Power System State Estimation with a Limited Number of Measurements

Ramtin Madani and Javad Lavaei

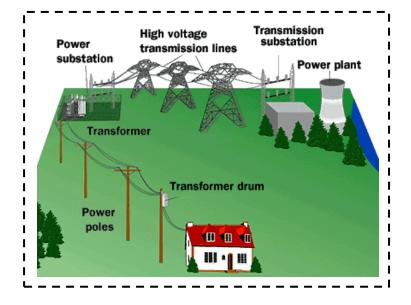
Industrial Engineering and Operations Research University of California, Berkeley

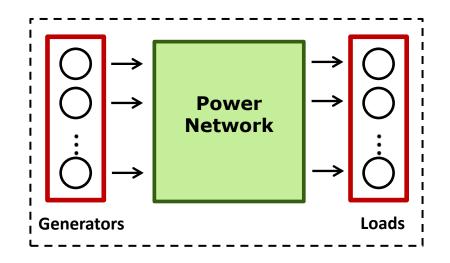
Ross Baldick

Electrical and Computer Engineering University of Texas at Austin

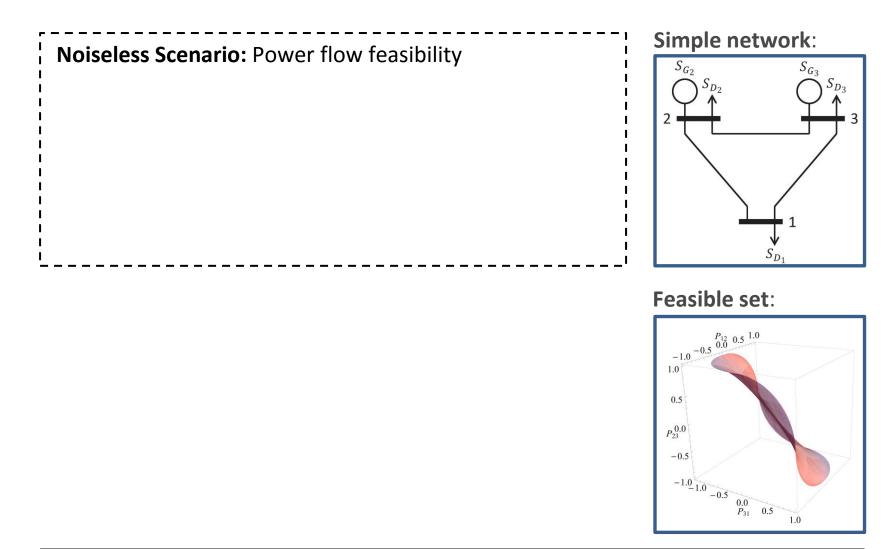
Network Parameters:

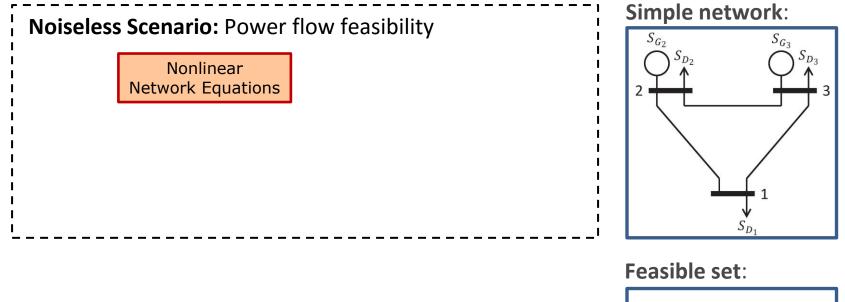
- 1. Voltages
- 2. Currents
- 3. Phase angles
- 4. Power injections
- 5. Power flows

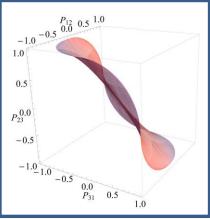


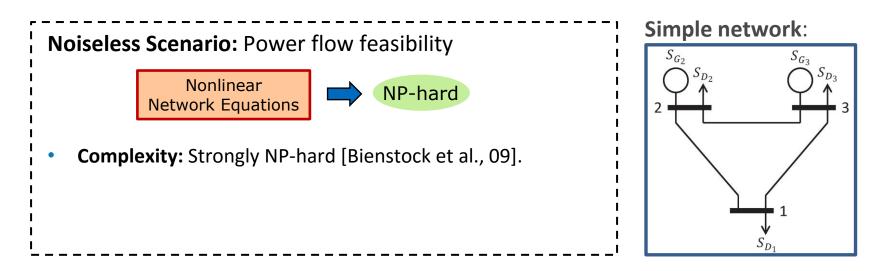


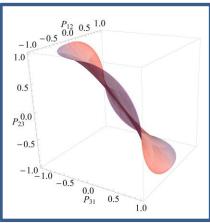
PSSE: Estimating the unknown parameters of the network, based on a limited number of measurements corrupted with noise and bad data.

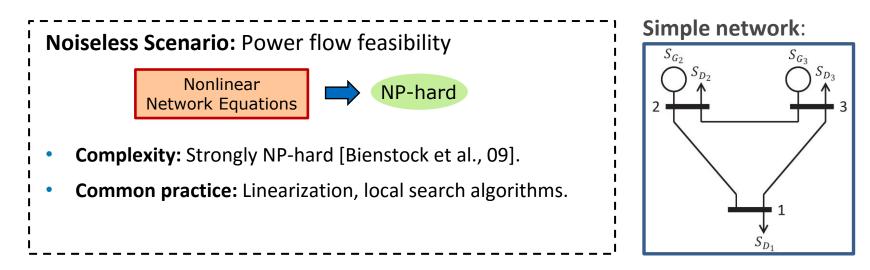




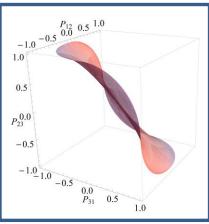


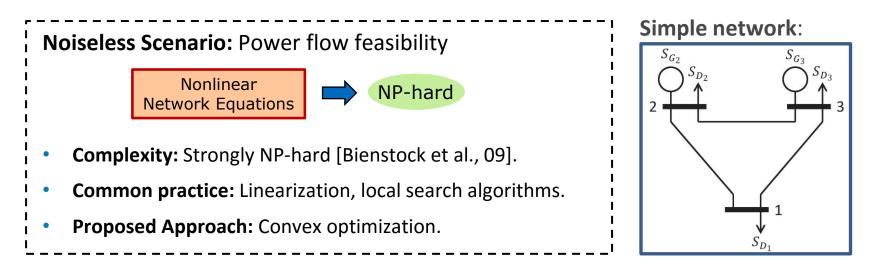




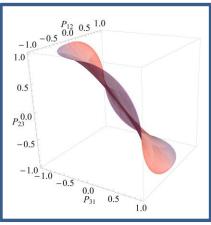


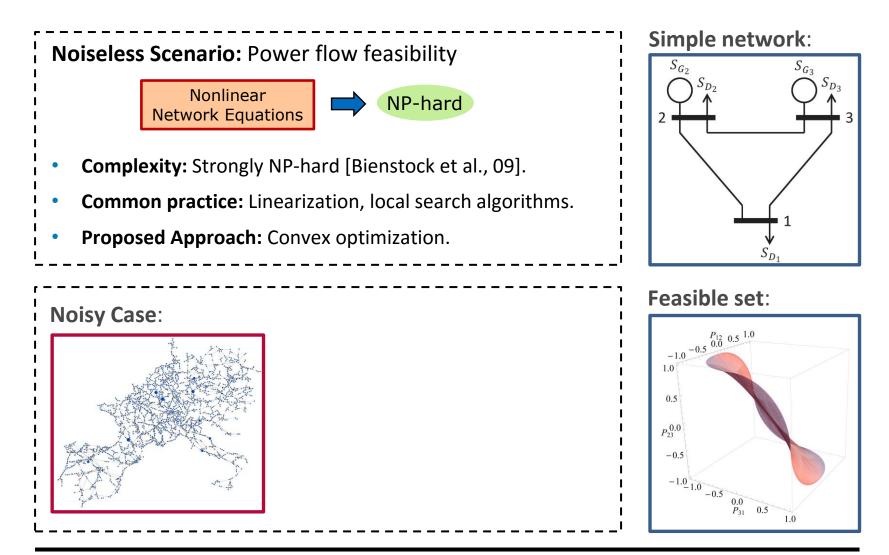
Feasible set:



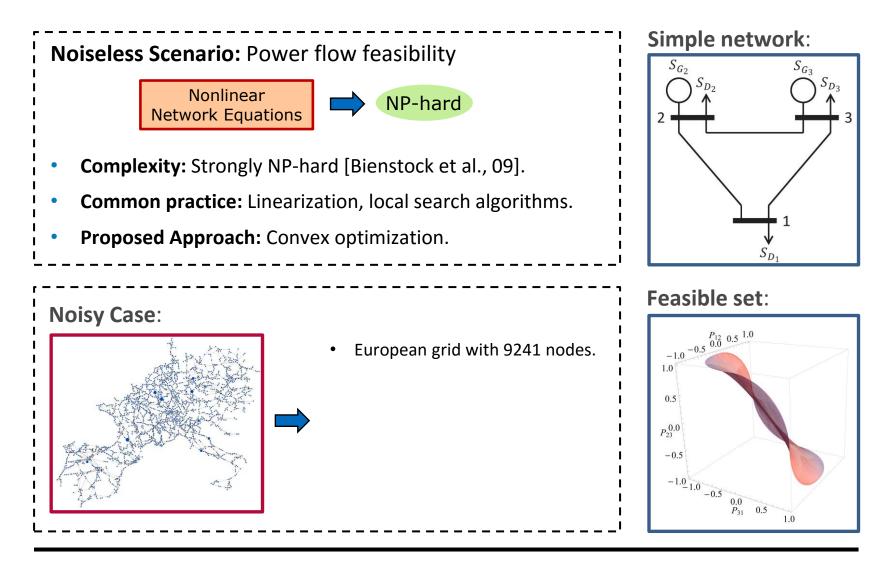


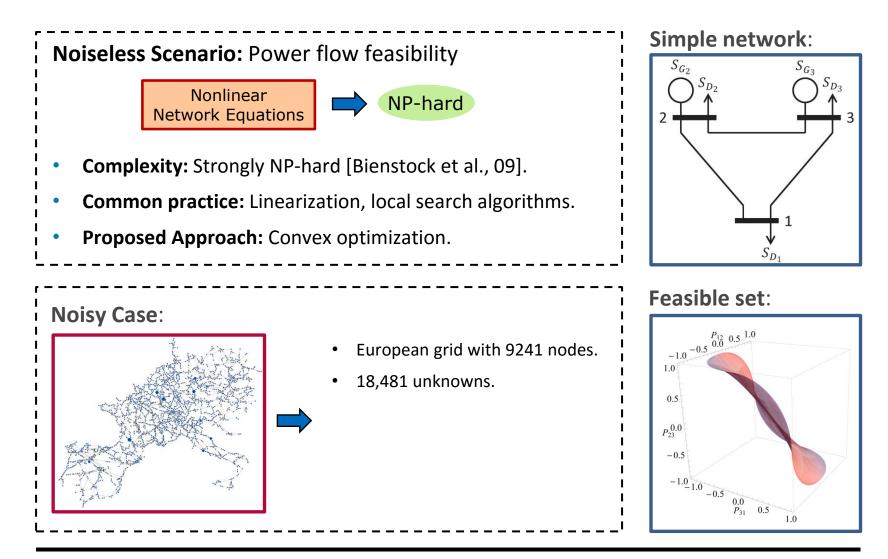
Feasible set:

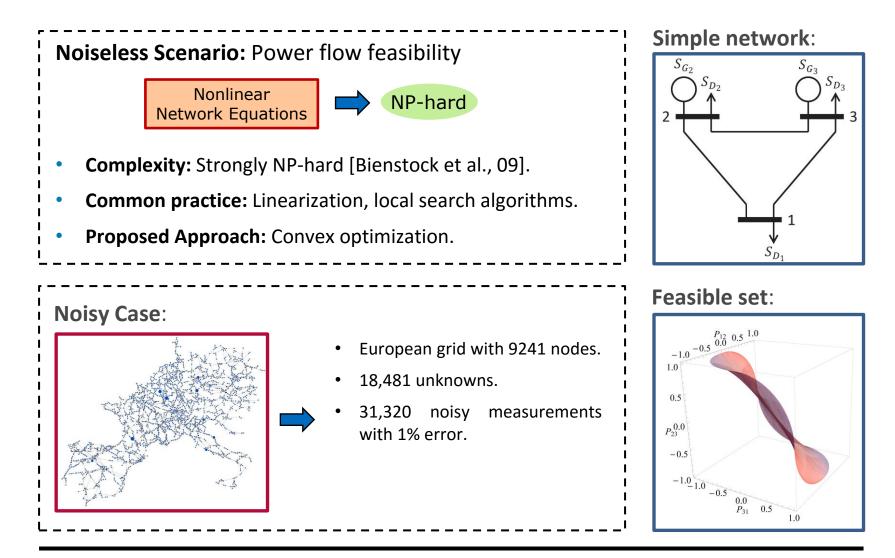


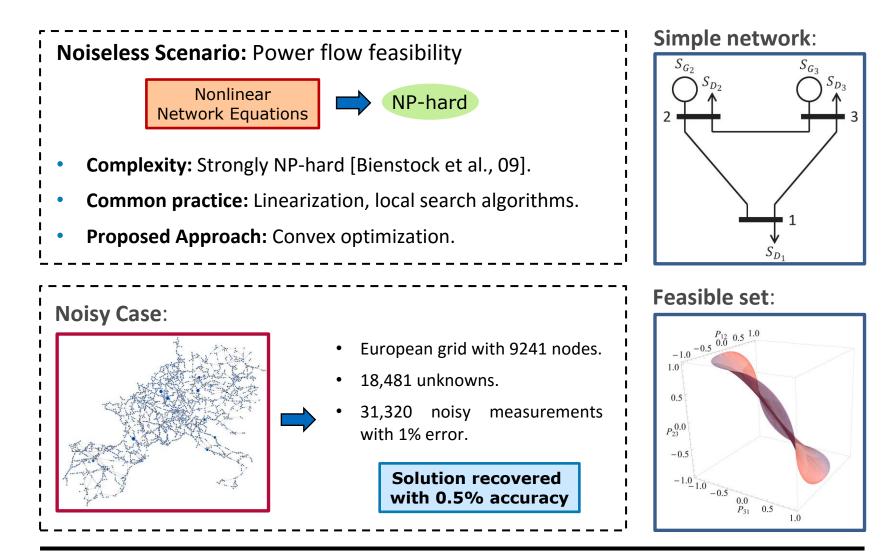


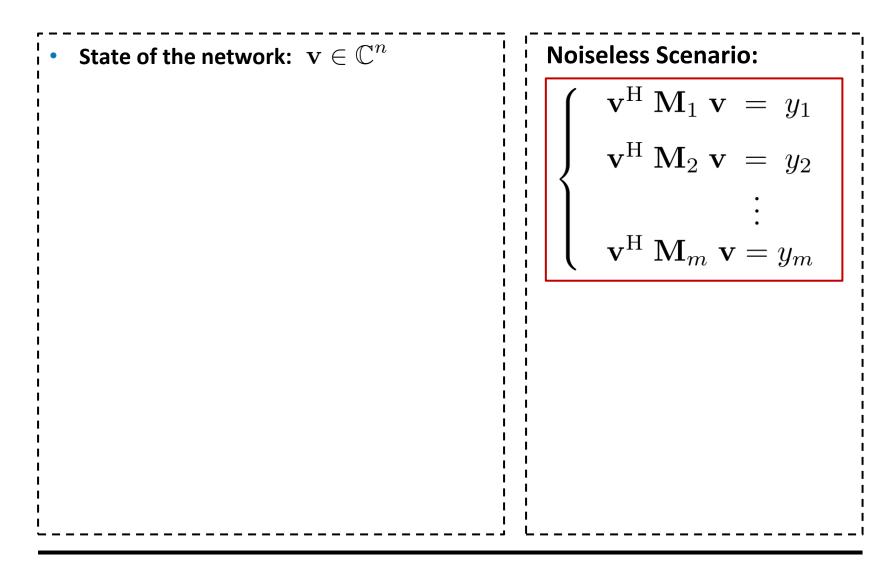
Ramtin Madani, UC Berkeley

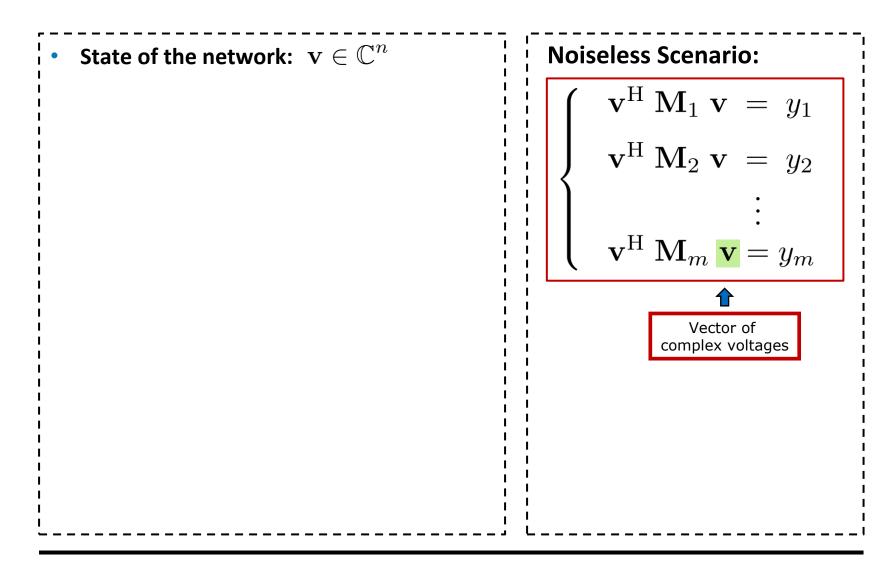


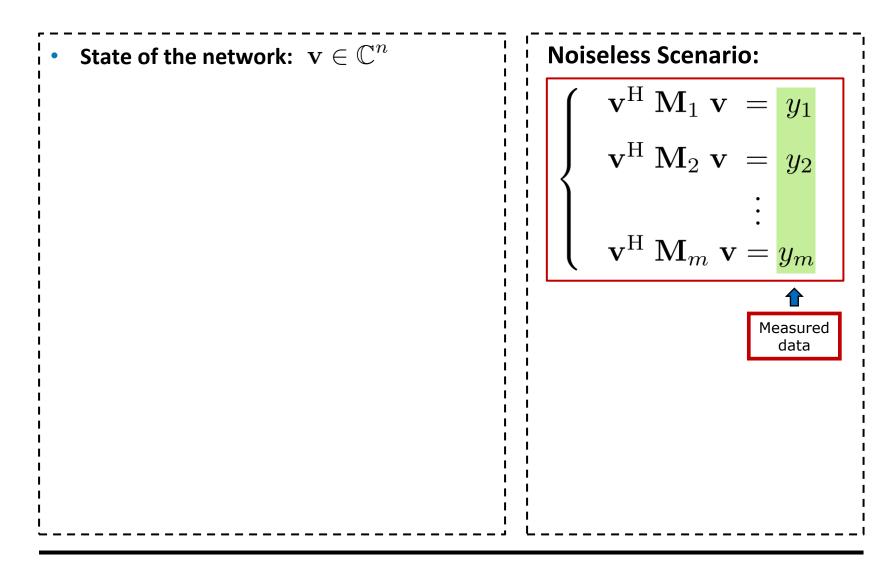


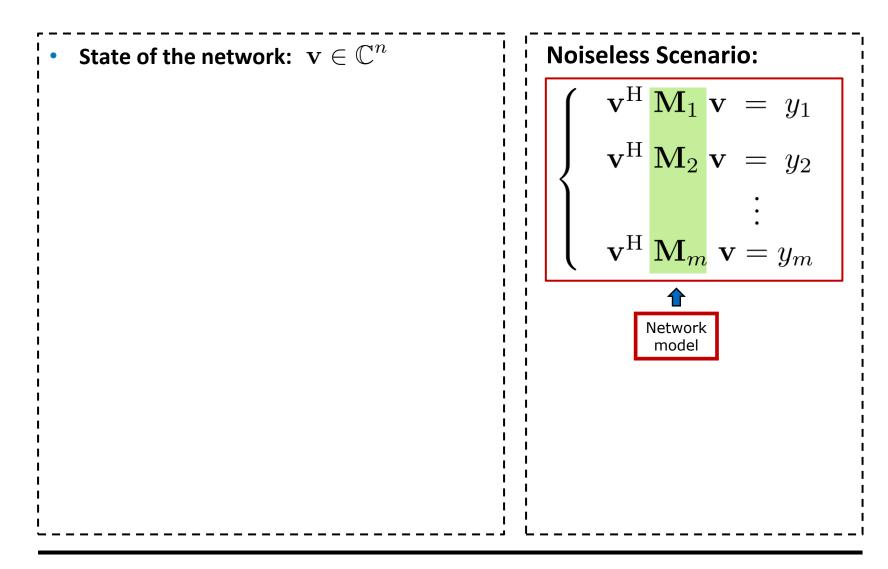


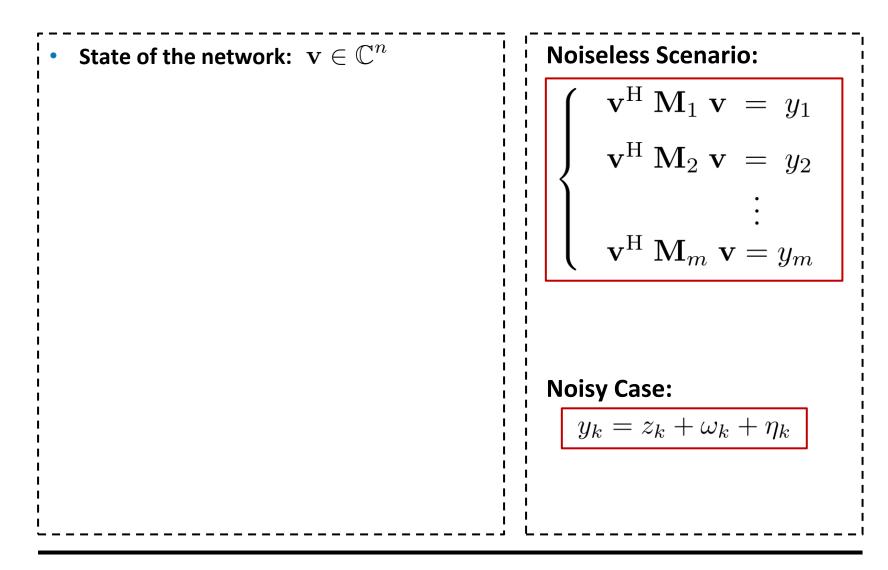


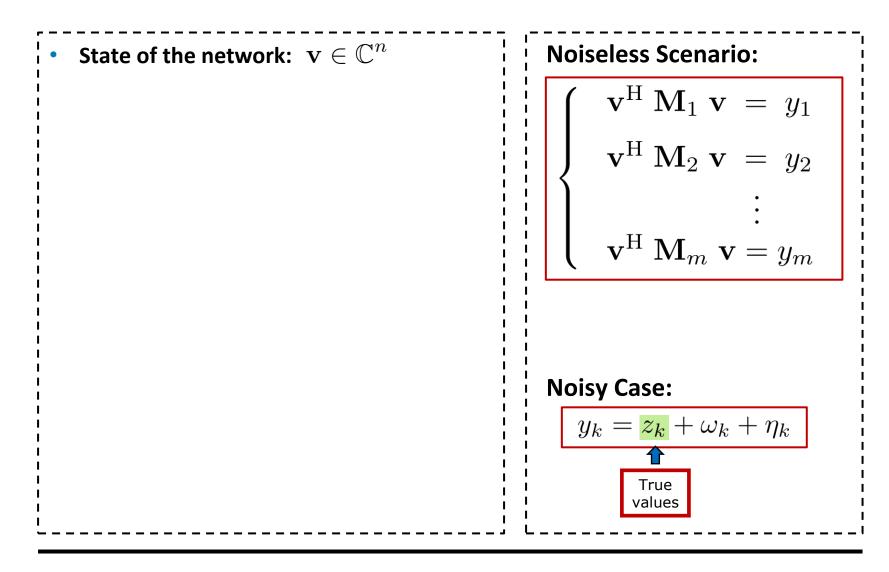


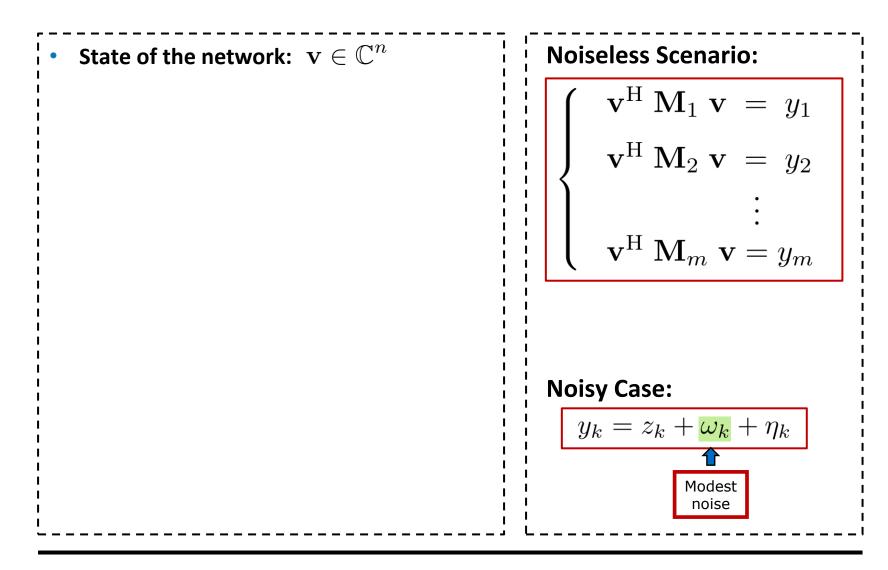


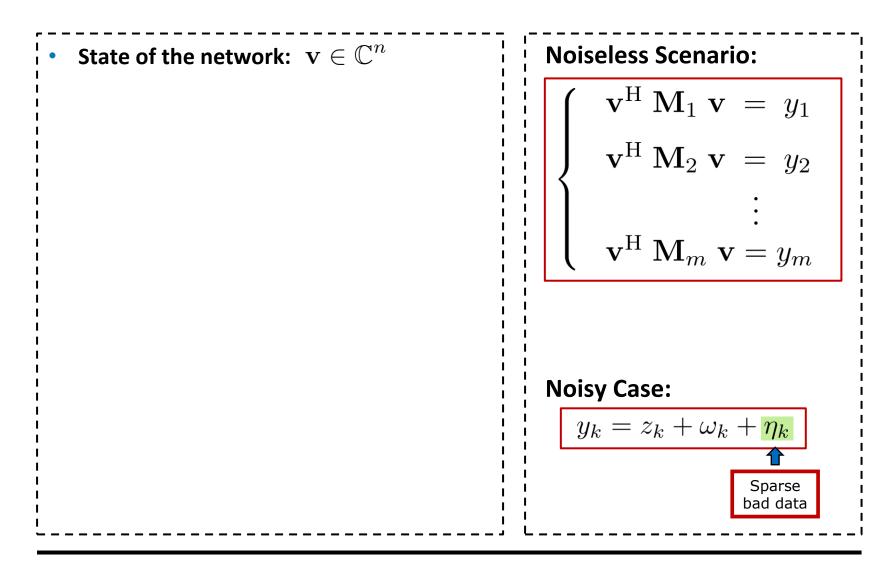


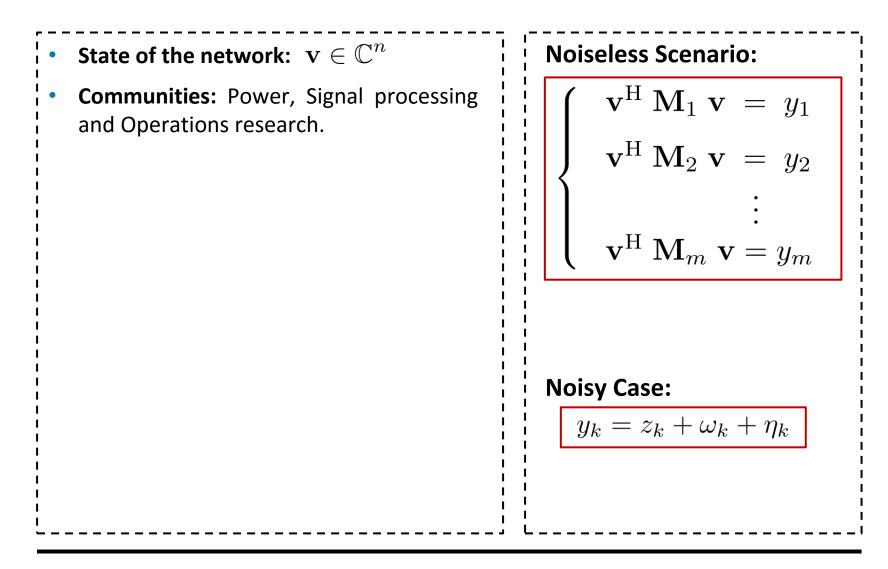


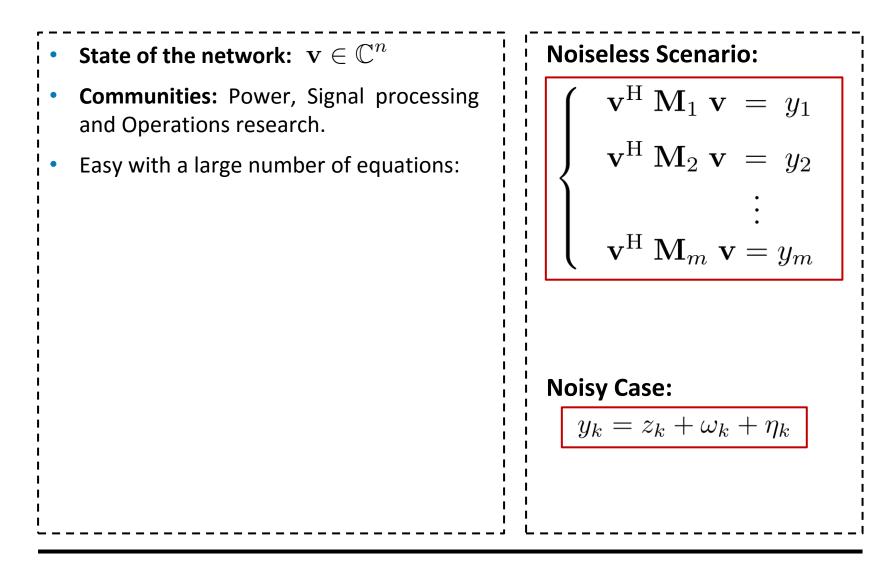


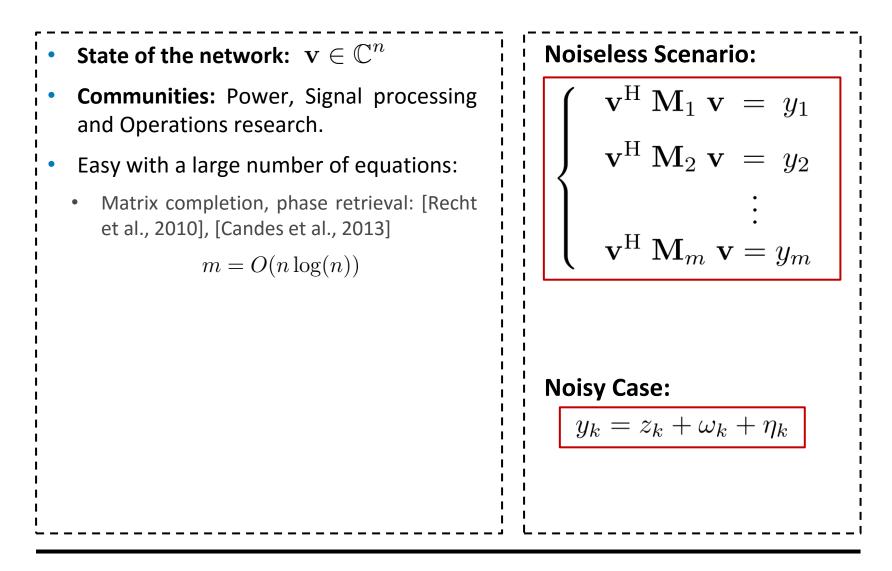


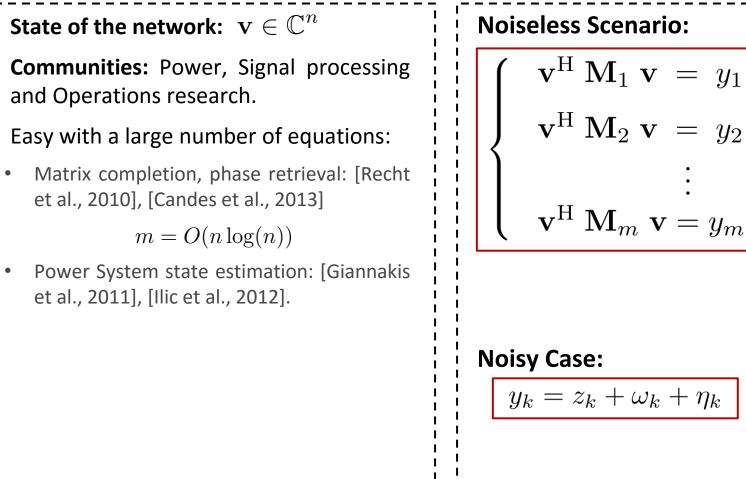




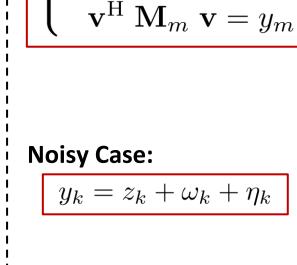


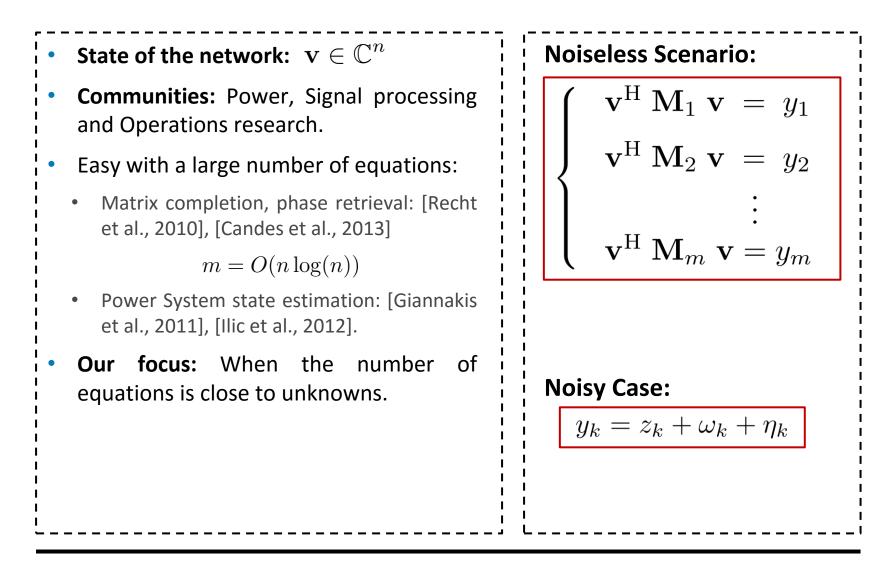


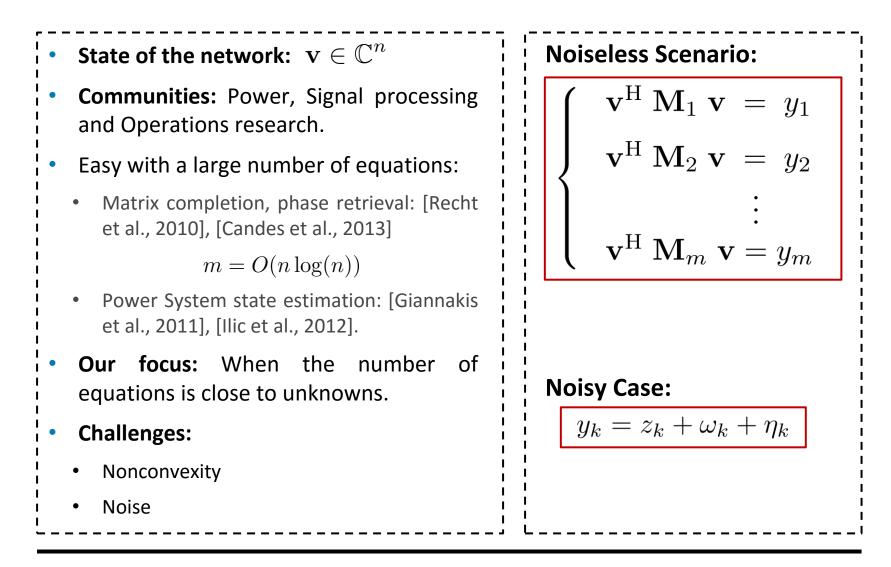


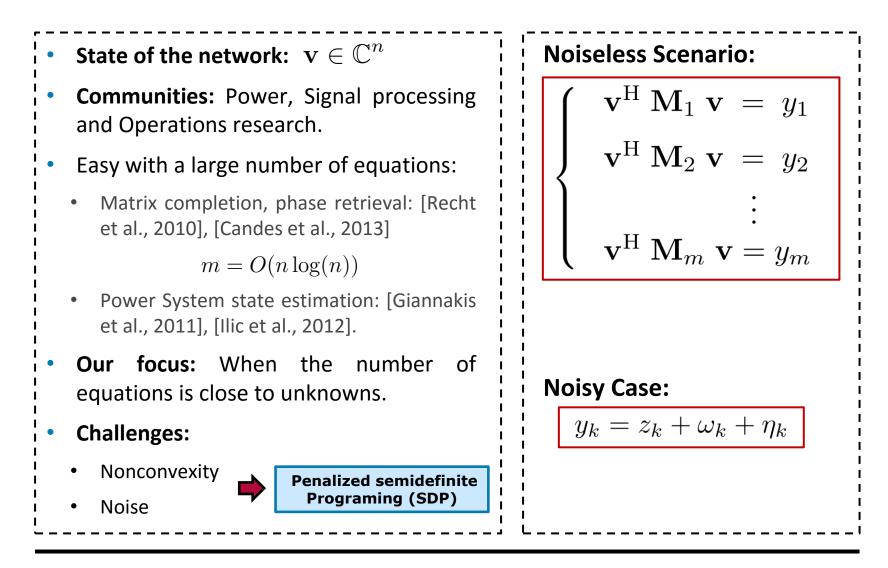


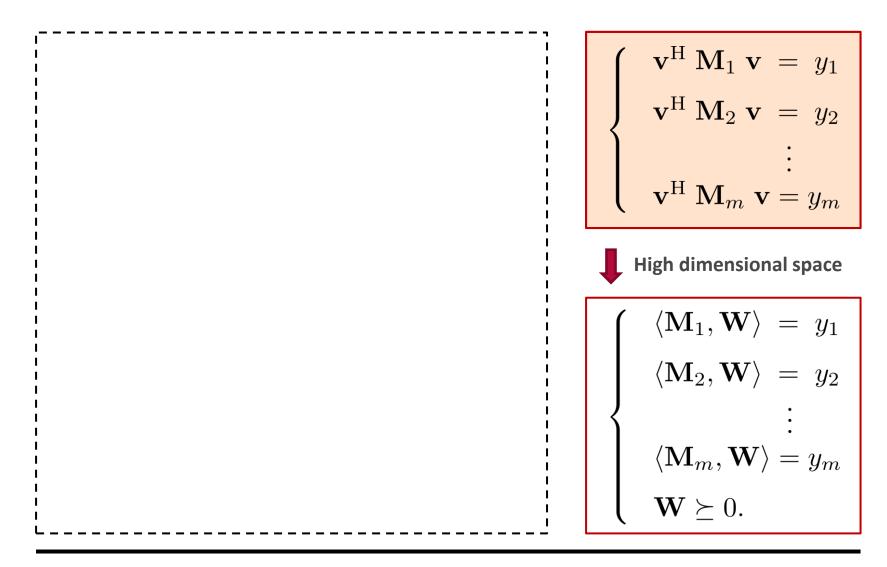
Noiseless Scenario:

