

Intra-day Co-optimization of the Natural Gas and Electric Networks: the GECO Project

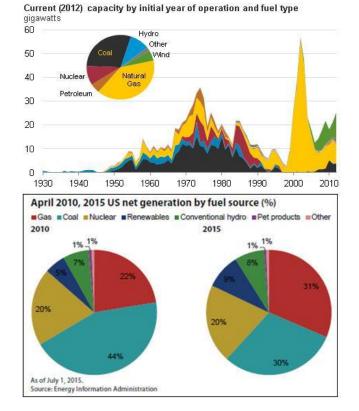
Alex Rudkevich, *Newton Energy Group* Anatoly Zlotnik, Scott Backhaus, *Los Alamos National Laboratory*

Presented at the FERC Technical Conference on Increasing Real-Time and Day-Ahead Market Efficiency through Improved Software

Washington, DC June 27-29, 2016

Motivation: reliable fuel supply to gas-fired power plants

Gas-fired power generation is expanding:

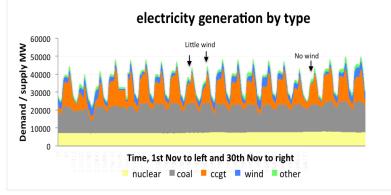

- Fast to permit, fast to build
- Economic & environmental advantages
- Replacing retiring coal & nuclear

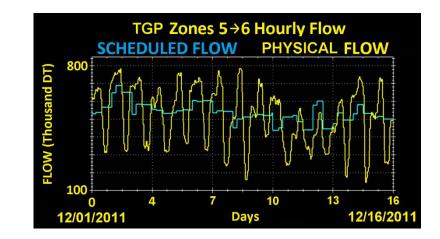
Gas pipeline Loads are changing:

- Increasing in volume & variation
- More intermittent & uncertain

Regulatory environment is evolving:

- FERC 787— need for information sharing
- FERC 809— market timing and coordination


Motivation: new challenges to intra-day gas pipeline operations


Gas-fired generation fills power demand curve:

- Power plants activate and shut down daily
- Gas markets & flow schedules by static models cause mismatch of scheduled & observed flows

Challenges to intra-day pipeline operations:

- Variability: intra-day dynamic flows that change daily with power-plant schedules
- **Coordination:** "burn sheets" & real-time information must be shared
- Uncertainty: power grid operations change quickly and unpredictably
- Integration: gas markets, flow scheduling, & physical operations done separately
- Economics: lack of meaningful economic signals exchanged between gas and power systems

GECO Team

Institution	Expertise
Newton Energy Group & Consultants	Cloud platform for parallel modeling and analytics of energy systems. Data structures. Optimal pricing, market design, commercialization
Los Alamos National Laboratory	Advanced computational methods and algorithms for simulation and optimization of gas & electric networks
Polaris Systems Optimization	Advanced power systems simulator native to NEG cloud platform. Power systems optimization expertise
Boston University	Market design, market coordination, algorithms
AIMMS	Modeling language, optimization
Kinder Morgan	Pipeline operation, market expertise and information
PJM	Power system operation, market expertise and information

Statement of Project Objectives

The objective of this project is to develop algorithmic structures and an associated market design that would enable a dramatically improved coordination and / or co-optimization of wholesale natural gas and electric physical systems and economic markets on a day-ahead and intra-day basis.

The key technology of the project will be:

- novel methods, algorithms and software for simulation modeling and optimization of natural gas pipeline operation at the day-ahead and intra-day time scale;
- 2) a novel mechanism for pricing of natural gas delivered to end users and in particular to gas-fired power plants; and
- 3) novel mechanisms for coordinating natural gas and electric operations both day ahead and in real-time, based on locational prices of natural gas and electricity.

