Visualizing the Feasible Spaces of Challenging OPF Problems

Daniel Molzahn Argonne National Laboratory

FERC Staff Technical Conference on Increasing Real-Time and Day-Ahead Market Efficiency through Improved Software June 28, 2016

Outline

- Overview of OPF feasible spaces and convex relaxations
- Example feasible spaces for both straightforward and challenging OPF problems
- Existing tools for exploring feasible spaces and their limitations
- A new algorithm for feasible space exploration
- Conclusions

Introduction and Background

Optimal Power Flow (OPF) Problem

- Optimization used to determine system operation
 - Minimize generation cost while satisfying physical laws and engineering constraints
 - Yields generator dispatches, line flows, etc.
- Large scale
 - Optimize dispatch for multiple states or countries
- Many related problems:
 - State estimation, unit commitment, transmission switching, contingency analysis, voltage stability margins, etc.

"Today, 50 years after the problem was formulated, we still do not have a fast, robust solution technique for the full ACOPF." R.P. O'Neill, Chief Economic Advisor, US Federal Energy Regulatory Commission, 2013.

Introduction

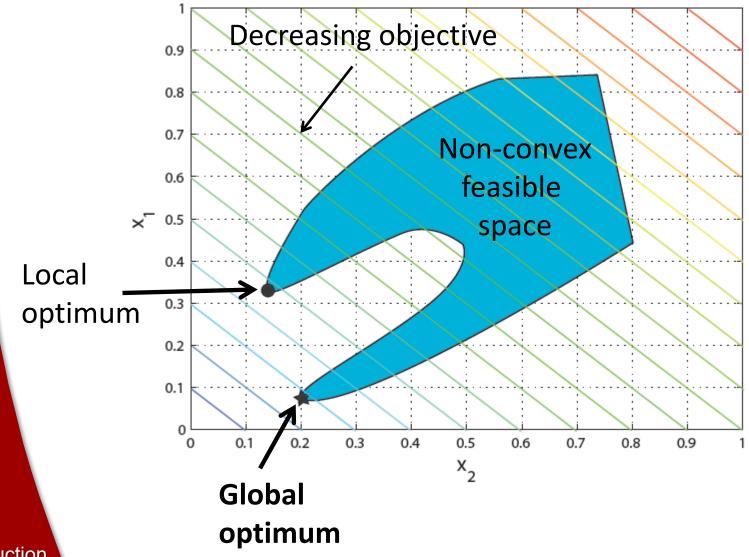
Feasible Spaces of OPF Problems

- Defined by the equality and inequality constraints
 - Equality constraints: power flow equations
 - Inequality constraints: engineering limitations
- Geometry of the feasible space is a key aspect of OPF problem difficulty
- Generally non-convex, may have multiple local minima and disconnected components

$$\begin{array}{ll} \textbf{Classical OPF Problem} \\ \textbf{Min}_{V_d,V_q} & \sum_{k \in \mathcal{G}} \left(c_{2k} P_{Gk}^2 + c_{1k} P_{Gk} + c_{0k} \right) & \textbf{Generation Cost} \\ \textbf{subject to} & P_{Gk}^{\min} \leq P_{Gk} \leq P_{Gk}^{\max} & \textbf{Engineering} \\ Q_{Gk}^{\min} \leq Q_{Gk} \leq Q_{Gk}^{\max} & \textbf{Linguistical} \\ & (V_k^{\min})^2 \leq V_{dk}^2 + V_{qk}^2 \leq (V_k^{\max})^2 \\ & |S_{lm}| \leq S_{lm}^{\max} & \textbf{Physical Laws} \\ P_{Gk} - P_{Dk} = V_{dk} \sum_{i=1}^n \left(G_{ik} V_{di} - B_{ik} V_{qi} \right) + V_{qk} \sum_{i=1}^n \left(B_{ik} V_{di} + G_{ik} V_{qi} \right) \\ Q_{Gk} - Q_{Dk} = V_{dk} \sum_{i=1}^n \left(-B_{ik} V_{di} - G_{ik} V_{qi} \right) + V_{qk} \sum_{i=1}^n \left(G_{ik} V_{di} - B_{ik} V_{qi} \right) \\ \end{array}$$

Introduction

Convex Relaxation



Semidefinite Programming

- Convex optimization
- Interior point methods solve for the global optimum in polynomial time