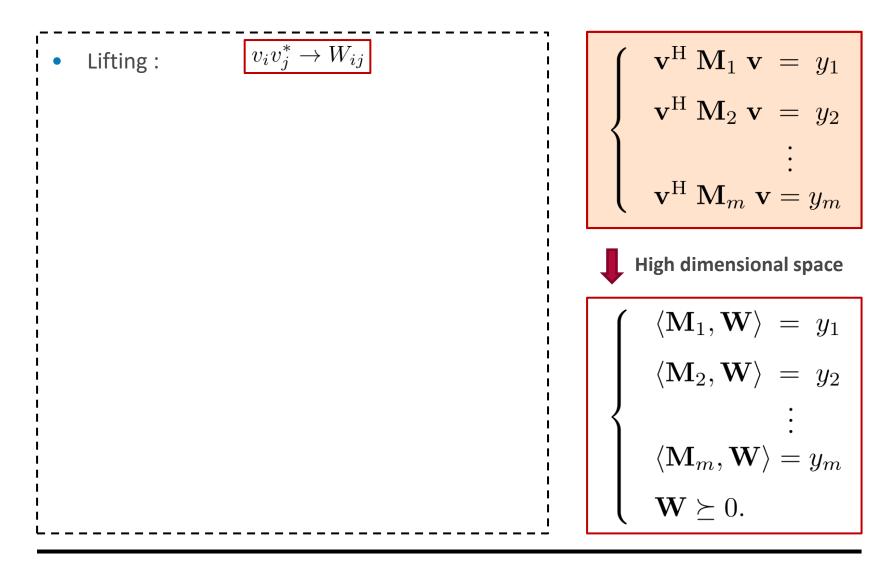


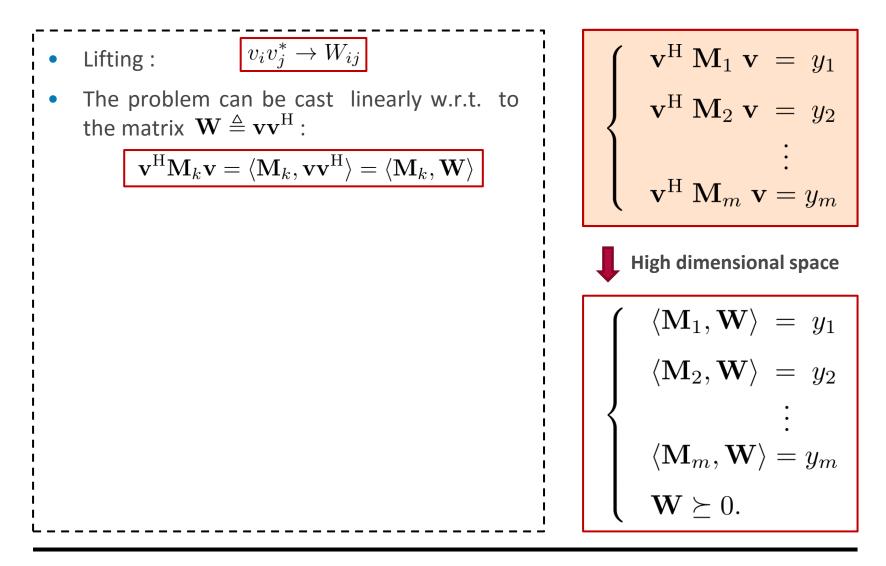


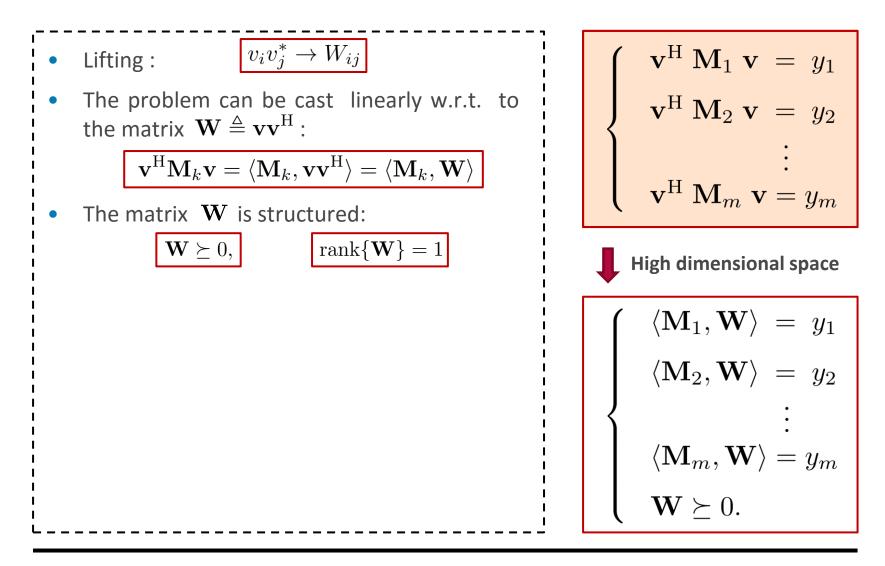


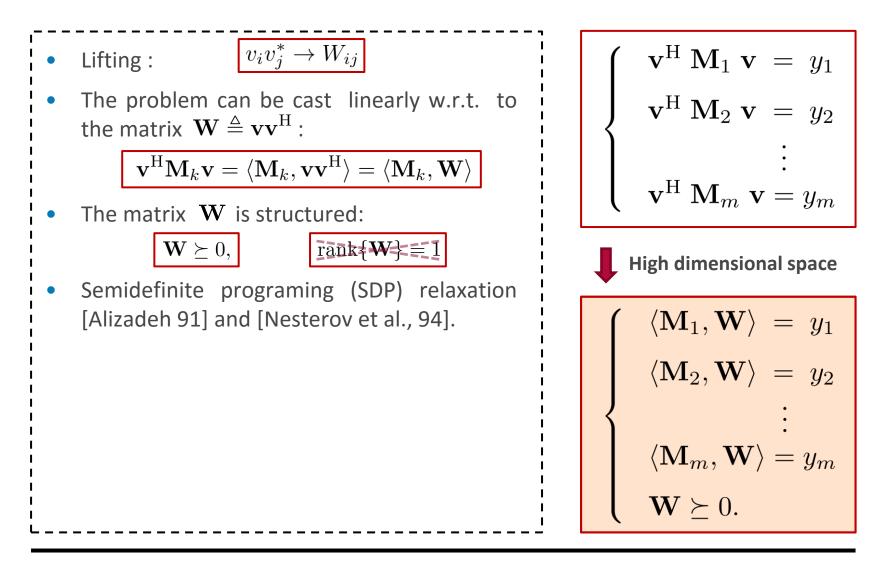


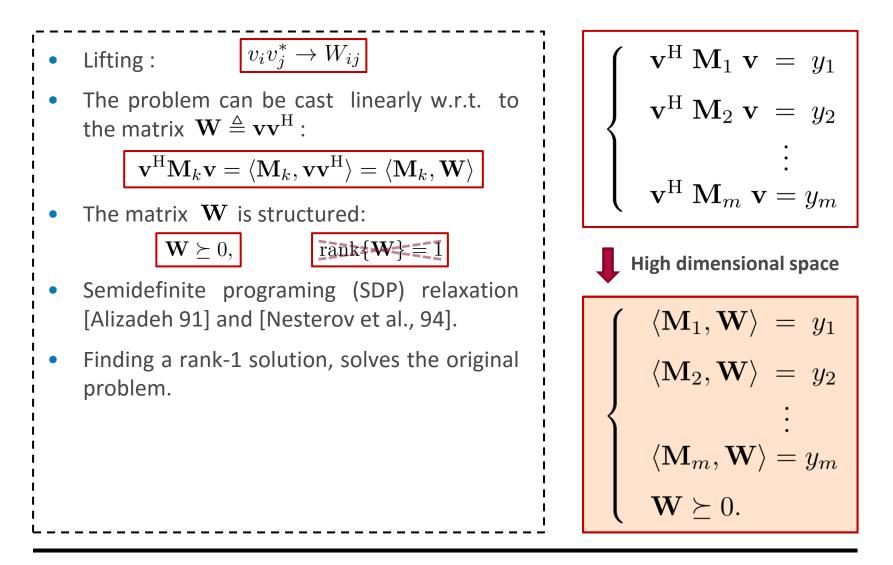


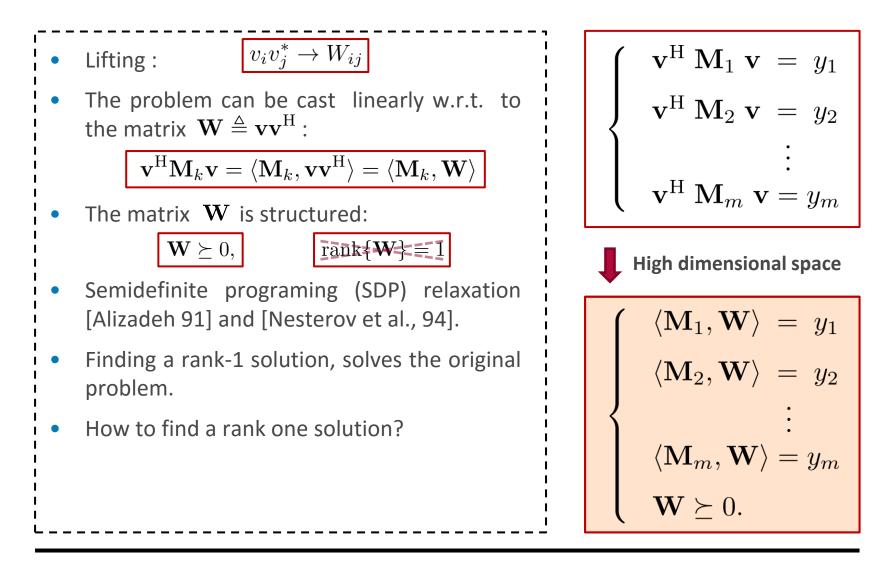


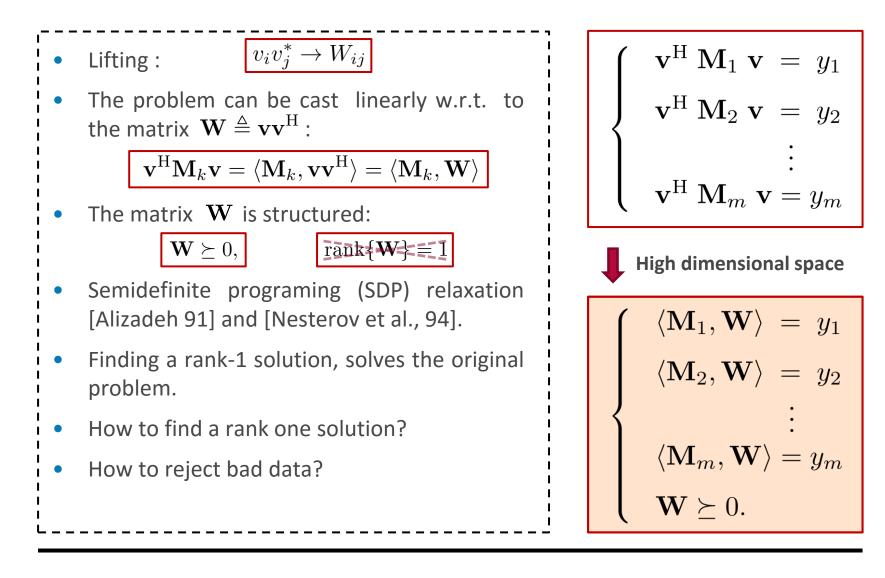


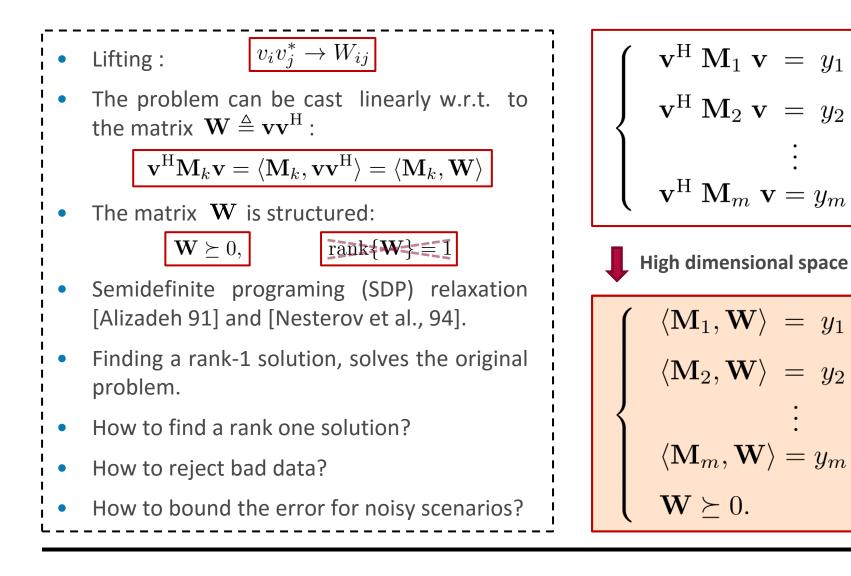




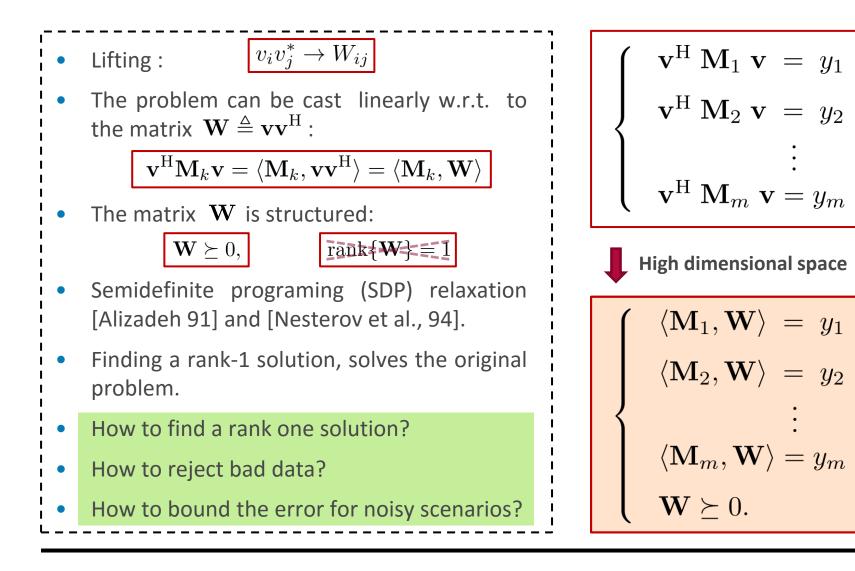


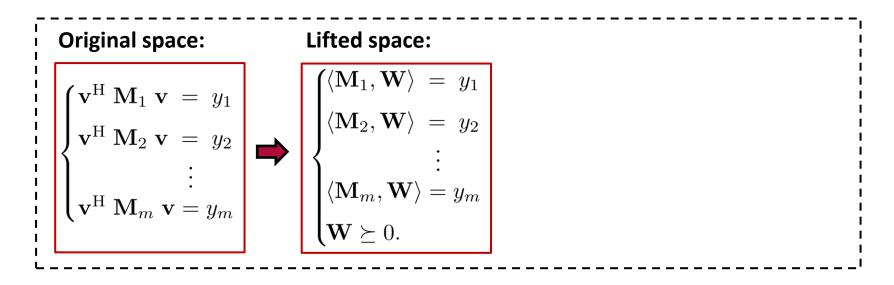


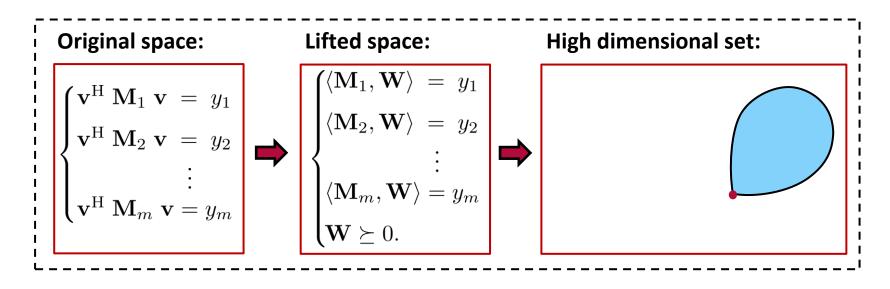


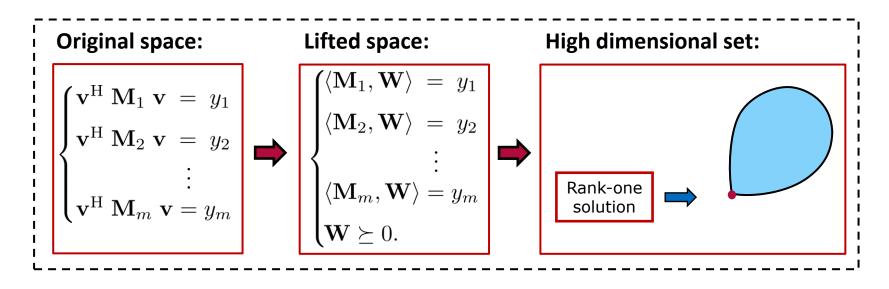


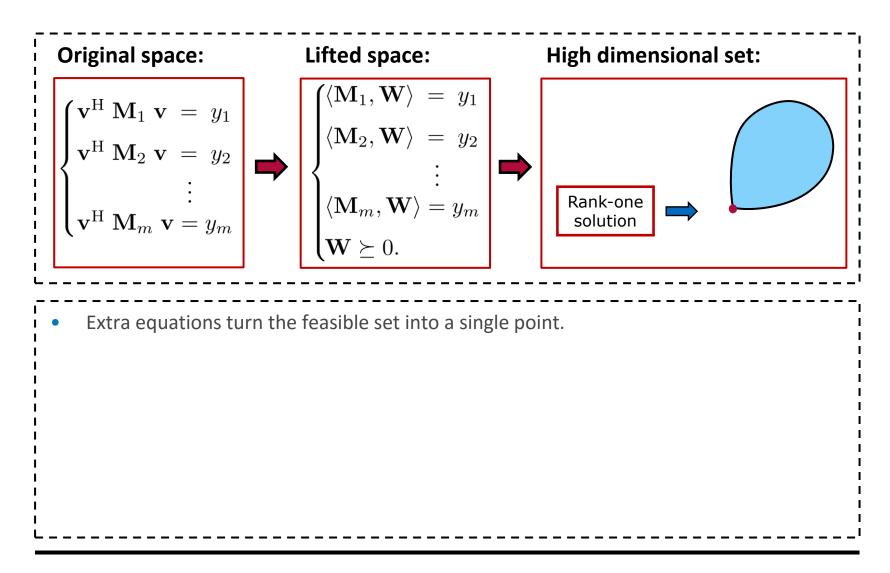
Nonconvexity: Semidefinite Relaxation

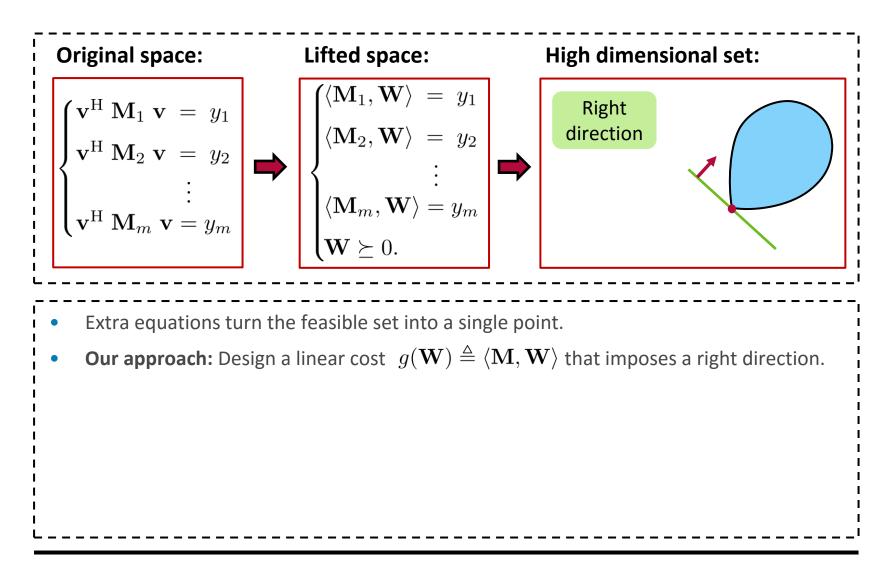


