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Outline

• Overview of OPF feasible spaces and convex 
relaxations

• Example feasible spaces for both straightforward 
and challenging OPF problems

• Existing tools for exploring feasible spaces and 
their limitations

• A new algorithm for feasible space exploration

• Conclusions
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Introduction and Background
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Optimal Power Flow (OPF) Problem
• Optimization used to determine system operation

‒ Minimize generation cost while satisfying physical laws and 
engineering constraints

‒ Yields generator dispatches, line flows, etc.

• Large scale

‒ Optimize dispatch for multiple states or countries

• Many related problems:

‒ State estimation, unit commitment, transmission switching, 
contingency analysis, voltage stability margins, etc.

Introduction

“Today, 50 years after the problem was formulated, we still do not 
have a fast, robust solution technique for the full ACOPF.” 
R.P. O’Neill, Chief Economic Advisor, US Federal Energy Regulatory Commission, 2013.
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Feasible Spaces of OPF Problems

• Defined by the equality and inequality constraints

‒ Equality constraints: power flow equations

‒ Inequality constraints: engineering limitations

• Geometry of the feasible space is a key aspect of OPF 
problem difficulty

• Generally non-convex, may have multiple local minima 
and disconnected components

Introduction
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Classical OPF Problem

Generation Cost

Engineering 
Constraints

Physical Laws

Introduction
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Convex Relaxation

Relaxation does not find global optimum 
(non-zero relaxation gap)

Relaxation finds global optimum
(zero relaxation gap)

Decreasing objective

Non-convex
feasible 

space

Global
optimum

Local 
optimum

Introduction
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Semidefinite Programming
• Convex optimization
• Interior point methods solve for the global optimum 

in polynomial time

Recall: 

where      and      are specified symmetric matrices

Introduction
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Semidefinite Relaxations
• Write power flow equations as

where 

• Define matrix

• Rewrite as                                  and

• Relaxation: do not enforce the rank constraint

‒ implies zero relaxation gap (“exact” solution) 
and recovery of the globally optimal voltage profile 
[Lavaei & Low ‘12]

‒ Generalizable to hierarchies of convex relaxations
[Lasserre ‘01, M. & Hiskens ’14, M. & Hiskens ‘15, Josz & M., in review]

Introduction
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Example Feasible Spaces
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Universally Convexifiable Feasible 
Spaces
• A tree network* has a feasible space with a Pareto 

front that is equivalent to the Pareto front of its 
convex hull [Zhang & Tse ‘11]

* (satisfying certain non-trivial conditions)

P1

P2

Direction of decreasing cost

P1
max

P2
max

Examples
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Disconnected Feasible Space

• Two-bus example OPF problem  
[Bukhsh et al. ‘11]

Feasible Space of the
Semidefinite Relaxation

Examples
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Non-Convex Space for a 
Lossless System
• Five-bus example OPF problem  [Lesieutre & Hiskens ‘05]

Examples
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Hole in the Feasible Space

• Three-bus example OPF problem  

Feasible Space of 
the OPF Problem

Feasible Space of the 
Semidefinite Relaxation

[M., Baghsorkhi & Hiskens ‘15]

Examples
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“Rules of Thumb” Associated with 
Challenging OPF Problems

• Systems where generators have limited ability to 
absorb reactive power

• “Low-voltage” power flow solutions within the 
admissible voltage range

• Tight limits on apparent power flows

Goal: Extend and formalize these “rules of 
thumb” and apply to large test cases.

This requires new computational tools to study 
small test cases.

Examples
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Existing Tools for Exploring 
OPF Feasible Spaces
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“One-Off” Approach to Previous 
Examples

• All previous examples were generated as “special 
cases” exploiting specific problem structure

‒ 2-bus system: reduce to cubic equation, solve explicitly

‒ 5-bus system: analytic expression that exploits problem 
specific symmetries

‒ 3-bus system: uses a homotopy approach that is only suitable 
for very small problems

Existing 
Tools
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Continuation Along Power Flow 
Boundary

• Algorithm:

‒ Start at an interior point

‒ Continuation method to reach the boundary

‒ Continuation along contours of the boundary by enforcing 
singular power flow Jacobian

Existing 
Tools

[Hiskens & Davy ‘01]

P1

P2

...
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Limitations of Existing Approaches

• Approach by Hiskens & Davy not guaranteed to obtain 
entire feasible region

‒ Need an initial interior point

‒ Only finds a single connected component

‒ May fail with sharp non-convexities

• Other approaches are only applicable to very small 
systems or systems with special symmetries

Studying difficult problems raises concerns 
regarding the possible failure of existing tools

Existing 
Tools
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New Algorithm for Visualizing 
OPF Feasible Spaces
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Numerical Polynomial Homotopy 
Continuation (NPHC) Method

• Guaranteed to find all complex solutions to systems of 
polynomial equalities

• Limited to small (   10 bus) systems
‒ Recent work may enable solution of somewhat larger problems

[M., Mehta, & Niemerg ‘16]

Feasible 
Space 

Algorithm

Target polynomial system

Homotopy from                     :

Simple polynomial system
with known solutions

Random complex scalar
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Feasible Space Algorithm
1. Use convex relaxations to tighten the OPF constraints

2. Use “gridding” to convert from inequalities to equalities

3. Use convex relaxations to eliminate provably infeasible points

4. Calculate all power flow solutions at each grid point using the 
NPHC method

5. Select solutions that satisfy all constraints

P1

P2

Feasible 
Space 

Algorithm
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Advantages

• Guaranteed to obtain the complete feasible space, 
within the discretization chosen for the grid

‒ Inherits robustness of NPHC method

• Can hotstart NPHC method using solutions at a nearby 
grid point

• Applicable to many small test cases known to be 
challenging

Feasible 
Space 

Algorithm
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Example: Five-Bus System
• Five-bus example OPF problem (modified objective)  

[Bukhsh et al. ‘13]

Global 
Solution

Local
Solution

Feasible Space of OPF ProblemFeasible Space of SDP RelaxationFeasible Space of Second-Order 
Moment Relaxation

Generalization of the SDP relaxation finds the global solution

[Madani, Sojoudi, & Lavaei ’15]

Feasible 
Space 

Algorithm
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Conclusion
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Conclusion

• The difficulty of solving OPF problems depends on 
the geometry of the associated feasible spaces

• Proposed a new approach for computing OPF 
feasible spaces

• Future work: compute feasible spaces for modified 
OPF formulations

‒ Study difficulty imposed by various aspects of OPF problems, 
e.g., generator capability curves, line additions/outages, etc.

Conclusion
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Questions?
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