Program Elements and Objectives

Program Elements

POLARIS

- Software modules for pipeline simulations and optimization
- PSO SCUC/SCED with representation of pipeline constraints and decision cycles recognizing pipeline cycles and power system cycles
- Market model database, cloud infrastructure integrating PSO and pipeline modules and coordination modules
- Joint gas-electric theory of locational marginal prices (LMPs) and methods for computing gas LMPs
- Market design proposal including coordination mechanisms

KINDER²MORGAN

- Gas-electric simulation model within the PJM footprint
- Set of simulated scenarios comparing performance of gas-electric coordination policies under different assumptions
- Results vetted with Kinder Morgan and PJM

Approach

Program Elements

- Will explicitly reflect dynamic simulations and dynamic optimization of pipeline operations subject to intra-day operational constraints;
- Interactions between natural gas flows in pipelines and the power flow;
- Periodically repeating decision cycles of generation bidding and deployment decisions and natural gas nomination decisions
- Development of the joint gas-electric theory of locational marginal prices (LMPs)
- Theoretical foundations for the provision of the access to pipeline capacity based on economic principles rather than on physical rights.
- Gas-electric coordination mechanisms combining the exchange of physical and locational price data between gas and electric
- The market design acceptable to market participants in both the gas and electric sector
- Will develop gas-electric simulation model within the PJM footprint; will use historical operational data to evaluate the feasibility of various possible market designs and to benchmark efficiency improvement achieved through coordination under each design relative to the status quo and/or to fully optimized joint system
- Will be based on the modeled representation of the PJM electrical system and pipelines serving their footprints.
- results reviewed and validated by PJM and by Kinder Morgan

Project Objectives and Implications

Algorithmic Structures		Market Design			
Co-optimization of physical systems		Coordination of gas and electric markets			
	Current Technology		GECO Technology		
Pipeline operation	Primarily steady state modeling with		Fast dynamic optimization of		
control methods	"rule-based" compressor operations.		compressor operations		
	Transient analysis performed	d in reliability	incorporating transient effects		
	context				
Primary objectives of	Maintaining security at least cost of		Maintaining security at least cost of		
pipeline operation	compressor operations		meeting system demand		
Price formation	Daily on weekdays only. Prices formed by		Hourly 24/7 at each pipeline node.		
mechanisms	traders at certain pipeline delivery points.		Prices formed by the optimization		
	Prices do not reflect intra-day pipeline		engine and are consistent with		
	operational constraints		engineering and physics of pipeline		
			operations		
Coordination					
Scheduling	Daily quantity over a standard day. Intra-		Transparent intra-day scheduling		
	day profiling is opaque				
Receipt and delivery	Rigid, based on priorities as specified in		Flexible, based on locational prices		
points	the shipping contract				
Delivery guarantee	No guarantee for interruptible service		Economic mechanism to guarantee		
	customers		structured price/quantity delivery		

Gas pipeline dynamics and control:

- Dynamics highly nonlinear, no simple model
- Nominations deliveries for next 12 to 24 hours
- Scheduling compute flows to deliver nomination
- Control real-time compressor adjustment

Day-ahead market:

- Cleared daily to give nominations for flows
- Bilateral trading
- Ad-hoc, and capacity often based on static models

Intra-day trading:

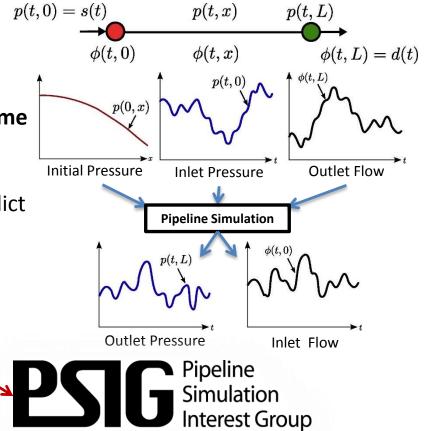
- Ad-hoc search for supply on spot market
- Simulation-informed manual tuning of flows

- <u>Gas pipeline physics:</u> (pressure, flow, line pack)
 changes propagate slowly,
 boundary flows always changing,
 never stabilizes to steady-state
- <u>Gas pipeline optimization:</u> (choosing compressor setpoints)
 Current methods use steadystate models – they work when there is low variation. Very inaccurate given significant changes on an hourly basis

Gas Pipeline Simulation: meaning & state of the art

Gas Pipeline Simulation: meaning & state of the art

Simulation: an initial value problem (IVP)


- State: instantaneous condition of system
- <u>Parameters:</u> initial state, boundary conditions
- Start with initial state and evolve forward in time

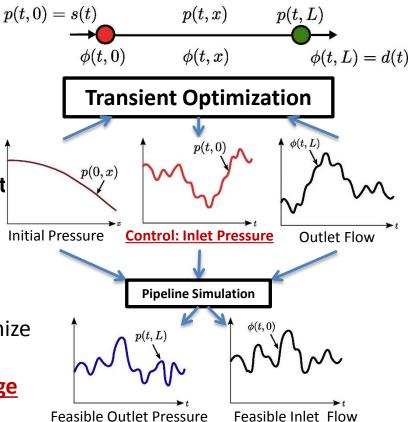
Pipeline simulation:

- Given operating protocols of compressors, predict future flow & pressure based on physics
- At a space point, state is time-dependent <u>trajectory</u> (e.g. pressure as function of time)

State of the art:

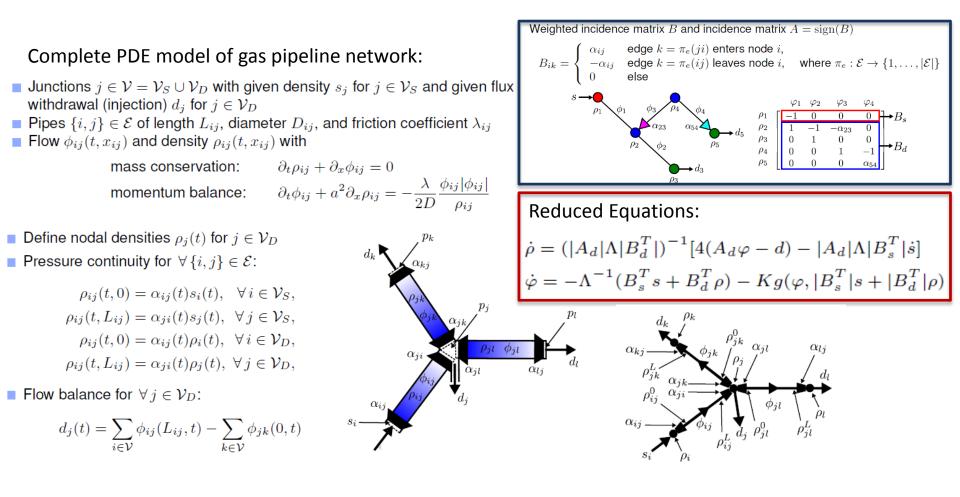
 Highly developed, sophisticated physics & engineering models, e.g., precise to < 1 psi

Optimization: an optimal control problem (OCP)

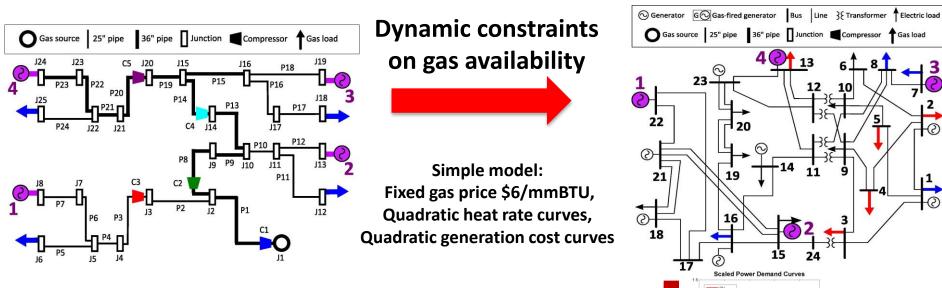

- <u>State</u>: instantaneous condition of system
- <u>Parameters:</u> initial state, boundary conditions
- <u>Controls</u>: parameters that can be chosen
- Find controls & state as functions of time t ∈
 [0, T] that satisfy feasibility & physics constraint while minimizing a cost objective

Pipeline Optimization:

 Given consumptions & pressure at a "slack" junction, compute compressor controls to minimize compressor power or maximize throughput


State of the art: <u>long-standing and current challenge</u>

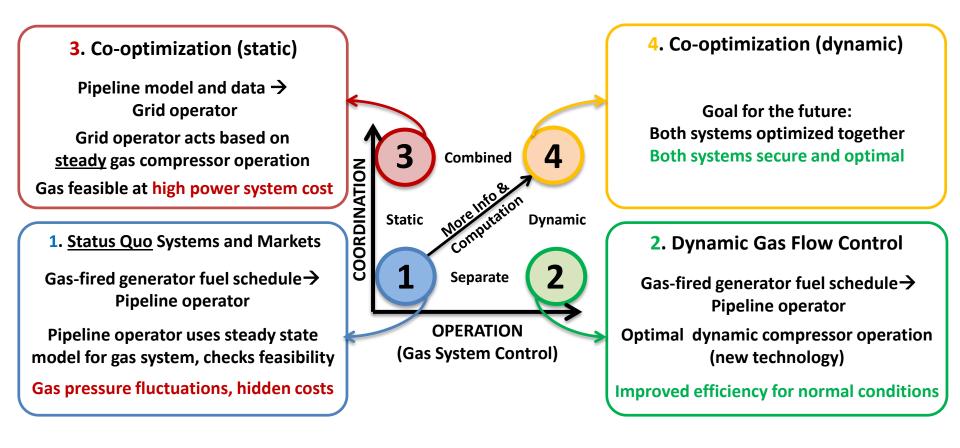
New tractable & scalable method from LANL



