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 Power system:  

 
 A large-scale system consisting of generators, 

loads, lines, etc.  
 

 Used for generating, transporting and 
distributing electricity.  

1. Optimal power flow (OPF) 
2.  Security-constrained OPF 
3.  State estimation 
4.  Network reconfiguration 
5.  Unit commitment 
6.  Dynamic energy management 

ISO, RTO, TSO 

NP-hard  
(real-time operation and market) 

Power Systems 
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Optimal Power Flow 
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A multi-billion critical system depends on optimization.  

Generators Loads 

Grid 

Optimal Power Flow: Optimally match supply with demand 

 Real-time operation: OPF is solved every 5-15 minutes. 

 Market: Security-constrained unit-commitment OPF 

 Complexity: Strongly NP-complete with long history since 1962. 

 Common practice: Linearization 

 
 

 
OPF feasible set 
 (Ian Hisken et al. 2003)  

Vector of complex voltages 



SDP relaxation 

Convexification 
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Penalized SDP 

 Transformation: Replace xxH with W. 
 

 W is positive semidefinite and rank 1 

 Rank-1 SDP: Recovery of a global solution x 

 Rank-1 penalized SDP: Recovery of a near-
global solution x 



 SDP is not exact in general. 

 SDP is exact for IEEE benchmark examples and several real data sets. 

Theorem: Exact under positive LMPs. 
 

Theorem: Exact under positive LMPs 
with many transformers. 
 

Physics of power networks (e.g., passivity) reduces computational complexity 
for power optimization problems. 

Exactness of Relaxation 
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acyclic 

cyclic 

1. S. Sojoudi and J. Lavaei, "Exactness of Semidefinite Relaxations for Nonlinear Optimization Problems with Underlying Graph Structure,” SIOPT, 2014.  
2. S. Sojoudi and J. Lavaei, "Physics of Power Networks Makes Hard Optimization Problems Easy to Solve," PES 2012. 

 



 Observation: SDP may not be exact for ISOs’ large-scale systems (some negative LMPs). 
 

  Remedy: Design a penalized SDP to find a near-global solution. 

Promises of SDP 
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SDP looks very promising for energy applications 

 SDP revitalized the area:  

 Follow-up work in academia (MIT, Stanford, Berkeley, Caltech, Gatech, UIUC, Cornell, JHU, Iowa State, 

CMU, UCLA, Wisconsin, UoM, Harvard, Michigan, ETH, EPFL, etc.) 

 Interest from industry 

1. J. Lavaei and S. Low, "Zero Duality Gap in Optimal Power Flow Problem," IEEE Transactions on Power Systems, 2012. 
2. J. Lavaei, D. Tse and B. Zhang, "Geometry of Power Flows and Optimization in Distribution Networks," IEEE Transactions on Power System, 2014. 
3. R. Madani, S. Sojoudi and J. Lavaei, "Convex Relaxation for Optimal Power Flow Problem: Mesh Networks," IEEE Transactions on Power Systems, 2015.  
 



 OS-vertex sequence: [Hackney et al, 2009] 
 
 Partial ordering of vertices 
 Assume O1,O2,…,Om is a sequence. 
 Oi has a neighbor wi not connected to the 

connected component of Oi in the subgraph 
induced by O1,…,Oi 
 

 Bags of vertices Vertices 

 Tree decomposition: Map the graph G into a tree T  
 Each node of T is a bag of vertices of G 
 Each edge of  G appears in one node of T 
 If a vertex shows up in multiple nodes of T, 

those nodes should form a subtree 
 

 Width of T: Max cardinality minus 1 
Treewidth of G: Minimum width 

OS: Maximum cardinality among all 
OS sequences 

 Roughly speaking, very sparse graphs have high OS and low treewidth1 (tree: OS=n-1, TW=1) 

Graph Notions 

7 1. S. Sojoudi, R. Madani, G. Fazelnia and J. Lavaei, “Graph-Theoretic Algorithms for Solving Polynomial Optimization Problems,” CDC 2014 (Tutorial paper). 



 Sparsity Graph G: Generalized weighted graph 

with no weights. 

 SDP may has infinitely many solutions. 

 How to find a low-rank solution (if any)? 

 Consider a supergraph G’ of G. 

Theorem: Every solution of perturbed SDP satisfies 
the following: 

Equal bags: TW(G)+1 for a right choice of G’ 
 

Unequal bags: Needs nonlinear penalty to 
attain TW(G)+1  

Low-Rank Solution 

Perturbed SDP  

SDP  

8 1. R. Madani et al., “Low-Rank Solutions of Matrix Inequalities with Applications to Polynomial Optimization and Matrix Completion Problems,” CDC 2014. 
2. R. Madani et al., “Finding Low-rank Solutions of Sparse Linear Matrix Inequalities using Convex Optimization,” Under review for SIOPT, 2014. 

 
 

 This result includes the recent work Laurent and Varvitsiotis, 2012. 



Tree decomposition for IEEE 14-bus system: 

Treewidth of NY < 40 

Case studies: 

Treewidth of Poland < 30 
SDP relaxation of every SC-UC-OPF problem 
solved over NY grid has rank less than 40 (size of 
W varies from 8500 to several millions). 