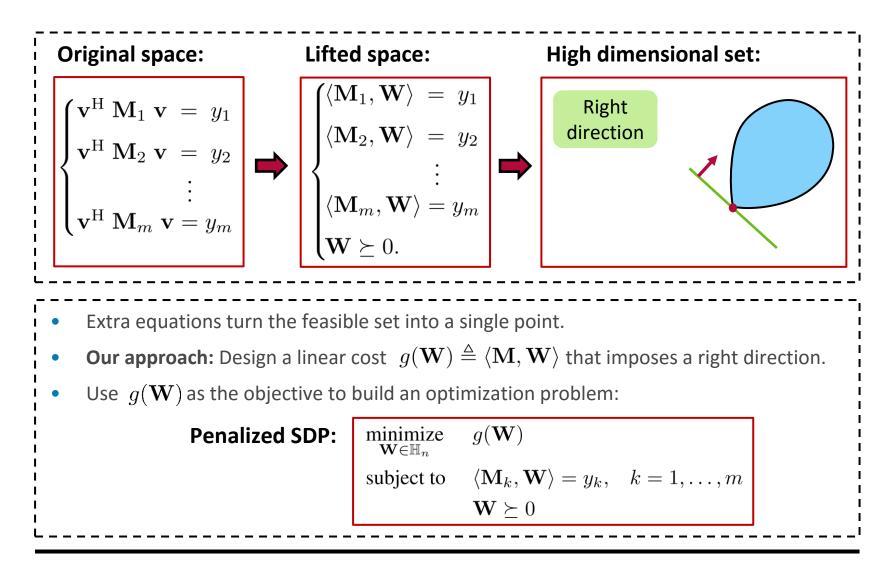


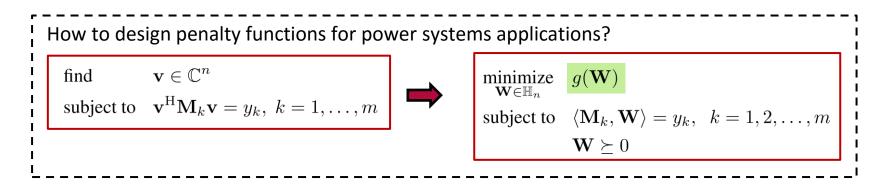


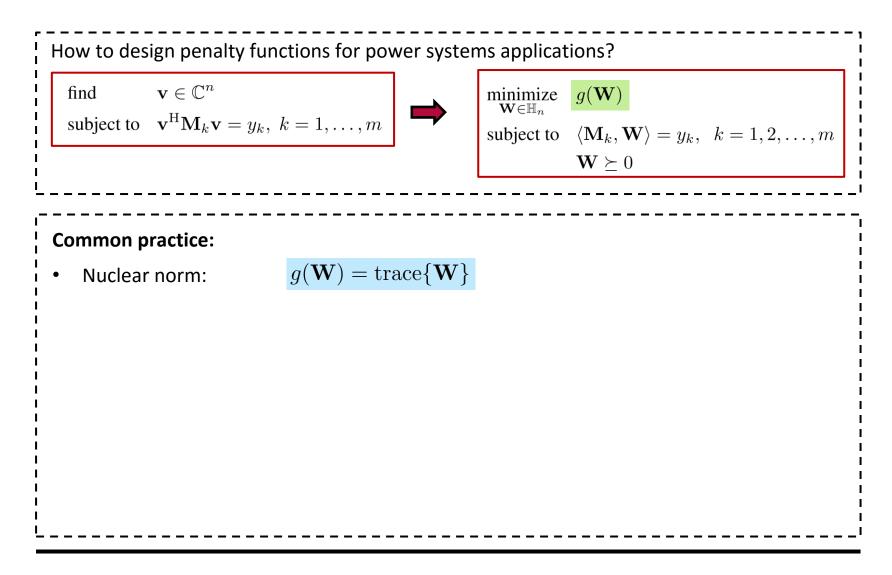


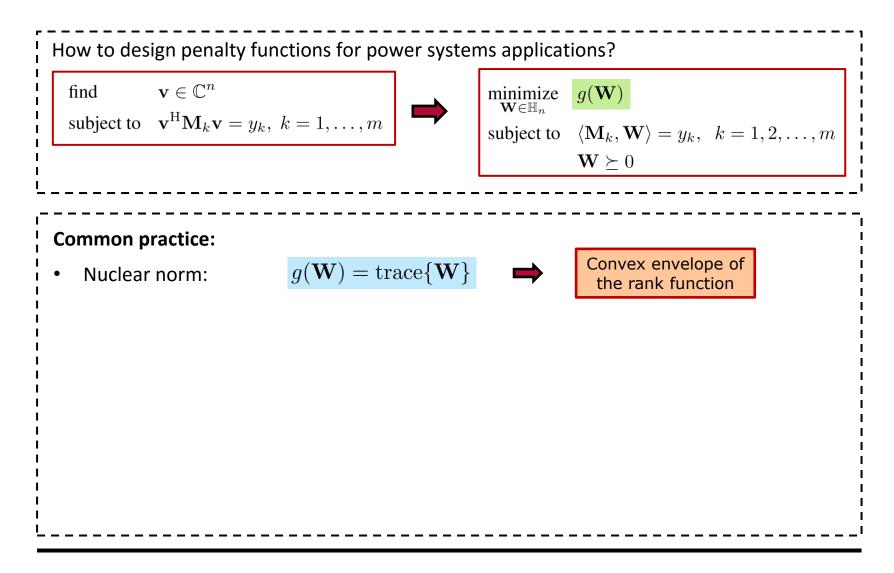


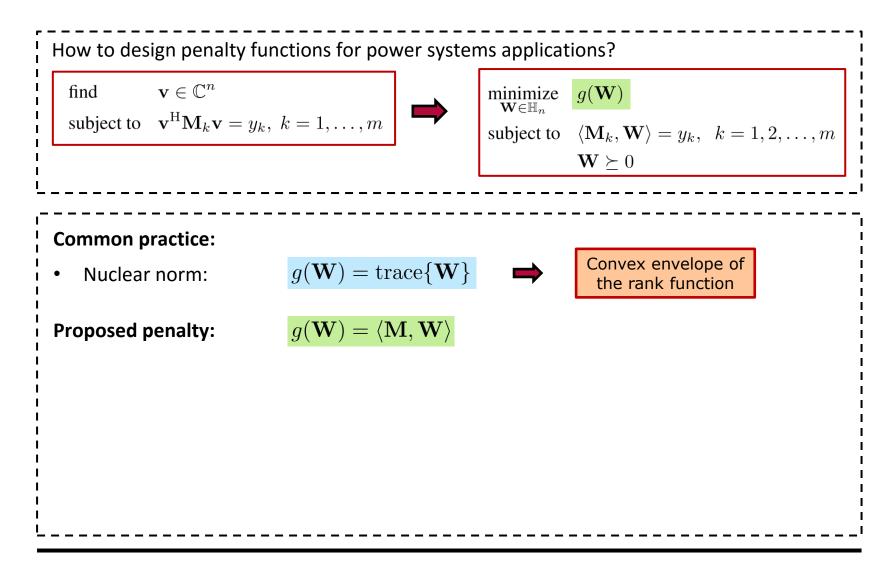


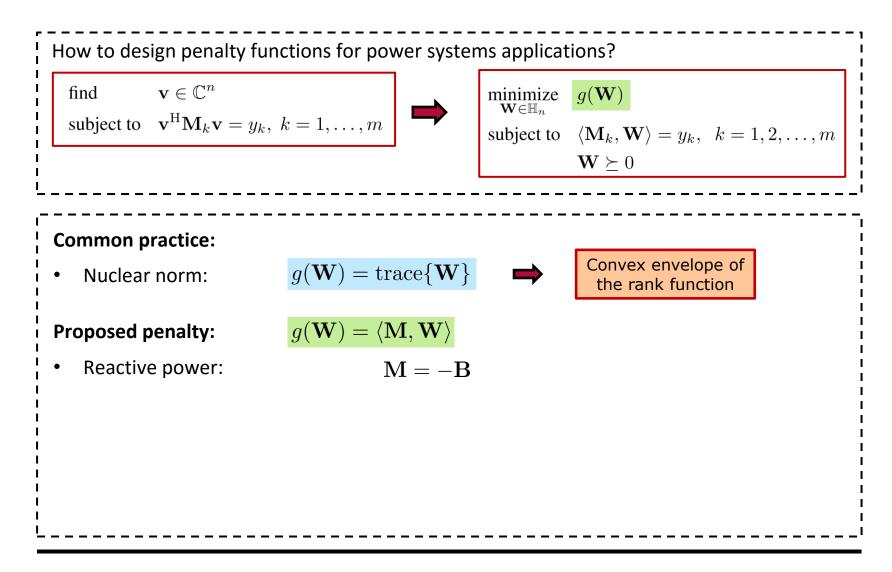


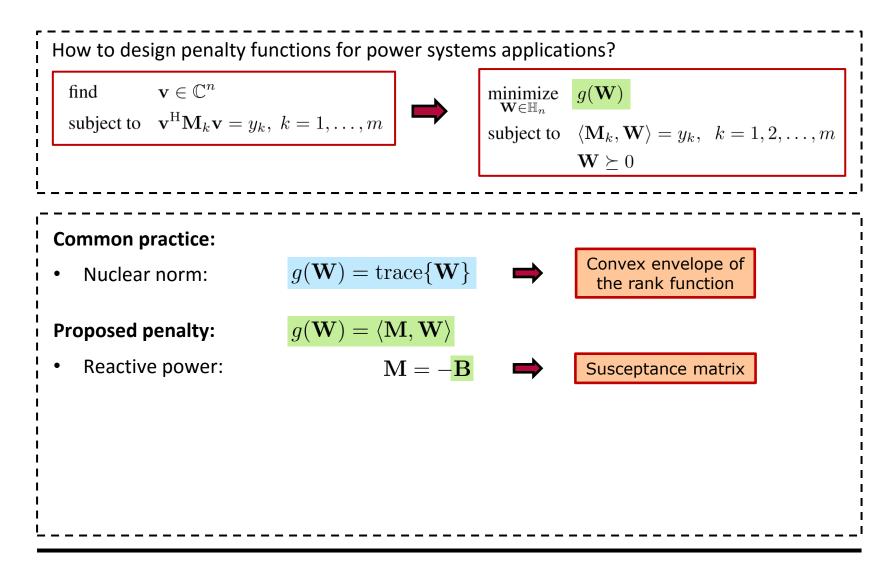


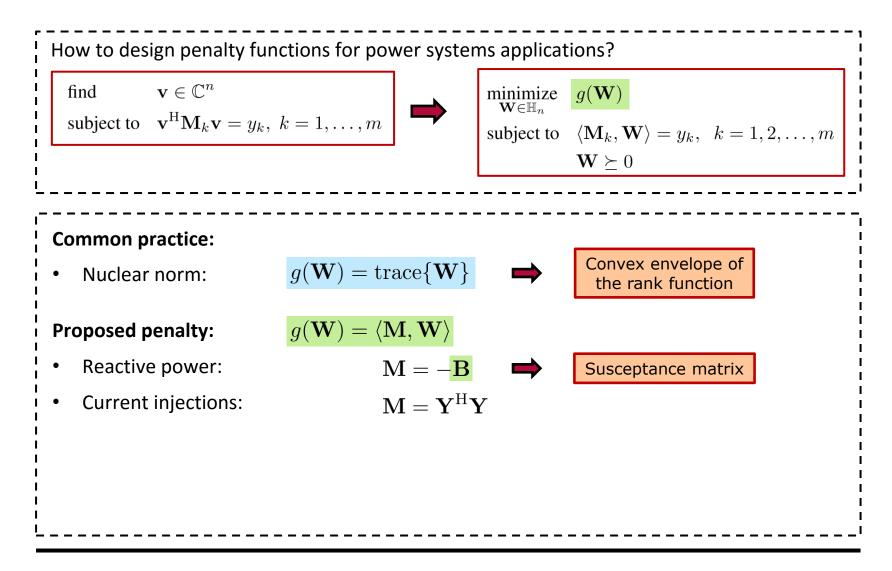


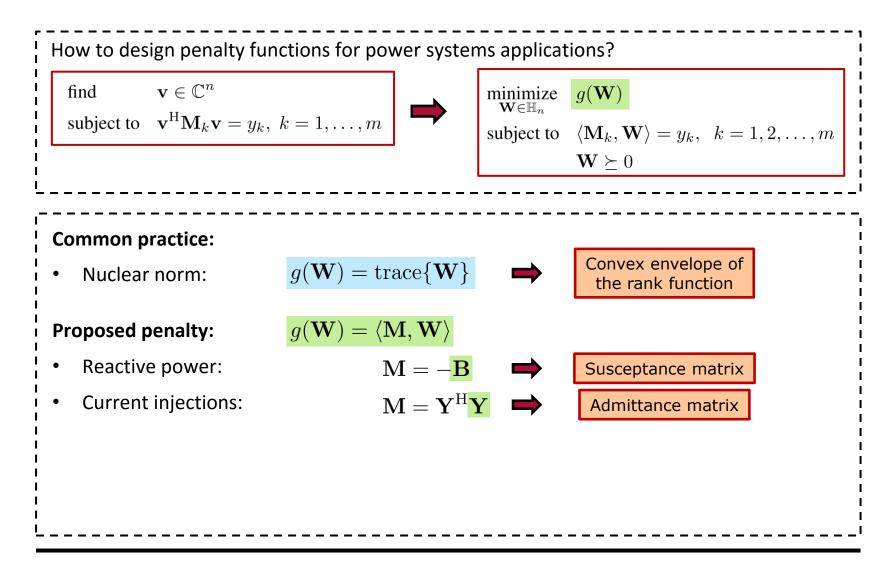


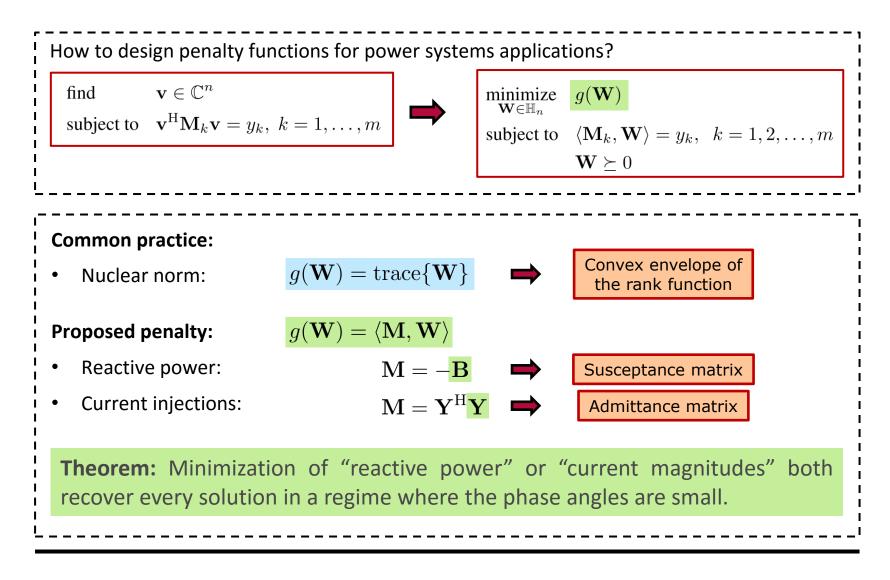


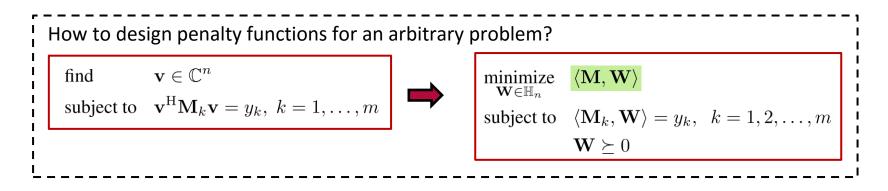


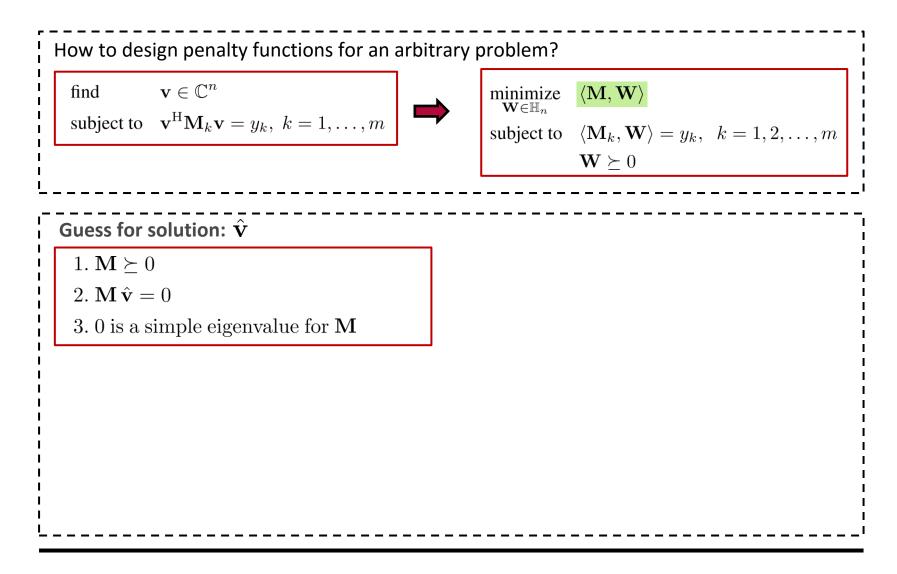


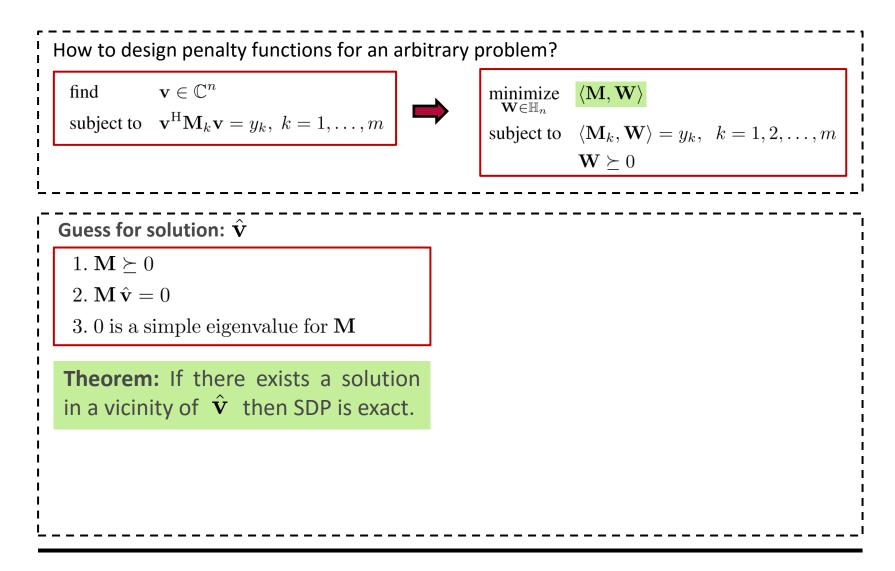


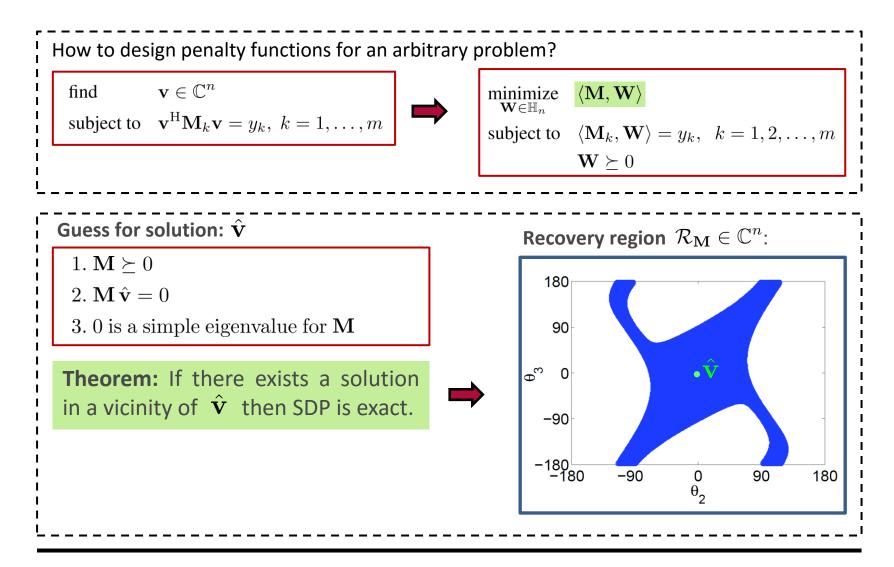


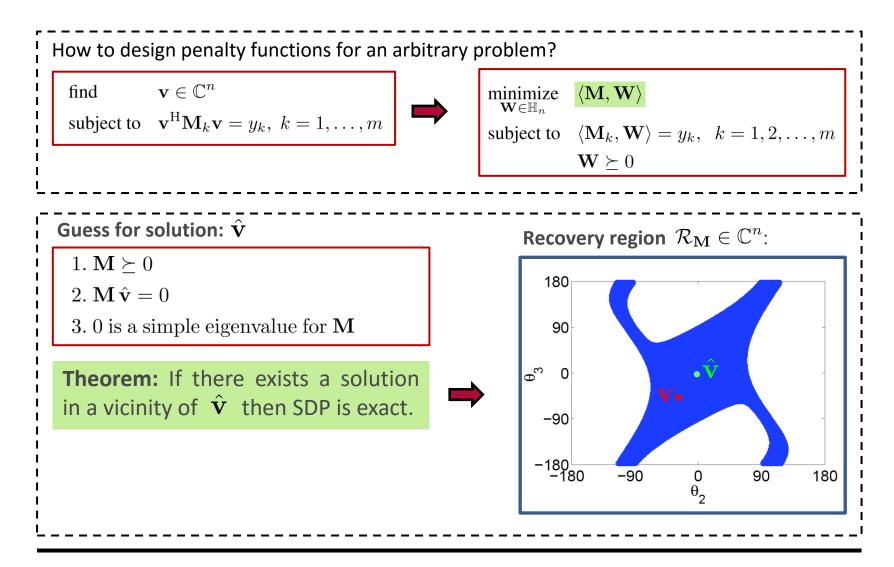


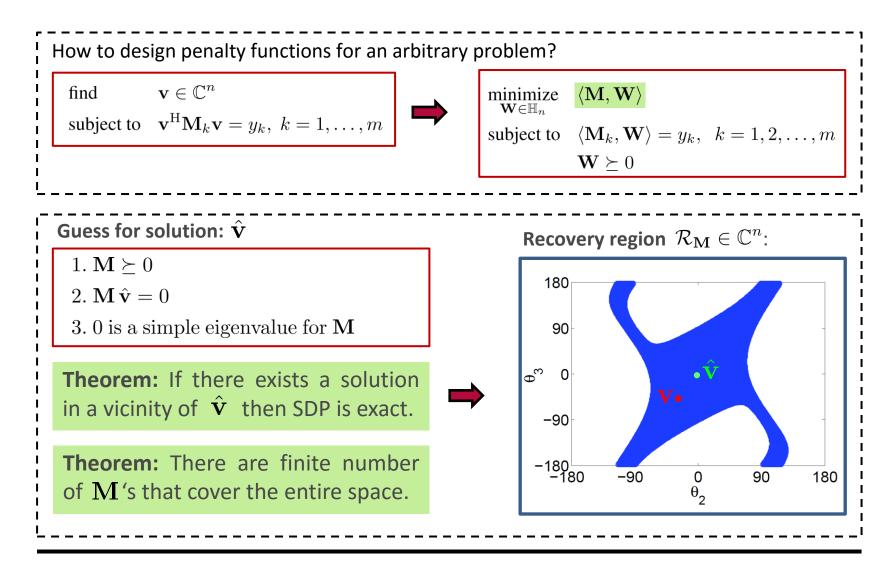