 $\min_{\mathbf{W}} \operatorname{trace}(\mathbf{BW})$ subject to

trace $(\mathbf{A}_i \mathbf{W}) = c_i$

$\mathbf{W} \succeq \mathbf{0}$

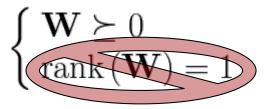
where B and A_i are specified symmetric matrices

Recall: trace $(\mathbf{A}^{\mathsf{T}} \mathbf{W}) = \mathbf{A}_{11} \mathbf{W}_{11} + \mathbf{A}_{12} \mathbf{W}_{12} + \ldots + \mathbf{A}_{nn} \mathbf{W}_{nn}$ $\mathbf{W} \succeq 0$ if and only if $\operatorname{eig}(\mathbf{W}) \ge 0$

Introduction

Semidefinite Relaxations

- Write power flow equations as $x^{\mathsf{T}}\mathbf{A}_{i}x = c_{i}$ where $x = \begin{bmatrix} V_{d1} & V_{d2} & \dots & V_{dn} & V_{q1} & V_{q2} & \dots & V_{qn} \end{bmatrix}^{\mathsf{T}}$
- Define matrix $\mathbf{W} = xx^{\mathsf{T}}$
- Rewrite as trace $(\mathbf{A}_i \mathbf{W}) = c_i$ and $\begin{cases} \mathbf{W} \succeq 0 \\ \text{rank}(\mathbf{W}) = c_i \end{cases}$



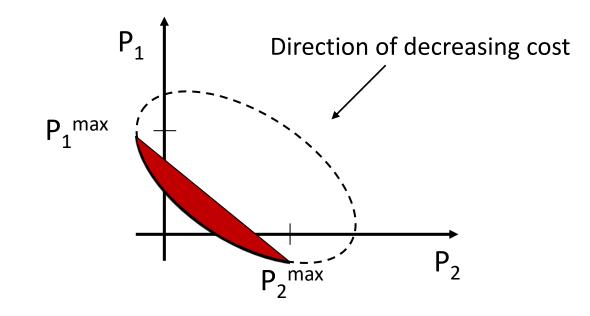
- Relaxation: do not enforce the rank constraint
 - $rank(\mathbf{W}) = 1$ implies zero relaxation gap ("exact" solution) and recovery of the globally optimal voltage profile [Lavaei & Low '12]
 - Generalizable to hierarchies of convex relaxations
 [Lasserre '01, M. & Hiskens '14, M. & Hiskens '15, Josz & M., in review]

Example Feasible Spaces

Universally Convexifiable Feasible Spaces

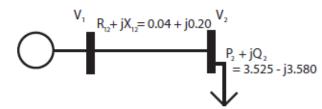
 A tree network* has a feasible space with a Pareto front that is equivalent to the Pareto front of its convex hull [Zhang & Tse '11]

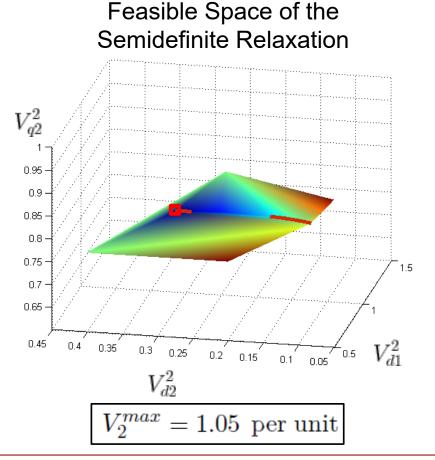
* (satisfying certain non-trivial conditions)



Disconnected Feasible Space

• Two-bus example OPF problem [Bukhsh et al. '11]