Illustration: Power Optimization 
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1. R. Madani, S. Sojoudi and J. Lavaei, "Convex Relaxation for Optimal Power Flow Problem: Mesh Networks," IEEE Transactions on Power Systems, 2015. 
2. R. Madani, M. Ashraphijuo and J. Lavaei, “Promises of Conic Relaxation for Contingency-Constrained Optimal Power Flow Problem,” Allerton 2014. 



Simple UC Model Capturing Nonlinearity 
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 Objective function: 

 Unit commitment constraints: 

 Decision variables: commitment parameters and generator outputs 

 Problem: DC unit commitment (AC is similar) 



Strengthened SDP  
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 SDP (sparse): Relax quadratic equations using SDP constraints. 

 Bad news: SDP = LP (and rounding is bad). 

 Current practice: branch & bound + cutting plane 

 Question: Find a convex model for the problem (good for pricing) 

 Strengthened SDP (dense): 

 Flow constraints are linear 

 Multiply them pairwise to obtain valid quadratic constraints 

 Relax valid inequalities using SDP 

 



Strengthened SDP  
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 Weakly strengthened SDP (sparse or dense):  

 Solve SDP 

 Check how many valid inequalities are violated 

 First-order strengthened SDP: add those inequalities to SDP 

 Check how many valid inequalities are violated 

 Second-order strengthened SDP: add those inequalities to first-order SDP 

 … 

  



Single-Time UC Problem 
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 Case 9 bus with 3 generators and 1 time slot:  

 

 Case 14 bus with 5 generators and 1 time slot:  

101 



Single-Time UC Problem 
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 Case 30 bus with 6 Generators and 1 time slot:  

 

  Case 57 bus with 7 Generators and 1 time slot:  



Single-Time UC Problem 
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 Case 118 bus with 54 Generators and 1 time slot: 

 

 Observation:  

 SDP: really bad 

  First-order strengthened SDP: 50% success 

  Fourth-order strengthened SDP: 100% success 



Multi-Period UC Problem 
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 Case 14 bus with 5 Generators and 

5 time slots:  

 

 

 

  
 
 Case 30 bus with 6 Generators and 5 

time slots:  



Multi-Period UC Problem 
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 Case 57 bus with 7 Generators and 

5 time slots:  

 

 

 

 

 
 

 Case 57 bus with 7 Generators and 6 
time slots:  

 It can be shown that as loads increase or flow constraints become tighter, the SDP 

becomes exact at some point.  



Multi-Period UC Problem 
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 IEEE 14-bus system over 24 hours: 

 

 

 

 

 

 

 

 

 SDP cost: 162600 

 First-order strengthened SDP cost:  205838 

 Strengthened SDP cost:  210159 

 

 

 

 

 



SDP v.s. RLT v.s. Strengthened SDP 
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 IEEE 9-bus system: 

 IEEE 14-bus system: 



SDP v.s. RLT v.s. Strengthened SDP 
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 IEEE 30-bus system: 

 IEEE 57-bus system: 



Role of Line Limits 
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 IEEE 14-bus system: 

 IEEE 14-bus system: 



State Estimation Problem Using Penalized Convex Program 

22 1. R. Madani, J. Lavaei and R. Baldick, “Convexification of Power Flow Problem over Arbitrary Networks,” CDC, 2015. 

 State estimation problem: 

 

 

 Penalized convex problem: 

 

 

 

 Assume measurements are voltage magnitudes and line flows over a spanning tree. 

 

 

 

 The tail probability goes to zero exponentially fast (error: non-convexity and noise) 

 

 The higher the number of measurements, the lower the estimation error. 

 



Simulations 
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  PEGASE 1354-bus system: 



Sum of agents’ objectives 

Local constraints 

Overlapping constraints 

Low-Complex Algorithm 

Goal: Design a low-complex 
algorithm for sparse 
LP/QP/QCQP/SOCP/SDP 
 

24 1. A. Kalbat and J. Lavaei, “Alternating Direction Method of Multipliers for Sparse Semidefinite Programs,” Preprint, 2015. 



Low-Complex Algorithm 

 Distributed Algorithm: ADMM-based dual decomposed SDP (related work: [Parikh 

and Boyd, 2014], [Wen, Goldfarb and Yin, 2010], [Andersen, Vandenberghe and 

Dahl, 2010]). 

 Iterations: Closed-form solution for every iteration  (eigen-decomposition on 

submatrices) 

  

 Example of a three-agent SDP:  
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Iterations for Two Agents 

Iterations of Agent 1: Iterations of Agent 2: 
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Simulations 

Aggregate residue for the case of 4000 agents with pi =qi =5  
 

Simulation results for 1000, 2000 and 4000 agents  

 Large-scale SDP Simulations: 
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Amazon EC2 Simulations (36 cores, 60 GB RAM) 

 Overlapping Cliques: n = 8000, p=5, q=5 
 19.5 minutes 

 

 Overlapping Cliques: n = 8000, p=5, q=0 
 2.2 minutes 

 

 Overlapping Cliques: n = 8000, p=0, q=5 
 7.9 minutes 

 

 Overlapping Cliques: n = 4000, p=5, q=5 
 8.08 minutes (Amazon) 
 49 minutes (Laptop) 
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Problem: Find a near-global solution together with 
a global optimality guarantee for energy problems 
 
  
Approach: Conic relaxation 

 Handling nonlinearity in continuous variables 

 Handling discrete variables 

 Handling noisy and imperfect information 

 Numerical algorithms 

 

 
 

Conclusions 
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