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Network Parameters:

1. Voltages
2. Currents
3. Phase angles
4. Power injections
5. Power flows

Generators Loads

Power
Network

PSSE: Estimating the unknown
parameters of the network, based on a
limited number of measurements
corrupted with noise and bad data.
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Noiseless Scenario: Power flow feasibility

• Complexity: Strongly NP-hard [Bienstock et al., 09].

• Common practice: Linearization, local search algorithms.

• Proposed Approach: Convex optimization.

Simple network:

Feasible set:

NP-hardNonlinear
Network Equations

Noisy Case:

• European grid with 9241 nodes.

• 18,481 unknowns.

• 31,320 noisy measurements
with 1% error.

Solution recovered 
with 0.5% accuracy



Ramtin Madani, UC Berkeley

Quadratic Equations

4

Noiseless Scenario:• State of the network:



Ramtin Madani, UC Berkeley

Quadratic Equations

4

Vector of 
complex voltages

Noiseless Scenario:• State of the network:



Ramtin Madani, UC Berkeley

Quadratic Equations

4

Noiseless Scenario:

Measured
data

• State of the network:



Ramtin Madani, UC Berkeley

Quadratic Equations

4

Noiseless Scenario:

Network
model

• State of the network:



Ramtin Madani, UC Berkeley

Quadratic Equations

4

Noiseless Scenario:• State of the network:

Noisy Case:



Ramtin Madani, UC Berkeley

Quadratic Equations

4

Noiseless Scenario:• State of the network:

True
values

Noisy Case:



Ramtin Madani, UC Berkeley

Quadratic Equations

4

Noiseless Scenario:

Modest
noise

• State of the network:

Noisy Case:



Ramtin Madani, UC Berkeley

Quadratic Equations

4

Noiseless Scenario:• State of the network:
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and Operations research.

• Easy with a large number of equations:

• Matrix completion, phase retrieval: [Recht
et al., 2010], [Candes et al., 2013]

• Power System state estimation: [Giannakis
et al., 2011], [Ilic et al., 2012].

• Our focus: When the number of
equations is close to unknowns.

• Challenges:

• Nonconvexity

• Noise

Noisy Case:

Penalized semidefinite 
Programing (SDP)
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Original space: Lifted space:

Right 
direction

• Extra equations turn the feasible set into a single point.

• Our approach: Design a linear cost that imposes a right direction.

• Use as the objective to build an optimization problem:

High dimensional set:

Penalized SDP:
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How to design penalty functions for power systems applications?

Common practice:

• Nuclear norm:

Proposed penalty:

• Reactive power:

• Current injections:

Theorem: Minimization of “reactive power” or “current magnitudes” both
recover every solution in a regime where the phase angles are small.

Susceptance matrix

Admittance matrix

Convex envelope of
the rank function
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How to design penalty functions for an arbitrary problem?

Theorem: If there exists a solution
in a vicinity of then SDP is exact.

Guess for solution: Recovery region                    :

Theorem: There are finite number
of ‘s that cover the entire space.
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Randomly chosen phase angles 
and voltage magnitude:

Derive the corresponding 
set of specifications

Recover an operating 
point using SDP

IEEE 9-bus system New England 39-bus IEEE 57-bus system

• The proposed approach outperforms Newton’s method.

• Given additional equations, SDP is almost always exact.
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How to handle noise?

Theorem (Small Noise): If is recoverable with noiseless measurements, then
every solution of penalized SDP + L1 satisfies:

Theorem (Bad Data): A limited
number of wrong equations have
no effect on the solution.

Theorem (Noiseless Case): If
Jacobian is nonsingular, the initial
guess is sufficiently close and is
large, then SDP+L1 is exact.
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• Histograms of absolute differences between the actual and estimated complex voltages for the
PEGASE 9241-bus system, using the penalized convex problem equipped with the WLAV and WLS
estimators respectively:

• Average RMSE of the estimated voltages obtained by SOCP over 10 Monte-Carlo simulations for 
different noise realizations:
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• The probability of success for the penalized SDP problem when different numbers of
measurements are corrupted for New England 39-bus, IEEE 57-bus and IEEE 118-bus
systems, respectively:

Case Studies

14

New England 39-bus IEEE 57-bus IEEE 118-bus
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• Tree decomposition: A way of grouping the vertices in order to turn the
graph into a tree [Robertson and Seymour, 84].

• Tree width: The most efficient way of grouping in terms of the size for
largest group.

• Very efficient methods to calculating upper bounds [Bodlaender, 11].

TW of the European power 
grid 9000 nodes           .

TW of the New York power 
grid with 8500 nodes          .
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SDP relaxation:
• In real world grids, there are many
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Conclusions

• Penalized SDP relaxation: 

• Polynomial Optimization

• Polynomial Feasibility

• Advantages:

• Guaranteed rank one solution

• Rejection of bad data

• Robustness to noise

• Applications:

• Optimal Power Flow

• Power System State Estimation

• Tensor completion

19



Ramtin Madani, UC Berkeley

Thank you


