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Unit Commitment (UC): optimal tool for short-term energy
planning

Wind & Solar introduce uncertainty ⇒ more difficult planning:

Reserve-Based deterministic UC
Stochastic or Robust UCs (endogenous reserves)

Optimal quantity of reserves must be scheduled

providing flexibility for real-time operation
⇒ the system can face real-time uncertainty

Underlying assumption:

UC generation schedule can always deliver what it promises
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Dealing with “Certainty” Infeasible Energy Delivery

Energy Scheduling
Generation levels are usually considered as energy blocks.
Example: P = 300MW; P = 100MW; Up/Down ramp rate: 100 MW/h

Traditional UC Feasible energy profile

Infeasible energy delivery1

Overestimated ramp availability
⇓

A clear difference between power and energy is required in UCs

1X. Guan, F. Gao, and A. Svoboda, “Energy delivery capacity and generation scheduling in the deregulated electric
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Production Below Unit’s Minimum Output?

Startup (SU) and Shutdown (SD) power trajectories are neglected in
UC scheduling stage: Why?

Insignificant impact is assumed? To avoid complex models?

Ignoring them changes commitment decisions ⇒ ↑ costs2

2G. Morales-Espana, J. M. Latorre, and A. Ramos, “Tight and compact MILP formulation of start-up and shut-down
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Power Scheduling: Power-Based UC

UC was reformulated for better scheduling (↓ costs)4,5

New features:

Clear distinction: energy vs. power
Linear piecewise power scheduling

Power demand balance

SU & SD power trajectories6
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Case Studies: “Ideal” Stochastic UC

IEEE-118 Bus System

54 thermal units; 118 buses; 186 transmission lines; 91 loads

+ 10 Quick-start units (∼10x more expensive)
24 hours time span
3 wind farms, 20 wind power scenarios
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Case Study

3 Stochastic UC formulations implemented:

E-UC: Traditional Energy-based UC
Es-UC: Energy-based UC + SU/SD trajectories
Ps-UC: Power-based UC + SU/SD trajectories

All problems solved with Cplex 12.6.0, stop criteria:

0.05% opt. tolerance or 24h time limit
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Scheduling Stage:

Obtains hourly commitment decisions for slow-start units
by solving hourly network-constrained slow-start UCs

Evaluation Stage: Simulating “ideal” stochastic UCs

by Using in-sample wind power scenarios
5 min dispatch decisions for all units
+ Quick-start units’ commitment decisions
by solving 5-min network-constrained quick-start UC
Penalizations:

Demand-balance violation costs: 10000 $/MWh
Network violation costs: 5000 $/MWh
Negative wind bids: -50 $/MWh
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and decreases system flexibility (↑ wind curtailment)
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Ps-UC 734.3 5.0
†Commitment + dispatch + penalty costs

Including SU/SD trajectories

Decreases Total Costs
and decreases system flexibility (↑ wind curtailment)

Power-based UC seems to be less flexible (↑ wind curtailment)
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Increased Total Costs by 7.6% and Wind Curt. by 523%

the Es-UC

Increased Total Costs by 4.7% and Wind Curt. by 104%

and the Ps-UC

Increased Total Costs by 4.3% and Wind Curt. by 7.4%

Ps-UCs turned out to be more flexible (↓ Curt) than E-UC
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Conclusions

Conclusions

Energy-Based UCs cannot deal efficiently with known conditions

Not even an “ideal” stochastic energy-based UC
⇒ using the reserves to deal with known conditions in real-time

To achieve an optimal economic operation

All predictable events must be scheduled in advance
only unforeseen events must be addressed using reserves

Power-Based UC7,8

More accurate system representation
⇒ better exploitation of unit’s flexibility in real-time
especially when more flexibility is demanded by the system

7G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, “An MIP formulation for joint market-clearing of energy and
reserves based on ramp scheduling,” IEEE Transactions on Power Systems, vol. 29, no. 1, pp. 476–488, 2014

8G. Morales-España, C. Gentile, and A. Ramos, “Tight MIP formulations of the power-based unit commitment
problem,” en, OR Spectrum, pp. 1–22, May 2015
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Contact Information:
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Impact of 6= Negative Wind Bids
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Impact of 6= Demand Variability
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UC performance comparisons (I)

Traditional
Energy-Block Scheduling

3binTUTD9 TC

o.f. [k$] 829.04 829.02

opt.tol [%] 0.224 0.023

IntGap [%] 1.27 0.58

Compared with 3binTUTD, TC:

lowered IntGap by 53.3%

9FERC, “RTO unit commitment test system,” Federal Energy and Regulatory Commission, Washington DC, USA,
Tech. Rep., Jul. 2012, p. 55
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Traditional
Energy-Block Scheduling

3binTUTD9 TC

o.f. [k$] 829.04 829.02

opt.tol [%] 0.224 0.023

IntGap [%] 1.27 0.58

MIP runtime [s] 86400 206.5

Compared with 3binTUTD, TC:

lowered IntGap by 53.3%
is more than 420x faster

9FERC, “RTO unit commitment test system,” Federal Energy and Regulatory Commission, Washington DC, USA,
Tech. Rep., Jul. 2012, p. 55
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UC performance comparisons (II)

Traditional
Energy-Block Scheduling

3binTUTD10 TC

o.f. [k$] 829.04 829.02

opt.tol [%] 0.224 0.023

IntGap [%] 1.27 0.58

MIP runtime [s] 86400 206.5

LP runtime [s] 246.76 22.03

TC solved the MIP before 3binTUTD solved the LP

within the required opt. tolerance (0.05%)

10FERC, “RTO unit commitment test system,” Federal Energy and Regulatory Commission, Washington DC, USA,
Tech. Rep., Jul. 2012, p. 55
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UC performance comparisons (III)

Traditional Power-Based
Energy-based UC UC

3binTUTD TC P-TC

o.f. [k$] 829.04 829.02 818.13

opt.tol [%] 0.224 0.023 0.049

IntGap [%] 1.27 0.58

MIP runtime [s] 86400 206.5

LP runtime [s] 246.76 22.03

P-TC11 has a more detailed and accurate UC representation

11G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, “An MIP formulation for joint market-clearing of energy and
reserves based on ramp scheduling,” IEEE Transactions on Power Systems, vol. 29, no. 1, pp. 476–488, 2014
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UC performance comparisons (III)

Traditional Power-Based
Energy-based UC UC

3binTUTD TC P-TC

o.f. [k$] 829.04 829.02 818.13

opt.tol [%] 0.224 0.023 0.049

IntGap [%] 1.27 0.58 0.74

MIP runtime [s] 86400 206.5 867.9

LP runtime [s] 246.76 22.03 38.1

P-TC11 has a more detailed and accurate UC representation

it solved 100x faster than 3binTUTD

its UC core is also a convex hull12

11G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, “An MIP formulation for joint market-clearing of energy and
reserves based on ramp scheduling,” IEEE Transactions on Power Systems, vol. 29, no. 1, pp. 476–488, 2014

12G. Morales-España, C. Gentile, and A. Ramos, “Tight MIP formulations of the power-based unit commitment
problem,” en, OR Spectrum, pp. 1–22, May 2015
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