

Convex Hull Pricing

Rigorous Analysis and Implementation Challenges

Dane A. Schiro, Tongxin Zheng, Feng Zhao, and Eugene Litvinov

BUSINESS ARCHITECTURE & TECHNOLOGY

ISO NEW ENGLAND INC.

Motivation

- No one (including us) completely understands Convex Hull Pricing
- However, participants commonly suggest that ISO New England switch to Convex Hull Pricing (or MISO's ELMP method)
- Poorly understood pricing methods can have unexpected consequences

Goals of presentation

- Provide an overview of Convex Hull Pricing
- Clearly describe important Convex Hull Pricing properties
- Discuss foreseeable implementation challenges

• This presentation is meant to call attention to the implications of Convex Hull Pricing

ISO processes

- Three important ISO processes
 - Commitment
 - What is the most efficient combination of units?
 - Dispatch

What is the most efficient clearing of online units?

– Pricing

What uniform prices are appropriate given the cleared bids?

Pricing principles

- Pricing methods such as marginal cost pricing (i.e., prices based on the marginal cost of load) may not be satisfactory because of "nonconvexities" such as
 - Fixed costs
 - Minimum output levels
 - MW-dependent ramp rates
- Consequently, there is no "perfect price" (i.e., price that simultaneously satisfies every participant)
- To ensure that participants are satisfied with the market clearing, **side-payments** must be made

Side-payments

- Side-payment: a payment that is not associated with a uniform market clearing price
- Purpose: eliminate participant incentives to deviate from ISO-cleared quantities
- Types of side-payments
 - Make-Whole Payments
 Ensure that each participant receives at least its cleared bid-in cost
 - Lost Opportunity Costs
 Ensure that each participant receives its maximum possible profit given prices and its bid-in constraints
 - Product Revenue Shortfall (specific to Convex Hull Pricing)
 Ensure that ISO operations are "revenue adequate" for each system constraint/product

Convex Hull Pricing

• Convex Hull Pricing has *one and only one* purpose:

Identify uniform prices that

minimize certain side-payments

This is **NOT** "uplift" as traditionally defined!

Formulation of Convex Hull Pricing

• The Commitment problem can generally be formulated as

Formulation of Convex Hull Pricing

- In the Commitment problem,
 - the objective function is linear (nonlinear cost functions can be moved to the constraint set)
 - the system-wide constraints are linear
 - Private constraint sets are "disjunctive"
 - Each X_i^j reflects a specific commitment sequence possibility
 - Each X_i^j is assumed to be compact but not necessarily convex
 - For each *i*, it is assumed that $\bigvee_{j \in \mathbf{J}_i} \mathbf{X}_i^j \neq \emptyset$

The Convex Hull Pricing problem

• The corresponding [primal] Convex Hull Pricing problem is

$$\min_{c,x} \qquad \sum_{t} \sum_{i} c_{it}$$

s.t.
$$\sum_{i} A_{it} x_{it} \ge b_{t} \qquad (\lambda_{t}) \quad \forall t$$
$$(c_{i}, x_{i}) \in \operatorname{conv}(\bigvee_{j \in J_{i}} X_{i}^{j}) \qquad \forall i.$$
$$\underset{\text{Convex hull}}{\overset{\uparrow}{}}$$

• The initial work on Convex Hull Pricing used a Lagrangian dual formulation

Basic observations

- Locational Marginal Prices (LMPs) are derived from the optimal Lagrange multipliers λ^* of the system-wide constraints
- Convex Hull Pricing is based on the Commitment problem so it is inherently multi-interval for electricity markets

11

• Explicit convex hull formulations are required

Properties

- Convex Hull Pricing has several interesting properties
- Three important properties are presented here

Property 1. Side-payment minimization

- Convex Hull Pricing minimizes certain side-payments over its time horizon
- Relevant side-payments
 - Lost Opportunity Costs (LOCs)
 - Product Revenue Shortfall (upcoming Property 2)
 - Make-whole payments are <u>NOT</u> considered!
- Minimized side-payments ≠ Zero side-payments

Property 1. Proof

- Assume that Slater's condition holds for the Convex Hull Pricing problem
- The Lagrangian dual problem obtained by relaxing the systemwide constraints is

$$\max_{\lambda \ge 0} \left\{ \begin{array}{l} \min_{c,x} \sum_{t} \sum_{i} c_{it} - \sum_{t} \lambda_{t} \left(\sum_{i} A_{it} x_{it} - b_{t} \right) \\ \text{s.t.} \quad (c_{i}, x_{i}) \in \operatorname{conv} \left(\bigvee_{j \in \mathbf{J}_{i}} \mathbf{X}_{i}^{j} \right) \quad \forall i \end{array} \right\}.$$

Property 1. Proof

• Rearranging and adding/subtracting terms incorporating the cleared quantity solution,

$$-\min_{\lambda \ge 0} \left\{ \sum_{i} \left(\max_{c_{i}, x_{i}} -\sum_{t} c_{it} + \sum_{t} \lambda_{t} A_{it} x_{it} \\ \text{s.t.} \quad (c_{i}, x_{i}) \in \operatorname{conv}\left(\bigvee_{j \in J_{i}} X_{i}^{j}\right) \right) - \left(-\sum_{t} \sum_{i} c_{it}^{\text{Cleared}} + \sum_{t} \sum_{i} \lambda_{t} A_{it} x_{it}^{\text{Cleared}} \right) \right| + \left(\sum_{t} \sum_{i} \lambda_{t} A_{it} x_{it}^{\text{Cleared}} - \sum_{t} \lambda_{t} b_{t} \right) \right\}$$