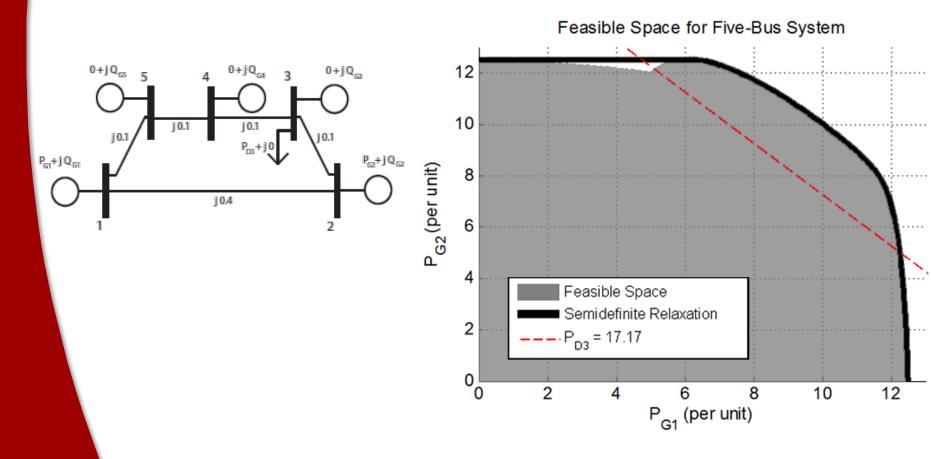




Examples

Non-Convex Space for a Lossless System

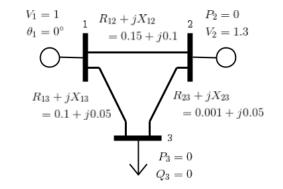
• Five-bus example OPF problem [Lesieutre & Hiskens '05]



Examples

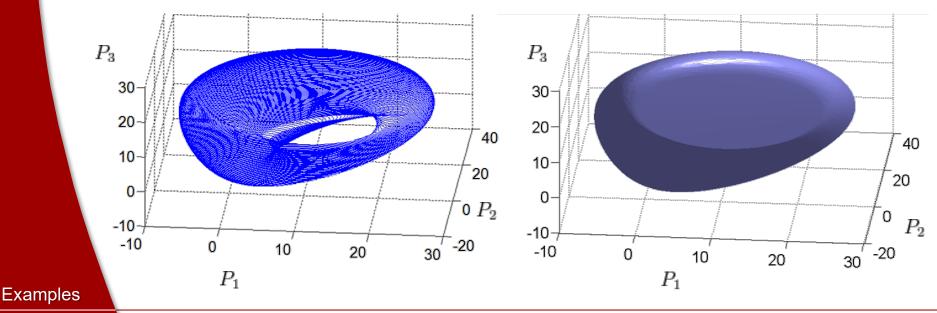
Hole in the Feasible Space

• Three-bus example OPF problem



Feasible Space of the OPF Problem

Feasible Space of the Semidefinite Relaxation



"Rules of Thumb" Associated with Challenging OPF Problems

- Systems where generators have limited ability to absorb reactive power
- "Low-voltage" power flow solutions within the admissible voltage range
- Tight limits on apparent power flows

Goal: Extend and formalize these "rules of thumb" and apply to large test cases.

This requires new computational tools to study small test cases.

Existing Tools for Exploring OPF Feasible Spaces

"One-Off" Approach to Previous Examples

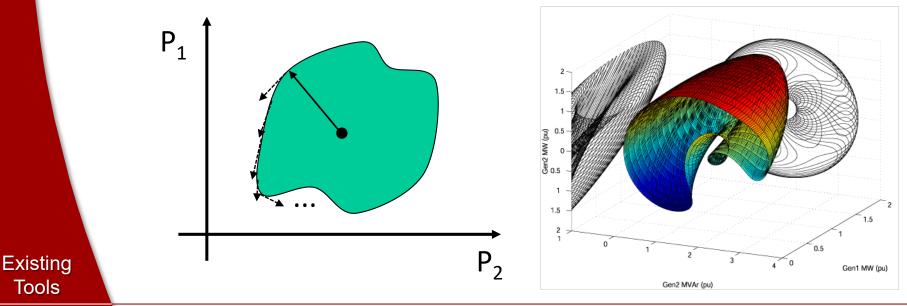
- All previous examples were generated as "special cases" exploiting specific problem structure
 - 2-bus system: reduce to cubic equation, solve explicitly
 - 5-bus system: analytic expression that exploits problem specific symmetries
 - 3-bus system: uses a homotopy approach that is only suitable for very small problems

Continuation Along Power Flow Boundary

- Algorithm: [Hiskens & Davy '01]
 - Start at an interior point

Tools

- Continuation method to reach the boundary
- Continuation along contours of the boundary by enforcing singular power flow Jacobian