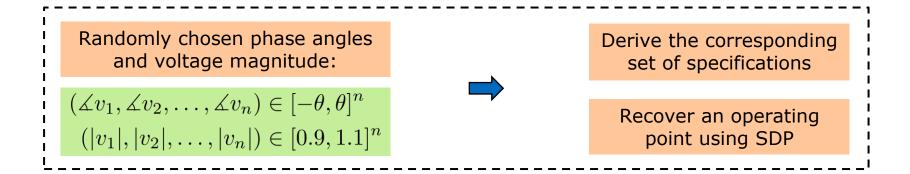


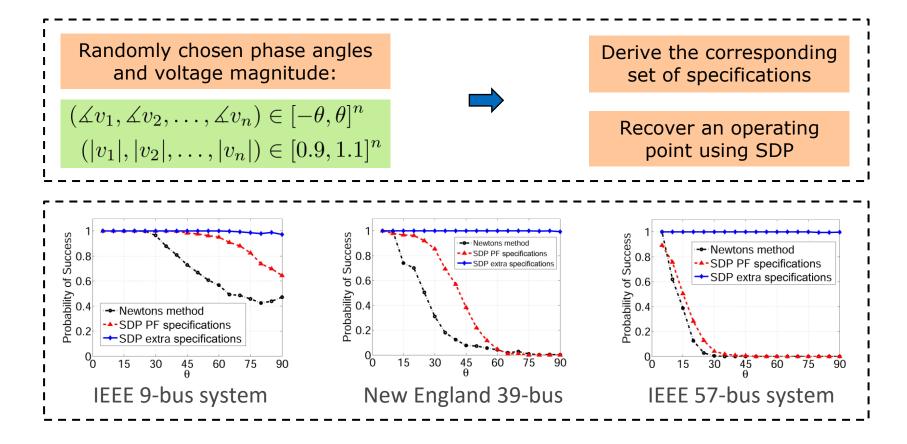


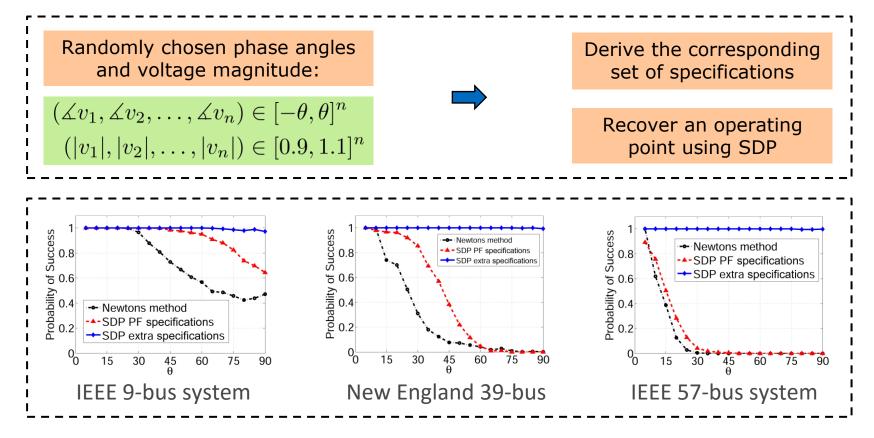




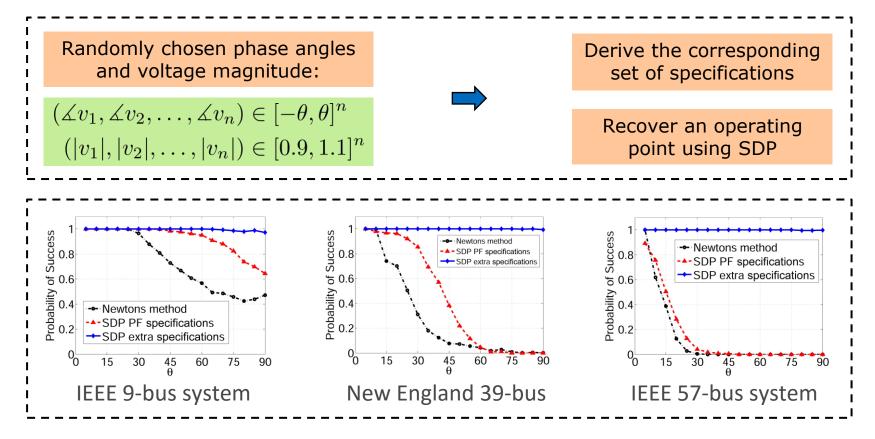




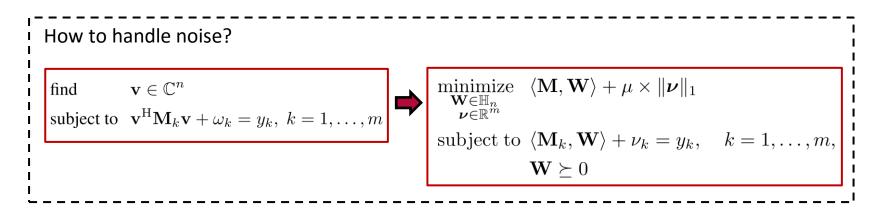


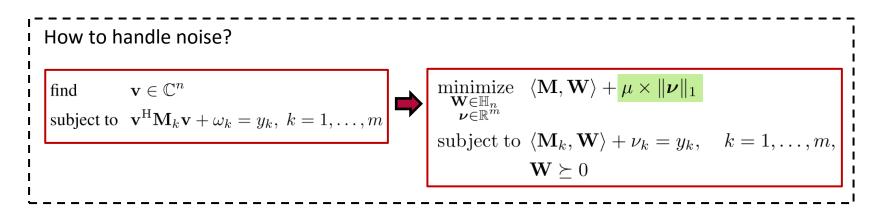


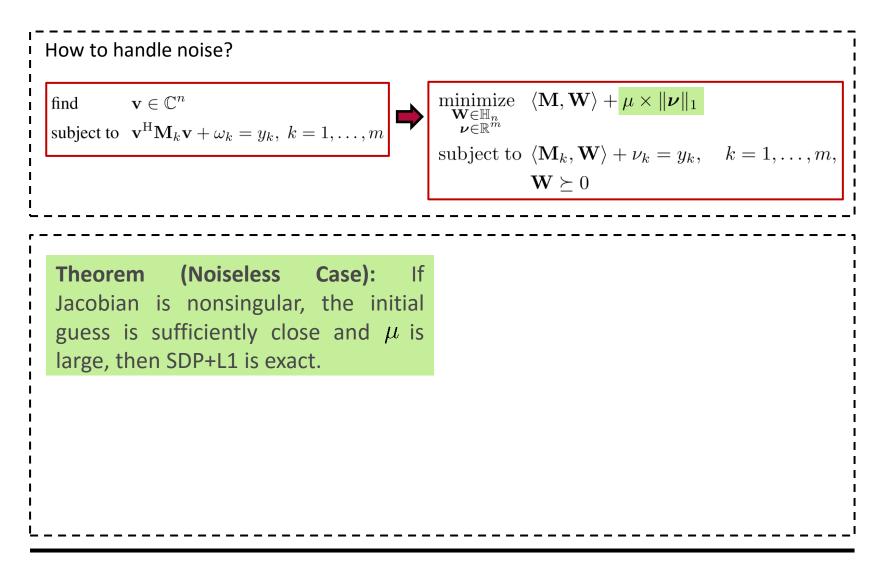
• The proposed approach outperforms Newton's method.

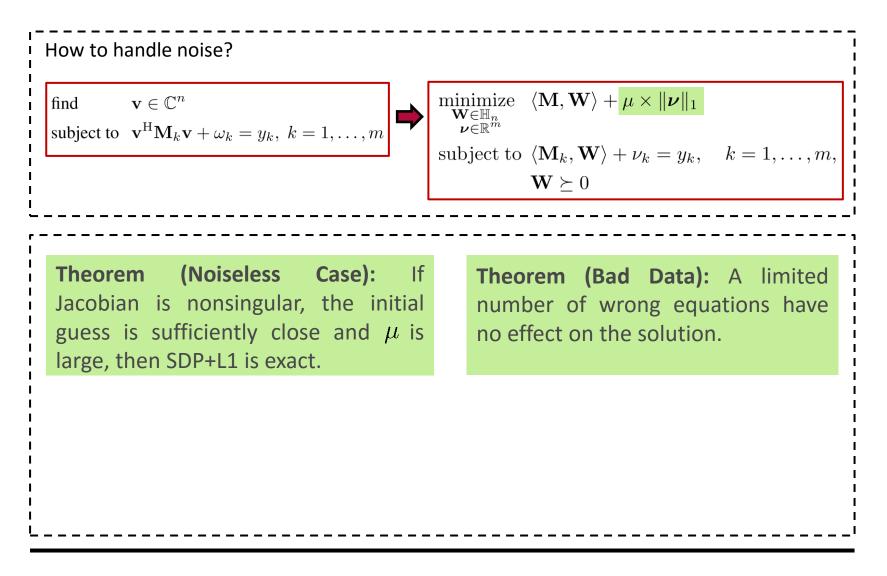


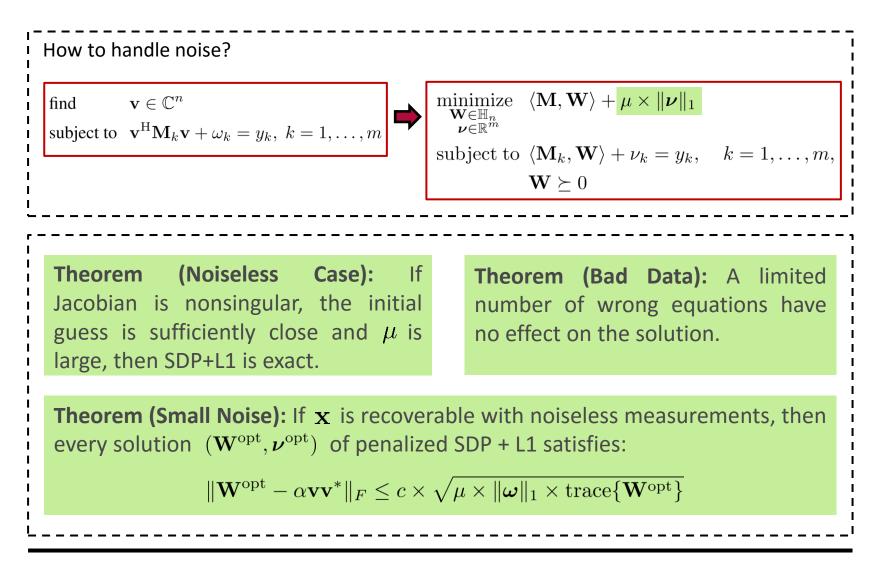
- The proposed approach outperforms Newton's method.
- Given additional equations, SDP is almost always exact.

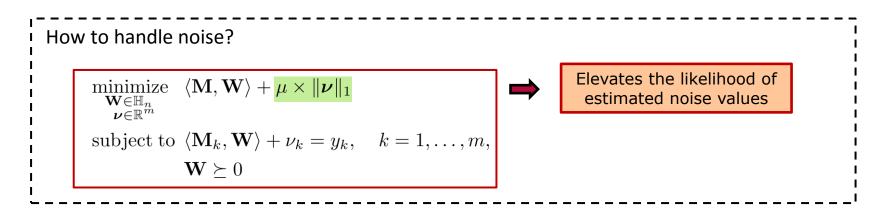




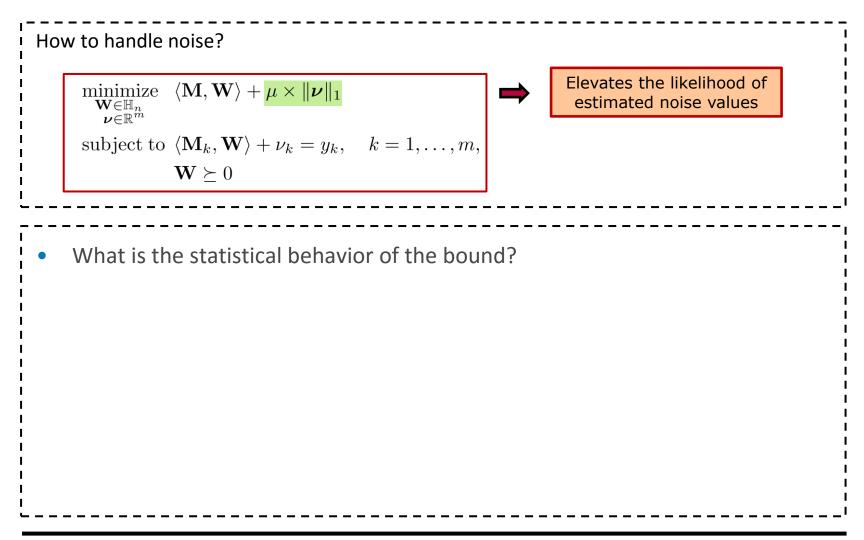




