penalty costs

In the evaluation stage: the E-UC

Increased Total Costs by 7.6% and Wind Curt. by 523%

the Es-UC

Increased Total Costs by 4.7% and Wind Curt. by 104%

and the Ps-UC

■ Increased Total Costs by 4.3% and Wind Curt. by 7.4%

Ps-UCs turned out to be more flexible (\downarrow Curt) than E-UC

Outline

1 Introduction

2 Assumptions: Dealing with "Certainty"

- Infeasible Energy Delivery
- Startup and Shutdown Power Trajectories
- Power Scheduling: The Power-based UC

3 Case Studies: "Ideal" Stochastic UC

4 Conclusions

Conclusions

Energy-Based UCs cannot deal efficiently with known conditions

- Not even an "ideal" stochastic energy-based UC
- \blacksquare \Rightarrow using the reserves to deal with known conditions in real-time

Conclusions

Energy-Based UCs cannot deal efficiently with known conditions

- Not even an "ideal" stochastic energy-based UC
- $\blacksquare \Rightarrow$ using the reserves to deal with known conditions in real-time
- To achieve an optimal economic operation
 - All predictable events must be scheduled in advance
 - only unforeseen events must be addressed using reserves

Conclusions

Energy-Based UCs cannot deal efficiently with known conditions

- Not even an "ideal" stochastic energy-based UC
- $\blacksquare \Rightarrow$ using the reserves to deal with known conditions in real-time
- To achieve an optimal economic operation
 - All predictable events must be scheduled in advance
 - only unforeseen events must be addressed using reserves
- Power-Based UC^{7,8}
 - More accurate system representation
 - \blacksquare \Rightarrow better exploitation of unit's flexibility in real-time
 - especially when more flexibility is demanded by the system

⁷G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, "An MIP formulation for joint market-clearing of energy and reserves based on ramp scheduling," *IEEE Transactions on Power Systems*, vol. 29, no. 1, pp. 476–488, 2014

 $^{^8} G.$ Morales-España, C. Gentile, and A. Ramos, "Tight MIP formulations of the power-based unit commitment problem," en, OR Spectrum, pp. 1–22, May 2015

Questions

Thank you for your attention

Contact Information: g.a.moralesespama@tudelft.nl

For Further Reading

- **FERC**, **"RTO unit commitment test system,"** Federal Energy and Regulatory Commission, Washington DC, USA, Tech. Rep., Jul. 2012, p. 55.
 - X. Guan, F. Gao, and A. Svoboda, "Energy delivery capacity and generation scheduling in the deregulated electric power market," *IEEE Transactions on Power Systems*, vol. 15, no. 4, pp. 1275–1280, Nov. 2000.
- G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, "An MIP formulation for joint market-clearing of energy and reserves based on ramp scheduling," *IEEE Transactions on Power Systems*, vol. 29, no. 1, pp. 476–488, 2014.

- G. Morales-España, C. Gentile, and A. Ramos, "Tight MIP formulations of the power-based unit commitment problem," en, *OR Spectrum*, pp. 1–22, May 2015.
- G. Morales-Espana, J. M. Latorre, and A. Ramos, "Tight and compact MILP formulation of start-up and shut-down ramping in unit commitment," *IEEE Transactions on Power Systems*, vol. 28, no. 2, pp. 1288–1296, 2013.

Impact of \neq Negative Wind Bids

More significant differences between Ps-UC and E-UC when requiring \downarrow curtailment

Impact of \neq Demand Variability

More significant differences between Ps-UC and E-UC when demanding \uparrow system flexibility

Outline

Stochastic UCs: IEEE-118 Bus System

UC performance comparisons (I)

	Traditional	
	Energy-Block Scheduling	
	3binTUTD ⁹	ТC
o.f. [k\$]	829.04	829.02
opt.tol [%]	0.224	0.023
IntGap [%]	1.27	0.58

■ Compared with *3binTUTD*, *TC*:

Iowered IntGap by 53.3%

TUDelft

⁹FERC, "RTO unit commitment test system," Federal Energy and Regulatory Commission, Washington DC, USA, Tech. Rep., Jul. 2012, p. 55

UC performance comparisons (I)

	Traditional Energy-Block Scheduling	
	3binTUTD ⁹	ТС
o.f. [k\$]	829.04	829.02
opt.tol [%]	0.224	0.023
IntGap [%]	1.27	0.58
MIP runtime [s]	86400	206.5

■ Compared with *3binTUTD*, *TC*:

- Iowered IntGap by 53.3%
- is more than 420x faster

TUDelft

⁹FERC, "RTO unit commitment test system," Federal Energy and Regulatory Commission, Washington DC, USA, Tech. Rep., Jul. 2012, p. 55

UC performance comparisons (II)

	Traditional Energy-Block Scheduling	
	3binTUTD ¹⁰	ТС
o.f. [k\$]	829.04	829.02
opt.tol [%]	0.224	0.023
IntGap [%]	1.27	0.58
MIP runtime [s]	86400	206.5
LP runtime [s]	246.76	22.03

■ *TC* solved the MIP before *3binTUTD* solved the LP

■ within the required opt. tolerance (0.05%)

¹⁰FERC, "RTO unit commitment test system," Federal Energy and Regulatory Commission, Washington DC, USA, Tech. Rep., Jul. 2012, p. 55

UC performance comparisons (III)

	Traditional		Power-Based
	Energy-based UC		UC
	3binTUTD	ТС	P-TC
o.f. [k\$]	829.04	829.02	818.13
opt.tol [%]	0.224	0.023	0.049
IntGap [%]	1.27	0.58	
MIP runtime [s]	86400	206.5	
LP runtime [s]	246.76	22.03	

 \blacksquare *P*-*TC*¹¹ has a more detailed and accurate UC representation

¹¹G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, "An MIP formulation for joint market-clearing of energy and reserves based on ramp scheduling," *IEEE Transactions on Power Systems*, vol. 29, no. 1, pp. 476–488, 2014

UC performance comparisons (III)

	Traditional		Power-Based
	Energy-based UC		UC
	3binTUTD	ТС	P-TC
o.f. [k\$]	829.04	829.02	818.13
opt.tol [%]	0.224	0.023	0.049
IntGap [%]	1.27	0.58	0.74
MIP runtime [s]	86400	206.5	867.9
LP runtime [s]	246.76	22.03	38.1

 \blacksquare *P*-*TC*¹¹ has a more detailed and accurate UC representation

- it solved 100x faster than *3binTUTD*
- its UC core is also a convex hull¹²

¹¹G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, "An MIP formulation for joint market-clearing of energy and reserves based on ramp scheduling," *IEEE Transactions on Power Systems*, vol. 29, no. 1, pp. 476–488, 2014

¹²G. Morales-España, C. Gentile, and A. Ramos, "Tight MIP formulations of the power-based unit commitment problem," en, OR Spectrum, pp. 1–22, May 2015