Limitations of Existing Approaches

- Approach by Hiskens & Davy not guaranteed to obtain entire feasible region
 - Need an initial interior point
 - Only finds a single connected component
 - May fail with sharp non-convexities
- Other approaches are only applicable to very small systems or systems with special symmetries

Studying difficult problems raises concerns regarding the possible failure of existing tools

New Algorithm for Visualizing OPF Feasible Spaces

Numerical Polynomial Homotopy **Continuation (NPHC) Method**

- Guaranteed to find all complex solutions to systems of polynomial equalities
- Limited to small (≤10 bus) systems

Space

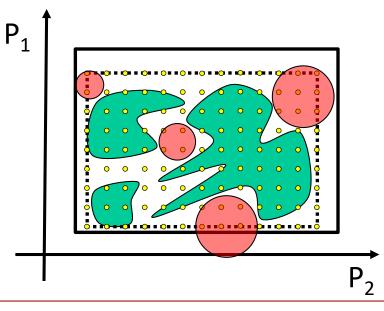
Recent work may enable solution of somewhat larger problems [M., Mehta, & Niemerg '16]

Homotopy from $t = 1 \rightarrow 0$ Random complex scalar $(1-t)f(x) + \kappa t g(x) = 0$ Simple polynomial system Feasible Target polynomial system with known solutions Algorithm

20/26

Feasible Space Algorithm

- 1. Use convex relaxations to tighten the OPF constraints
- 2. Use "gridding" to convert from inequalities to equalities
- 3. Use convex relaxations to eliminate provably infeasible points
- 4. Calculate all power flow solutions at each grid point using the NPHC method
- 5. Select solutions that satisfy all constraints

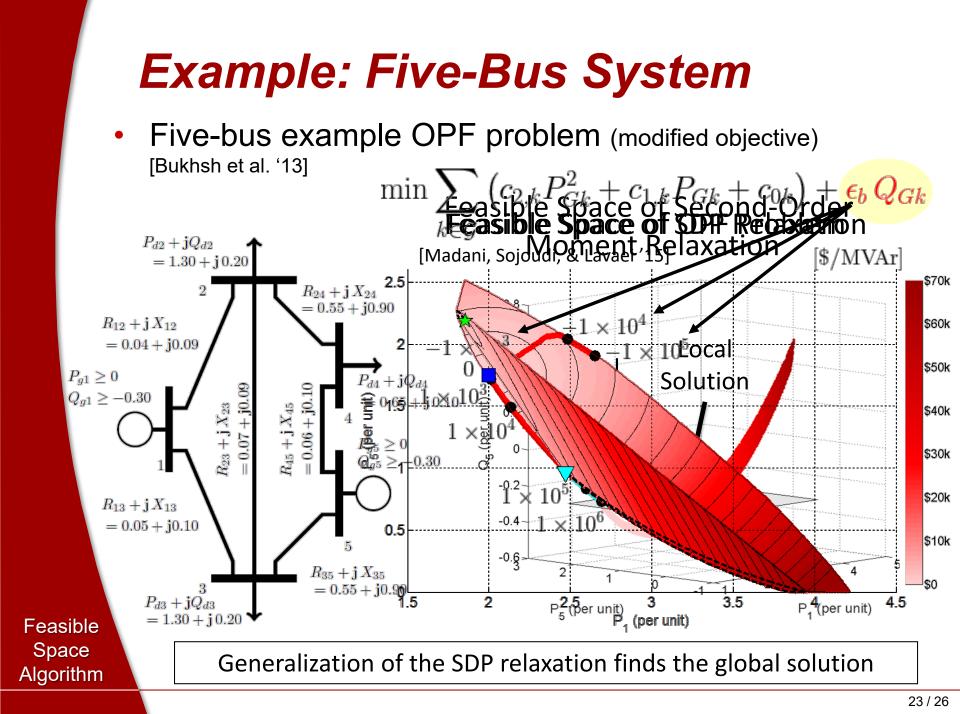


Feasible Space Algorithm

Advantages

- Guaranteed to obtain the complete feasible space, within the discretization chosen for the grid
 - Inherits robustness of NPHC method
- Can hotstart NPHC method using solutions at a nearby grid point
- Applicable to many small test cases known to be challenging

Feasible Space Algorithm



- The difficulty of solving OPF problems depends on the geometry of the associated feasible spaces
- Proposed a new approach for computing OPF feasible spaces
- Future work: compute feasible spaces for modified OPF formulations
 - Study difficulty imposed by various aspects of OPF problems, e.g., generator capability curves, line additions/outages, etc.