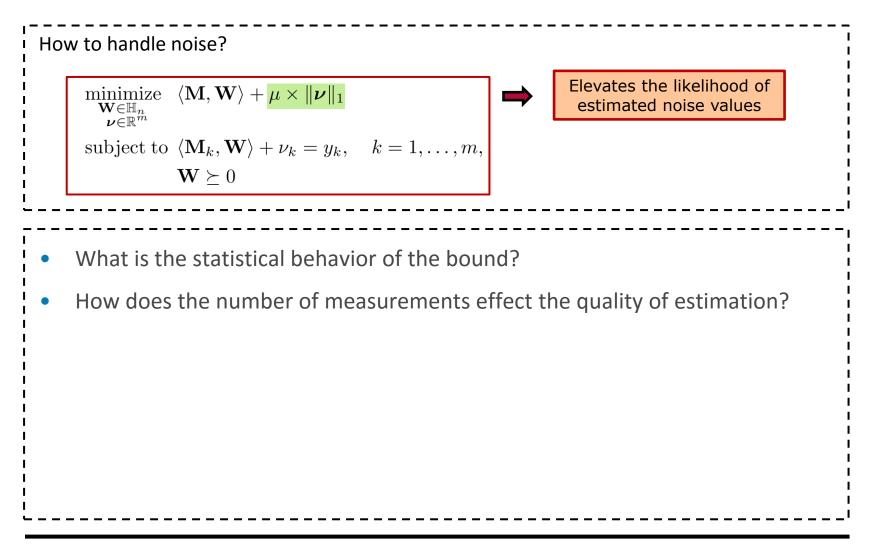




¹⁻ Y. Zhang, R. Madani and J. Lavaei, "Power System State Estimation with Line Measurements," Preprint, 2016.

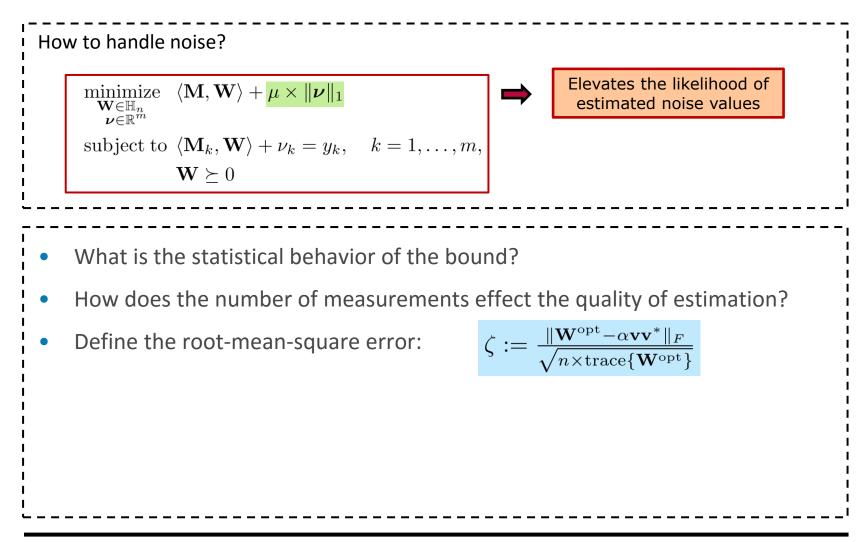


1- Y. Zhang, R. Madani and J. Lavaei, "Power System State Estimation with Line Measurements," Preprint, 2016.



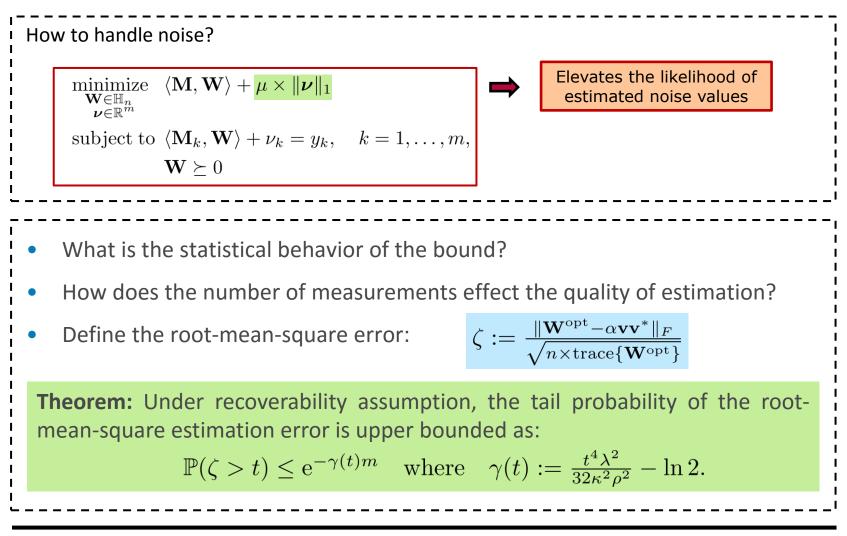
1- Y. Zhang, R. Madani and J. Lavaei, "Power System State Estimation with Line Measurements," Preprint, 2016.

Noisy Scenarios

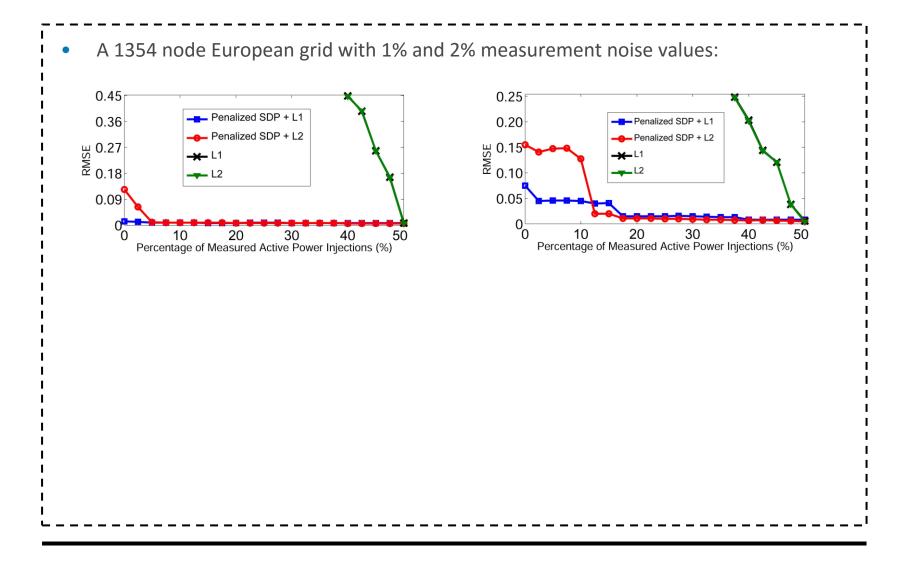


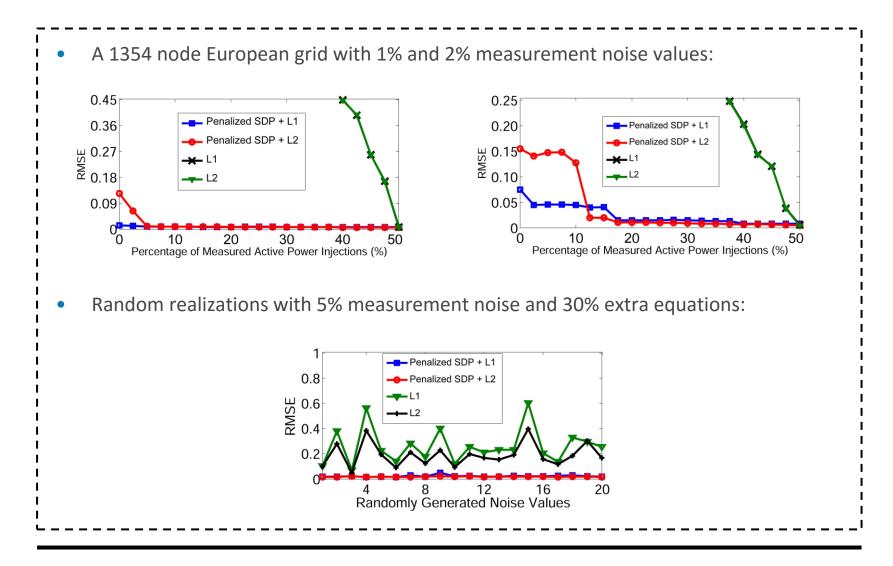
1- Y. Zhang, R. Madani and J. Lavaei, "Power System State Estimation with Line Measurements," Preprint, 2016.