Continuous (PDE) Gas System Model to Reduced Network Flow

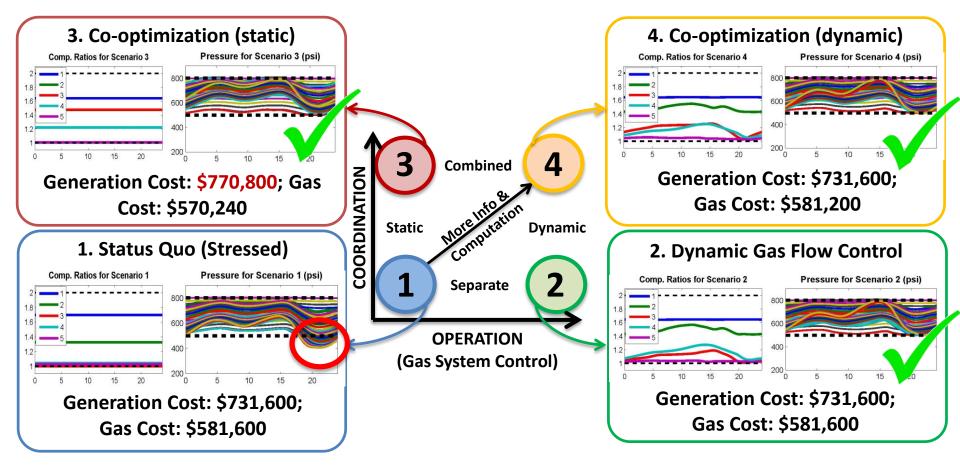
Intra-day gas-grid interdependency case study

Gas pipeline network model

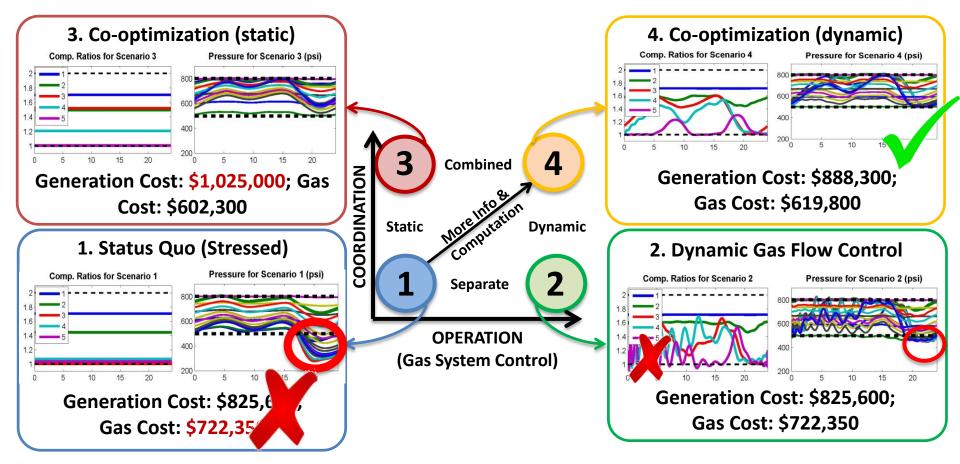


Interdependency Simulation & Dynamic Gas-Grid Scheduling

Power system model


time (hours)