References

- W.A. Bukhsh, A. Grothey, K.I. McKinnon, and P.A. Trodden, "Local Solutions of Optimal Power Flow," University of Edinburgh School of Mathematics, Tech. Rep. ERGO 11-017, 2011.
- W.A. Bukhsh, A. Grothey, K.I. McKinnon, and P.A. Trodden, "Local Solutions of the Optimal Power Flow Problem," *IEEE Transactions on Power Systems*, vol. 28, no. 4, pp. 4780-4788, 2013.
- M.B. Cain, R.P. O'Neil, and A. Castillo, "History of Optimal Power Flow and Formulations," *Optimal Power Flow Paper 1, Federal Energy Regulatory Commission*, August 2013.
- I.A. Hiskens and R.J. Davy, "Exploring the Power Flow Solution Space Boundary", *IEEE Transactions on Power Systems*, Vol. 16, No. 3, August 2001, pp. 389-395.
- J.-B. Lasserre, "Global Optimization with Polynomials and the Problem of Moments," *SIAM Journal on Optimization,* vol. 11, pp. 796-817, 2001.
- J.B. Lasserre, Moments, Positive Polynomials and Their Applications, Imperial College Press, vol. 1, 2010.
- J. Lavaei and S. Low, "Zero Duality Gap in Optimal Power Flow Problem," *IEEE Transactions on Power Systems*, vol. 27, no. 1, pp. 92–107, February 2012.
- B.C. Lesieutre and I.A. Hiskens, "Convexity of the Set of Feasible Injections and Revenue Adequacy in FTR Markets," *IEEE Transactions on Power Systems*, vol. 20, no. 4, pp. 1790-1798, November 2005.
- R. Madani, M. Ashraphijuo, and J. Lavaei, "Promises of Conic Relaxation for Contingency-Constrained Optimal Power Flow Problem," to appear in *IEEE Transactions on Power Systems*.
- R. Madani, S. Sojoudi, and J. Lavaei, "Convex Relaxation for Optimal Power Flow Problem: Mesh Networks," *IEEE Transactions on Power Systems*, vol. 30, no. 1, pp. 199-211, 2015.
- D. Mehta, D.K. Molzahn, and K. Turitsyn, "Recent Advances in Computational Methods for the Power Flow Equations," To appear in *American Control Conference (ACC)*, 6-8 July 2016.
- D.K. Molzahn, S.S. Baghsorkhi, and I.A. Hiskens, "Semidefinite Relaxations of Equivalent Optimal Power Flow Problems: An Illustrative Example," *IEEE International Symposium on Circuits and Systems (ISCAS)*, 24-27 May 2015.

References (cont.)

- D.K. Molzahn and I.A. Hiskens, "Moment-Based Relaxation of the Optimal Power Flow Problem," 18th Power Systems Computation Conference (PSCC), 18-22 August 2014.
- D.K. Molzahn and I.A. Hiskens, "Mixed SDP/SOCP Moment Relaxations of the Optimal Power Flow Problem," *IEEE Eindhoven PowerTech*, 29 June-2 July, 2015.
- D.K. Molzahn and I.A. Hiskens, "Sparsity-Exploiting Moment-Based Relaxations of the Optimal Power Flow Problem," *IEEE Transactions on Power Systems*, vol. 30, no. 6, pp. 3168-3180, November 2015.
- D.K. Molzahn and I.A. Hiskens, "Convex Relaxations of Optimal Power Flow Problems: An Illustrative Example," To appear in *IEEE Transactions on Circuits and Systems I: Regular Papers*, 2016.
- D.K. Molzahn, D. Mehta, and M. Niemerg, "Toward Topologically Based Upper Bounds on the Number of Power Flow Solutions," To appear in *American Control Conference (ACC)*, 6-8 July 2016.
- B. Zhang and D. Tse, "Geometry of Feasible Injection Region of Power Networks," 49th Annual Allerton Conference on Communication, Control, and Computing, 28-30 Sept. 2011.