Noisy Scenarios

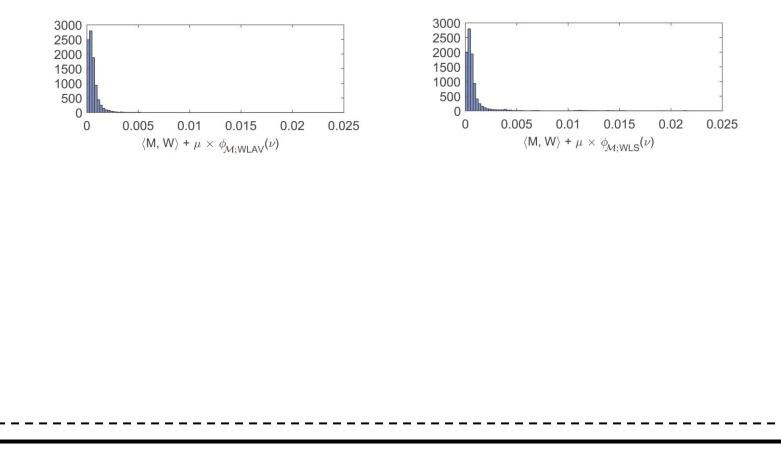


1- Y. Zhang, R. Madani and J. Lavaei, "Power System State Estimation with Line Measurements," Preprint, 2016.

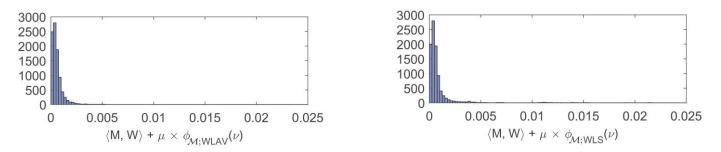




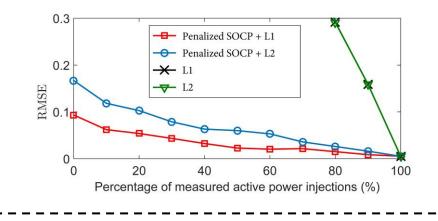
 Histograms of absolute differences between the actual and estimated complex voltages for the PEGASE 9241-bus system, using the penalized convex problem equipped with the WLAV and WLS estimators respectively:



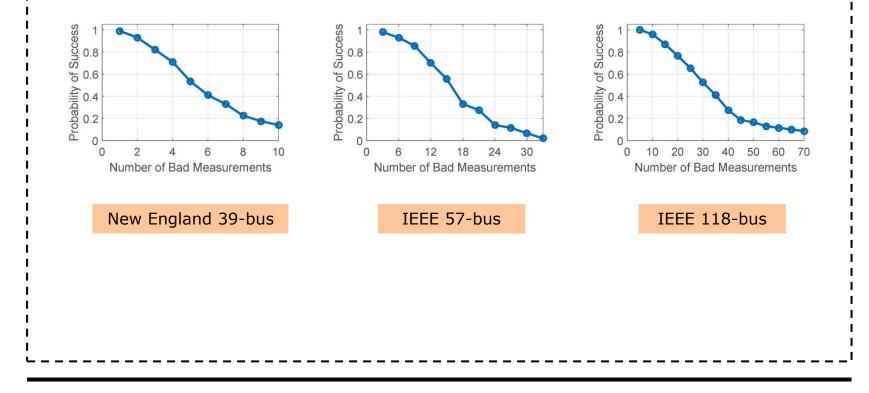
 Histograms of absolute differences between the actual and estimated complex voltages for the PEGASE 9241-bus system, using the penalized convex problem equipped with the WLAV and WLS estimators respectively:

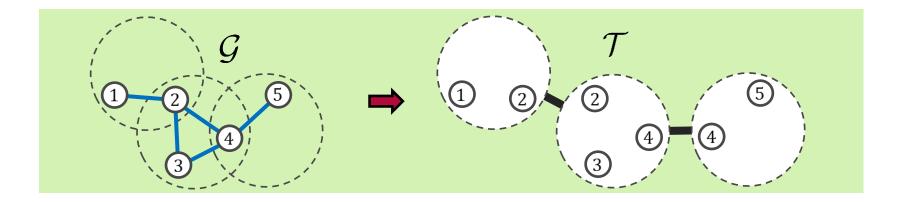


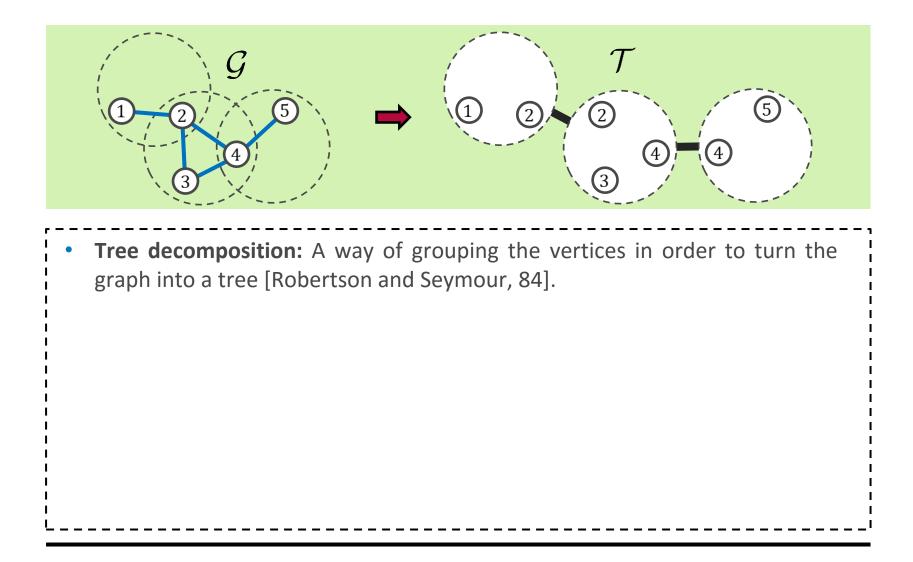
• Average RMSE of the estimated voltages obtained by SOCP over 10 Monte-Carlo simulations for different noise realizations:

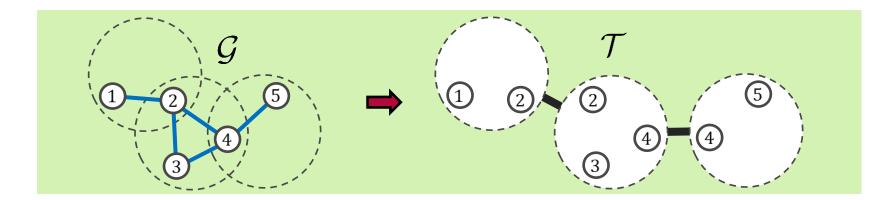


• The probability of success for the penalized SDP problem when different numbers of measurements are corrupted for New England 39-bus, IEEE 57-bus and IEEE 118-bus systems, respectively:

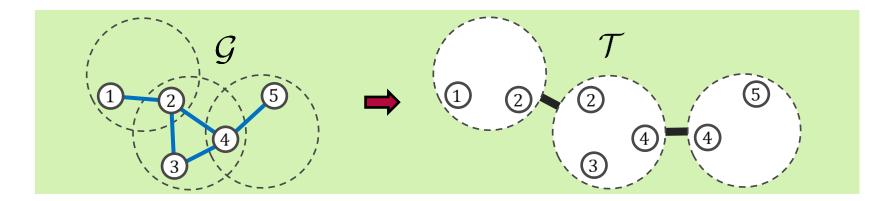




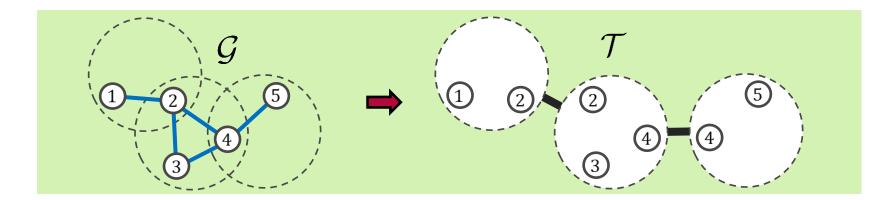




- **Tree decomposition:** A way of grouping the vertices in order to turn the graph into a tree [Robertson and Seymour, 84].
- **Tree width:** The most efficient way of grouping in terms of the size for largest group.



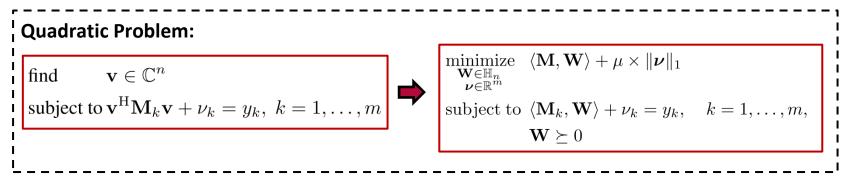
- **Tree decomposition:** A way of grouping the vertices in order to turn the graph into a tree [Robertson and Seymour, 84].
- Tree width: The most efficient way of grouping in terms of the size for largest group.
- Very efficient methods to calculating upper bounds [Bodlaender, 11].

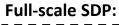


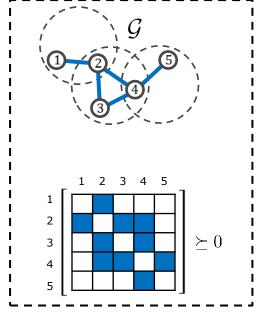
- **Tree decomposition:** A way of grouping the vertices in order to turn the graph into a tree [Robertson and Seymour, 84].
- **Tree width:** The most efficient way of grouping in terms of the size for largest group.
- Very efficient methods to calculating upper bounds [Bodlaender, 11].

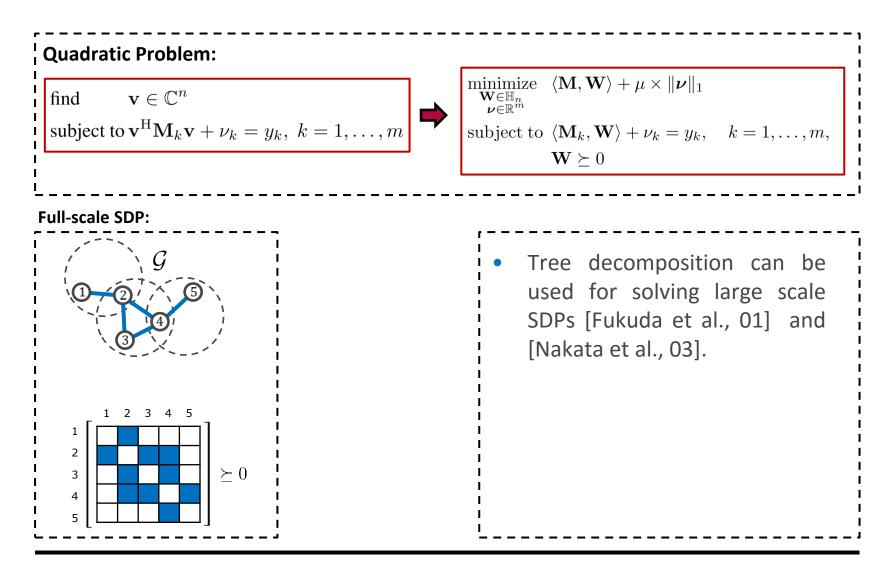
TW of the New York power grid with 8500 nodes ≤ 40 .

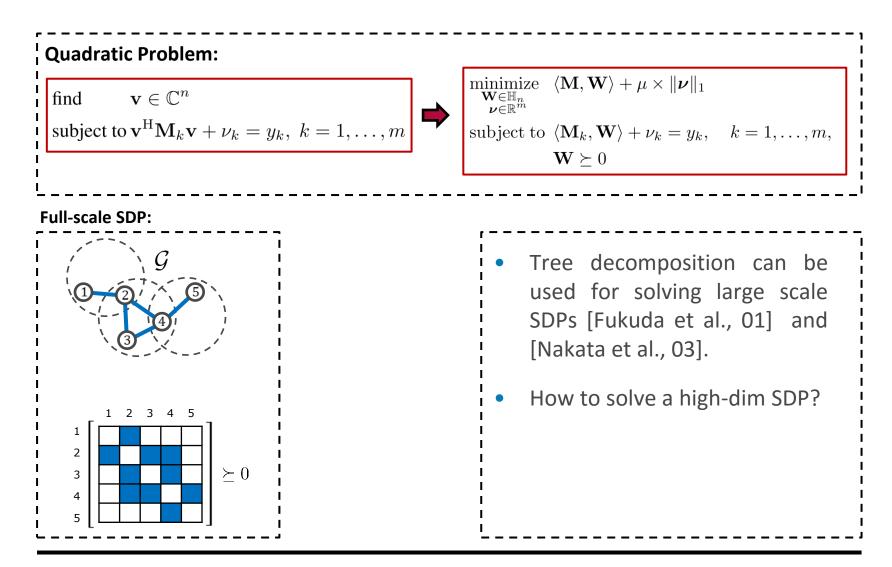
TW of the European power grid 9000 nodes ≤ 31 .