Gas-grid coordination & co-optimization scenarios

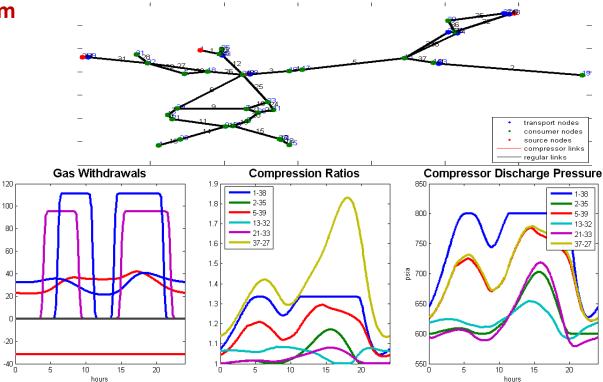

Benefits of Coordination & Information Exchange

Base Stress Case

Benefits of Coordination & Information Exchange

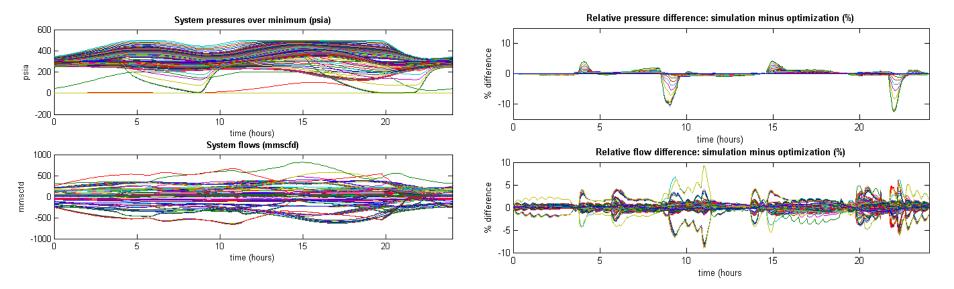
High Stress Case

"Gaslib40+" gas network case study


Total system length: 2796km

- Compressors: 6
- Supply points: 5
- Pressure nodes: 3
- Power plants: 7
- LDCs/other: 22

Min. compressor power


nmscfd

- 17.5km space disc
- 28min time disc
- Optimization time: 256 sec
- Simulation time: 5.88 sec (24h)

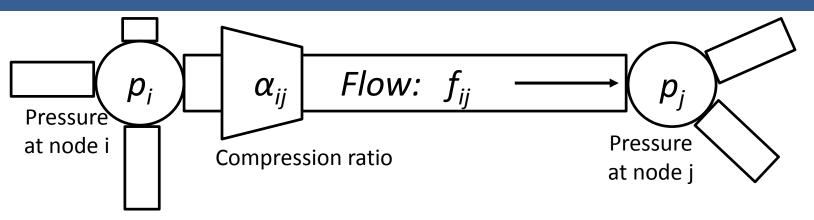
"Gaslib40+" gas network case study

Comparison of simulation and optimization results:

Precision can be improved by finer discretization on better computing platform

A glimpse of gLMPs

A steady state version


General Gas Supply Optimization Formulation

- Considering a pipeline network
- Suppliers submit locational offers to sell gas into the pipeline system. These may include supplies received at interconnection points with other pipelines
- Off-takers submit locational bids to buy gas
- Maximize Social Welfare
 - = Sum {bid to buy times off-take volume}
 - Sum {offer to sell times supply volume}
 - Non-gas*) compressor costs
- Dynamic optimization over one or several days

*) Gas used for compression is accounted for explicitly through supplies

Steady State Model

$$\begin{split} (\alpha_{ij}p_i)^2 - p_j^2 &= \beta_{ij}f_{ij} \mid f_{ij} \mid \\ \alpha_{ij}p_i &\leq p^{\max}, p_j \geq p^{\min} \end{split}$$

 $E_{ij} = \eta_{ij} f_{ij} (\alpha_{ij}^{2m} - 1), E_{ij} \le E_{ij}^{\max}$

Steady state flow equation

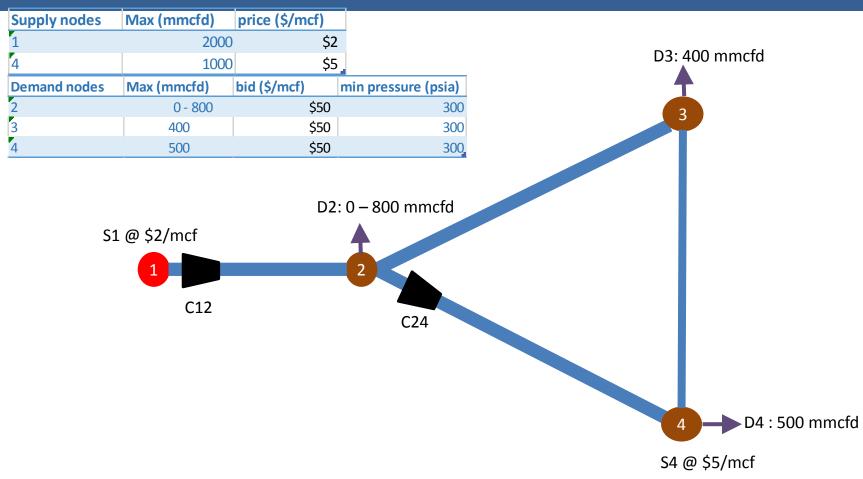
Pipe pressure limit constraints

Compressor energy use and capacity constraint

 $\alpha_{ij} \ge 1$

Gas LMP Structure in the Steady State Model

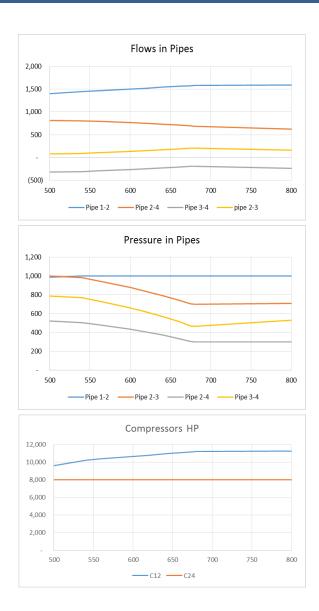
$$\begin{split} LMP_{j} - LMP_{i} &= Compression_{ij} + Congestion_{ij}^{c} + Congestion_{ij}^{p} \\ Compression_{ij} &= LMP_{i}^{*}\eta_{ij} \left[(\alpha_{ij}^{2m} - 1) + 2m\alpha_{ij}^{2m} \left(1 - \frac{p_{j}^{2}}{\alpha_{ij}^{2}p_{i}^{2}} \right) \right] - \theta_{ij} \frac{\beta_{ij}f_{ij}}{\alpha_{ij}p_{i}^{2}} \ge 0 \\ Congestion_{ij}^{c} &= \gamma_{ij}\eta_{ij} \left[(\alpha_{ij}^{2m} - 1) + 2m\alpha_{ij}^{2m} \left(1 - \frac{p_{j}^{2}}{\alpha_{ij}^{2}p_{i}^{2}} \right) \right] \ge 0 \\ Congestion_{ij}^{p} &= \xi_{ij} \frac{\beta_{ij}f_{ij}}{\alpha_{ij}p_{i}} \ge 0 \end{split}$$


 LMP_i^* Gas or electric LMP depending on the compressor

$$\theta_{ij}$$
 Dual variable for $\alpha_{ij} \ge 1$

 γ_{ij} Dual variable for compressor capacity constraint

 ξ_{ij} Dual variable for pipe pressure constraint


Numerical Example

Pipes	length (miles)	diameter (in)	β		max pressure (psia)
1-2	50	36		0.35	1000
2 - 3	80	36		0.6	1000
2 - 4	80	36		0.6	1000
3 - 4	80	25		3.53	1000
Compressors	НР	η (HP/mmcfd))	m	
12	1200	00	8.4		0.6
24	800	00	8.4		0.6

*eco

Optimal Solutions as a Function of Demand at Node 2

*eco

Some Observations from gLMP Analysis

- Congestion does not necessarily translate into constrained pipe flows
 - Flow in pipe 1-2 continues to grow with demand at Node 2 despite pressure constraint
 - Flow in pipe 2-4 changes significantly while compressor C24 operates at maximum capacity
- In gas networks not every binding constraint triggers additional marginal resource
- Binding minimum pressure constraints may play major role in causing price separation

Conclusions

- The opportunity exists to
 - radically change practical methods and algorithms of pipeline operations
 - Develop near real time pricing of natural gas that is consistent with the near real-time operations and with physics of the gas flow
- Realizing this opportunity is very important for gas and electric industry

Information

• Contact

Alex Rudkevich 617-340-9810 arudkevich@negll.com

Acknowledgments

Funding for the GECO project is provided by the Advanced Research Projects Agency – Energy (ARPA-E), U.S. Department of Energy, under the Open 2015 program, Award Number DE-AR0000673, by the Massachusetts Clean Energy Center (MassCEC), and by the team member institutions.