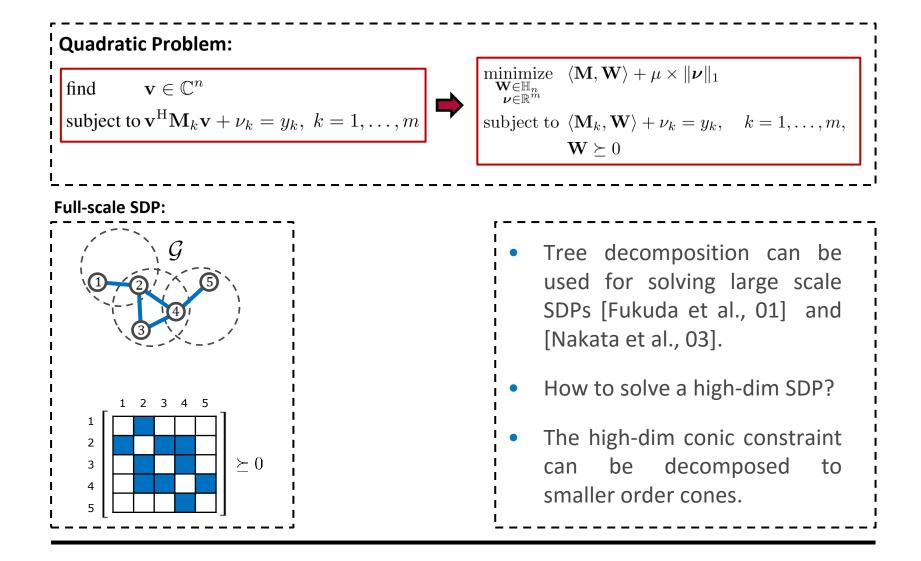


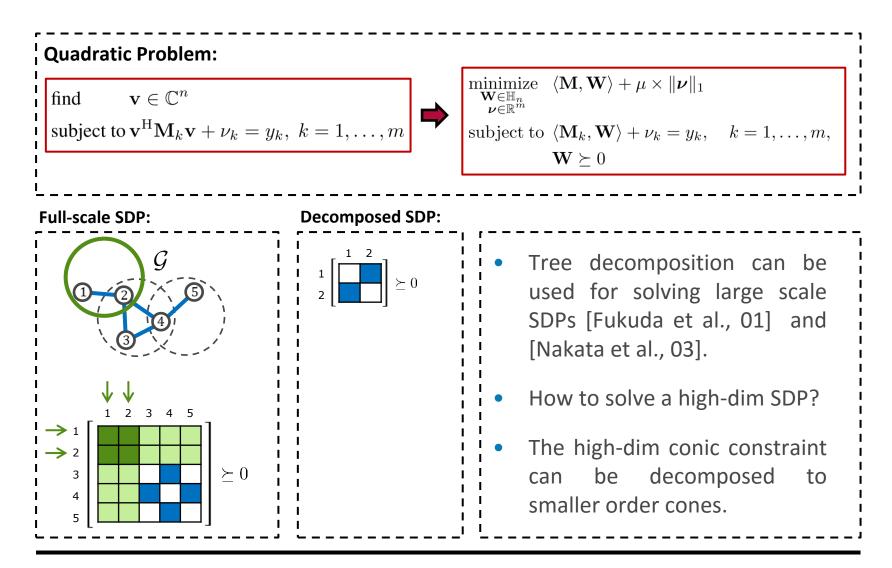


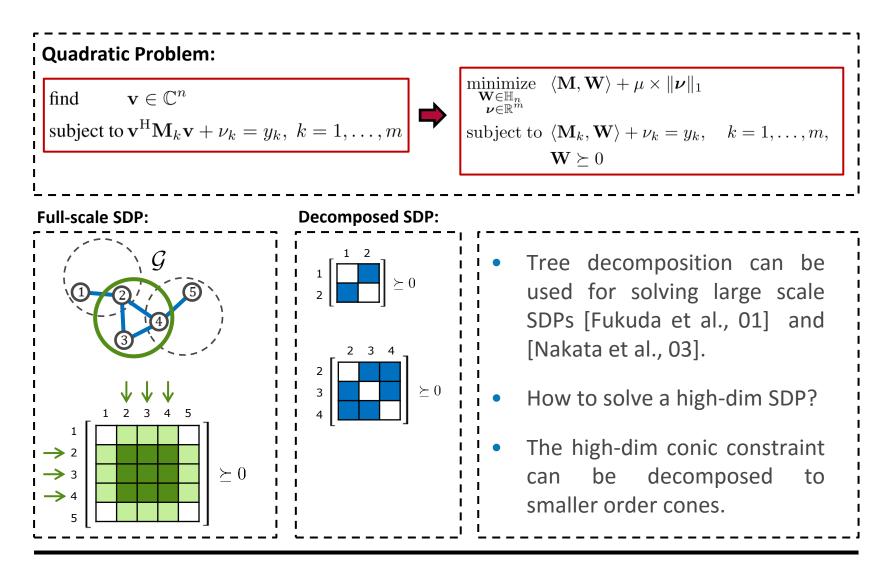


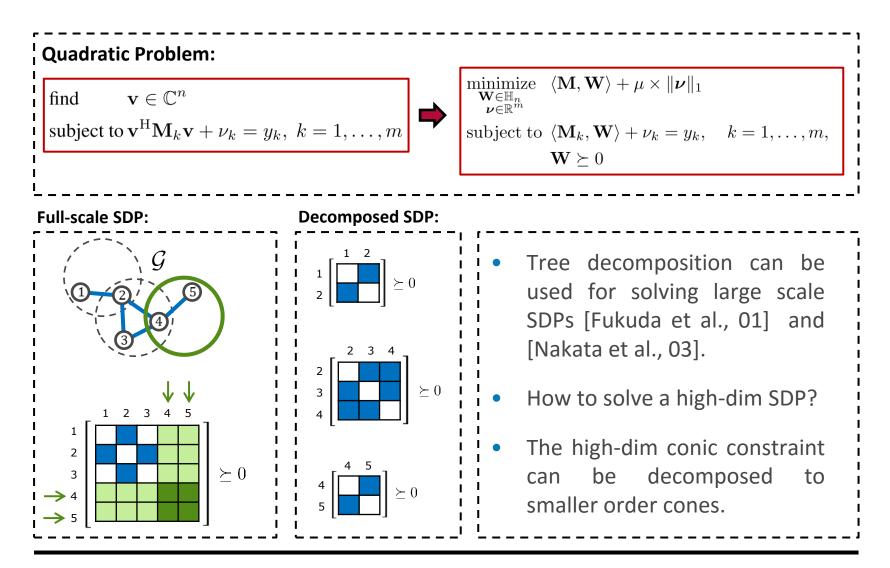


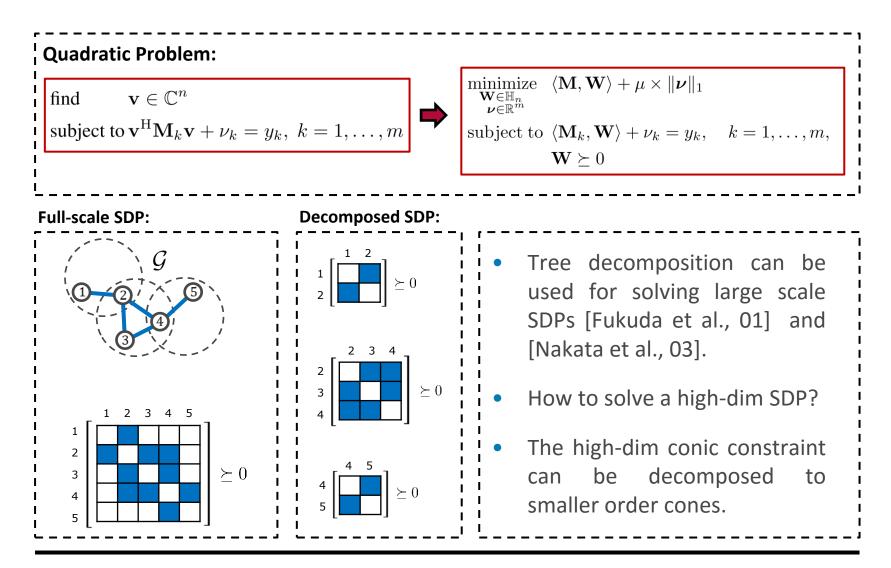












·

$\begin{array}{l} \underset{\boldsymbol{\mathcal{W}} \in \mathbb{H}_n \\ \boldsymbol{\mathcal{W}} \in \mathbb{R}^m \\ \text{subject to } \langle \mathbf{M}_k, \mathbf{W} \rangle + \boldsymbol{\nu}_k = y_k, k = 1, \dots, m, \\ \mathbf{W} \succeq 0 \end{array}$	When all measurements are noisy, the solution is never rank one.

SDP relaxation:	
$ \begin{array}{ll} \underset{\boldsymbol{\mathcal{W}} \in \mathbb{H}_n \\ \boldsymbol{\mathcal{V}} \in \mathbb{R}^m \\ \boldsymbol{\mathcal{V}} \in \mathbb{R}^m \end{array} & \langle \mathbf{M}, \mathbf{W} \rangle + \mu \times \ \boldsymbol{\mathcal{V}} \ _1 \\ \text{subject to } \langle \mathbf{M}_k, \mathbf{W} \rangle + \nu_k = y_k, k = 1, \dots, m, \\ \mathbf{W} \succ 0 \end{array} $	 When all measurements are noisy, the solution is never rank one. How to find a rank one of approximate?

SDP relaxation: minimize $\langle \mathbf{M}, \mathbf{W} \rangle + \mu \times \| \boldsymbol{\nu} \|_1$ When all measurements are noisy, the $\mathbf{W} \in \mathbb{H}_n \ oldsymbol{
u} \in \mathbb{R}^m$ solution is never rank one. subject to $\langle \mathbf{M}_k, \mathbf{W} \rangle + \nu_k = y_k, \quad k = 1, \dots, m,$ How to find a rank one of approximate? $\mathbf{W} \succ \mathbf{0}$ **Rank-1 approximation algorithm:** Given an optimal solution **W**^{opt} of the SDP problem, we recover an approximate solution $\tilde{\mathbf{v}} \in \mathbb{C}^n$ as follows: 1. Set the voltage magnitude $|\tilde{v}_k| := \sqrt{W_{kk}^{\text{opt}}}$ for $k = 1, \ldots, n$. 2. Find the phases of the entries of $\tilde{\mathbf{v}}$ by solving the convex program: $\sum \left| \measuredangle W_{ij}^{\text{opt}} - \theta_i + \theta_j \right|$ minimize $\boldsymbol{\theta} \in [-\pi,\pi]^n$ $(i,j) \in \mathcal{L}$ $\theta_o = 0,$ subject to

where $o \in \mathcal{N}$ is the slack bus.

SDP relaxation: minimize $\langle \mathbf{M}, \mathbf{W} \rangle + \mu \times \| \boldsymbol{\nu} \|_1$ When all measurements are noisy, the $\mathbf{W} \in \mathbb{H}_n \ oldsymbol{
u} \in \mathbb{R}^m$ solution is never rank one. subject to $\langle \mathbf{M}_k, \mathbf{W} \rangle + \nu_k = y_k, \quad k = 1, \dots, m,$ How to find a rank one of approximate? $\mathbf{W} \succ \mathbf{0}$ **Rank-1 approximation algorithm:** Given an optimal solution \mathbf{W}^{opt} of the SDP problem, we recover an approximate solution $\tilde{\mathbf{v}} \in \mathbb{C}^n$ as follows: 1. Set the voltage magnitude $|\tilde{v}_k| := \sqrt{W_{kk}^{\text{opt}}}$ for $k = 1, \ldots, n$. 2. Find the phases of the entries of $\tilde{\mathbf{v}}$ by solving the convex program: $\sum \left| \measuredangle W_{ii}^{\text{opt}} - \theta_i + \theta_i \right|$

subject to

$$\sum_{(i,j)\in\mathcal{L}} |\Delta W_{ij}| - \theta_i + \theta_i + \theta_i = 0,$$

where $o \in \mathcal{N}$ is the slack bus.

SDP relaxation: minimize $\langle \mathbf{M}, \mathbf{W} \rangle + \mu \times \| \boldsymbol{\nu} \|_1$ When all measurements are noisy, the $\mathbf{W} \in \mathbb{H}_n \ oldsymbol{
u} \in \mathbb{R}^m$ solution is never rank one. subject to $\langle \mathbf{M}_k, \mathbf{W} \rangle + \nu_k = y_k, \quad k = 1, \dots, m,$ How to find a rank one of approximate? $\mathbf{W} \succ \mathbf{0}$ **Rank-1 approximation algorithm:** Given an optimal solution \mathbf{W}^{opt} of the SDP problem, we recover an approximate solution $\tilde{\mathbf{v}} \in \mathbb{C}^n$ as follows: 1. Set the voltage magnitude $|\tilde{v}_k| := \sqrt{W_{kk}^{\text{opt}}}$ for $k = 1, \dots, n$. 2. Find the phases of the entries of $\tilde{\mathbf{v}}$ by solving the convex program: $\sum \left| \measuredangle W_{ij}^{\text{opt}} - \theta_i + \theta_j \right|$ minimize $\boldsymbol{\theta} \in [-\pi,\pi]^n$ $(i,j) \in \mathcal{L}$

subject to $\theta_o = 0,$

where $o \in \mathcal{N}$ is the slack bus.

SDP relaxation:	
$ \begin{array}{ll} \underset{\mathbf{W} \in \mathbb{H}_n \\ \boldsymbol{\nu} \in \mathbb{R}^m \\ \end{array}}{\text{minimize}} \langle \mathbf{M}, \mathbf{W} \rangle + \mu \times \ \boldsymbol{\nu} \ _1 \\ \end{array} $	
subject to $\langle \mathbf{M}_k, \mathbf{W} \rangle + \nu_k = y_k, k = 1, \dots, m,$	
$\mathbf{W} \succeq 0$	

SDP relaxation:	
$ \begin{array}{ll} \underset{\mathbf{W} \in \mathbb{H}_n \\ \boldsymbol{\nu} \in \mathbb{R}^m \end{array}}{\text{minimize}} \langle \mathbf{M}, \mathbf{W} \rangle + \mu \times \ \boldsymbol{\nu} \ _1 \\ \end{array} $	 In real world grids, there are many buses without any loads or generators.
subject to $\langle \mathbf{M}_k, \mathbf{W} \rangle + \nu_k = y_k, k = 1, \dots, m,$ $\mathbf{W} \succeq 0$	 These buses can be used to strengthen SDP.

I

L

$\begin{array}{ll} \underset{\boldsymbol{\nu} \in \mathbb{H}_n \\ \boldsymbol{\nu} \in \mathbb{R}^m}{\text{minimize}} & \langle \mathbf{M}, \mathbf{W} \rangle + \mu \times \ \boldsymbol{\nu} \ _1 \\ \text{subject to } & \langle \mathbf{M}_k, \mathbf{W} \rangle + \nu_k = y_k, k = 1, \dots, m, \\ & \mathbf{W} \succeq 0 \end{array}$	•	bus The	es without a se buses ca	any lo	s, there an bads or gene used to str	erators	
		SDP	•				
] 	SDP	Numbe	6	o injection buses	711	
	J 	SDP 	Number IEEE 30-bus	r of zer 6 10	Polish 2746wop	711 705	
] 	SDP	Numbe	6	v		-

IEEE 300-bus

Polish 2383wp

Polish 2736sp

Polish 2737sop

65

552

645

689

Polish 3375wp

PEGASE 1354

PEGASE 2869

PEGASE 9241

890

421

868

4346

н

I.

L

L

L

Kron reduction:

- We lose line measurements that are incident to the removed buses.
- We lose sparsity.

Number of zero injection buses				
IEEE 30-bus	6	Polish 2746wop	711	
New England 39	10	Polish 2746wp	705	
IEEE 57-bus	15	Polish 3012wp	726	
IEEE 118-bus	10	Polish 3120sp	798	
IEEE 300-bus	65	Polish 3375wp	890	
Polish 2383wp	552	PEGASE 1354	421	
Polish 2736sp	645	PEGASE 2869	868	
Polish 2737sop	689	PEGASE 9241	4346	

SDP relaxation: In real world grids, there are many minimize $\langle \mathbf{M}, \mathbf{W} \rangle + \mu \times \| \boldsymbol{\nu} \|_1$ $\mathbf{W} \in \mathbb{H}_n \ oldsymbol{ u} \in \mathbb{R}^m$ buses without any loads or generators. subject to $\langle \mathbf{M}_k, \mathbf{W} \rangle + \nu_k = y_k, \quad k = 1, \dots, m,$ These buses can be used to strengthen $\mathbf{W} \succ \mathbf{0}$ SDP.

Kron reduction:

 $i \in \mathcal{N}$

- We lose line measurements that are incident to the removed buses.
- We lose sparsity.

Polish 3120sp IEEE 300-bus 65 Polish 3375wp 890 552 Polish 2383wp PEGASE 1354 421 Polish 2736sp 645 PEGASE 2869 868 Polish 2737sop 689 PEGASE 9241 4346 $\sum v_k^* (v_k - v_j) y_{kj} = 0 \implies \sum (v_k - v_j) y_{kj} = 0 \implies \sum v_l^* (v_k - v_j) y_{kj} = 0 \quad \forall l \in \mathcal{L}$

IEEE 30-bus

IEEE 57-bus

IEEE 118-bus

New England 39

Number of zero injection buses

Polish 2746wop

Polish 2746wp

Polish 3012wp

711

705

726

798

6

10

15

10

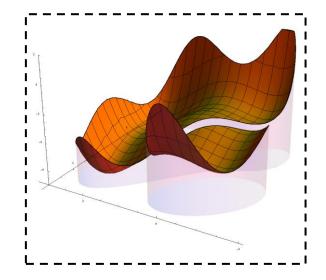
SDP relaxation: In real world grids, there are many minimize $\langle \mathbf{M}, \mathbf{W} \rangle + \mu \times \| \boldsymbol{\nu} \|_1$ $\mathbf{W} \in \mathbb{H}_n \ oldsymbol{ u} \in \mathbb{R}^m$ buses without any loads or generators. subject to $\langle \mathbf{M}_k, \mathbf{W} \rangle + \nu_k = y_k, \quad k = 1, \dots, m,$ These buses can be used to strengthen $\mathbf{W} \succ \mathbf{0}$ SDP. Number of zero injection buses **Kron reduction:** IEEE 30-bus 6 Polish 2746wop 711 New England 39 10 Polish 2746wp 705 We lose line measurements that are IEEE 57-bus 15 Polish 3012wp 726 IEEE 118-bus 10 Polish 3120sp 798 incident to the removed buses. 65 Polish 3375wp IEEE 300-bus 890 552 Polish 2383wp PEGASE 1354 421 We lose sparsity. Polish 2736sp 645 PEGASE 2869 868 Polish 2737sop 689 PEGASE 9241 4346 $\sum v_k^* (v_k - v_j) y_{kj} = 0 \implies \sum (v_k - v_j) y_{kj} = 0 \implies \sum v_l^* (v_k - v_j) y_{kj} = 0 \quad \forall l \in \mathcal{L}$ $i \in \mathcal{N}$ $i \in \mathcal{N}$

Each zero injection bus introduces 2n valid equalities.

SDP relaxation: In real world grids, there are many minimize $\langle \mathbf{M}, \mathbf{W} \rangle + \mu \times \| \boldsymbol{\nu} \|_1$ $\mathbf{W} \in \mathbb{H}_n \ oldsymbol{ u} \in \mathbb{R}^m$ buses without any loads or generators. subject to $\langle \mathbf{M}_k, \mathbf{W} \rangle + \nu_k = y_k, \quad k = 1, \dots, m,$ These buses can be used to strengthen $\mathbf{W} \succ \mathbf{0}$ SDP. Number of zero injection buses **Kron reduction:** IEEE 30-bus 6 Polish 2746wop 711 New England 39 10 Polish 2746wp 705 We lose line measurements that are IEEE 57-bus 15 Polish 3012wp 726 IEEE 118-bus 10 Polish 3120sp 798 incident to the removed buses. 65 IEEE 300-bus Polish 3375wp 890 552 Polish 2383wp PEGASE 1354 421 We lose sparsity. Polish 2736sp 645 PEGASE 2869 868 Polish 2737sop 689 PEGASE 9241 4346 $\sum v_k^* (v_k - v_j) y_{kj} = 0 \implies \sum (v_k - v_j) y_{kj} = 0 \implies \sum v_l^* (v_k - v_j) y_{kj} = 0 \quad \forall l \in \mathcal{L}$ $i \in \mathcal{N}$ Each zero injection bus $\sum (W_{lk} - W_{lj})y_{kj} = 0 \quad \forall l \in \mathcal{L}$ introduces 2n valid equalities. $j \in \mathcal{N}$

Conclusions

- Penalized SDP relaxation:
 - Polynomial Optimization
 - Polynomial Feasibility
- Advantages:
 - Guaranteed rank one solution
 - Rejection of bad data
 - Robustness to noise
- Applications:
 - Optimal Power Flow
 - Power System State Estimation
 - Tensor completion



Thank you