Property 1. Proof

• A final simplification leads to

$$-\min_{\lambda \ge 0} \left\{ \sum_{i} \left[\begin{pmatrix} \max_{c_{i}, x_{i}} - \sum_{t} c_{it} + \sum_{t} \lambda_{t} A_{it} x_{it} \\ \text{s.t.} & (c_{i}, x_{i}) \in \bigvee_{j \in J_{i}} X_{i}^{j} \end{pmatrix} + \sum_{t} c_{it}^{\text{Cleared}} - \sum_{t} \lambda_{t} A_{it} x_{it}^{\text{Cleared}} \right] \\ + \left(\sum_{t} \sum_{i} \lambda_{t} A_{it} x_{it}^{\text{Cleared}} - \sum_{t} \lambda_{t} b_{t} \right) \right\}$$
Max possible profit Cleared quantity profit **Product Revenue Shortfall**
Lost Opportunity Costs

- Generator 1 is online
- Generator 2 is a fast, available unit for which a commitment decision must be made

- From the Commitment and Dispatch problems, the optimal outputs are
 - Generator 1: 35MW
 - Generator 2: OMW
- From the Convex Hull Pricing problem, the LMP is \$10/MWh

18

• What does this price mean?

- Given the output levels and the LMP,
 - Generator 1 requires a \$1000 LOC (max profit from 10MW)
 - Generator 2 does not require a side-payment (indifferent between online/offline)
- \$1000 is the minimum sidepayment
 - Easily observed via marginal LMP changes

Property 2. Positive prices for non-binding system-wide constraints

- Convex Hull Pricing can result in positive prices for nonbinding system-wide constraints
 - Transmission constraints
 - Reserve constraints
- This behavior results in **Product Revenue Shortfall** (specific to Convex Hull Pricing)

20

• A "physical" explanation of this property is not obvious

 The two units are now placed at different locations that are connected by a transmission line

- From the Commitment and Dispatch problems, the optimal outputs are
 - Generator 1: 35MW
 - Generator 2: OMW
- There is no flow along the transmission line

- From the Convex Hull Pricing problem, the LMPs are
 - Location 1: \$50/MWh
 - Location 2: \$10/MWh
- What do these prices mean?

- From the Convex Hull Pricing problem, the congestion price for the transmission line is \$40/MWh
- What does this price mean?

- There is a revenue mismatch!
 - \$0 is collected from actual flow along the transmission line
 - If 10MW of financial transmission rights (FTRs) were sold in the FTR auction, FTR holders need \$400 more than what the ISO collects

25

This \$400 is the Product
 Revenue Shortfall

• Mathematically, the Product Revenue Shortfall term is

$$\sum_{t} \sum_{i} \lambda_{t} A_{it} x_{it}^{\text{Cleared}} - \sum_{t} \lambda_{t} b_{t}$$

 The associated side-payment value can be shifted between LOC and Product Revenue Shortfall (allocation depends on clearing rules) but cannot be eliminated

Property 3. Convex Hull Pricing is all-or-nothing

- Convex Hull Pricing is based on a rigorous mathematical proof
- The proof will **NOT** hold if the Convex Hull Pricing problem is altered
- Therefore, Convex Hull Pricing is all-or-nothing
 - Either it is implemented in its entirety and all of its properties are realized, or
 - It is changed, loses its important properties, and can no longer rightly be called "Convex Hull Pricing"
- There is no such thing as "approximate Convex Hull Pricing"

Property review

 Convex Hull Pricing minimizes certain side-payments (Lost Opportunity Costs + Product Revenue Shortfall) over its time horizon

- 2. Convex Hull Pricing can result in positive prices for nonbinding system-wide constraints
- 3. Convex Hull Pricing is all-or-nothing

Implementation challenges

- Convex Hull Pricing has several implementation challenges
- Three foreseeable challenges are presented here

Challenge 1. Multi-interval method

- Convex Hull Pricing is inherently multi-interval for electricity markets
- In a real-time setting, a rolling time horizon implementation would be necessary
 - Prices are determined for the entire time horizon: how should this be factored into settlement?
 - Given that no forecast is perfect, the minimized side-payment cannot be realized (next slide)

Side-payment realization

Challenge 2. Product Revenue Shortfall

- Convex Hull Pricing can create a Product Revenue Shortfall due to Property 2 (positive prices for nonbinding system-wide constraints)
- This creates a revenue adequacy problem for the ISO
- The side-payment must be borne by participants
 - A variety of cost allocation schemes exist, but no scheme is acceptable to every participant simultaneously

Challenge 3. Computation

- Convex Hull Pricing requires explicit convex hulls (surprise!)
- If each X_i^j is polyhedral, an explicit formulation is available
- What happens if explicit convex hull formulations are not available?

Challenge review

1. Pricing and side-payment questions arise from the multiinterval nature of Convex Hull Pricing

- 2. Product Revenue Shortfall introduces cost allocation questions
- 3. Identifying convex hulls is not trivial

Conclusion

- Convex Hull Pricing
 - Is theoretically rigorous
 - Minimizes certain side-payments
 - (Lost Opportunity Costs + Product Revenue Shortfall)
 - Can result in counterintuitive prices
 - Has implementation challenges
- More research is needed before an informed judgment can be made regarding the pros and cons of Convex Hull Pricing

References

- Market-Clearing Electricity Prices and Energy Uplift
 - Authors: Gribik, Hogan, Pope
 - <u>http://www.hks.harvard.edu/fs/whogan/Gribik Hogan Pope Price U</u>
 <u>plift 123107.pdf</u>
- Convex Hull Pricing in Electricity Markets: Formulation, Analysis, and Implementation Challenges
 - Authors: Schiro, Zheng, Zhao, Litvinov
 - <u>http://www.optimization-online.org/DB_HTML/2015/03/4830.html</u>

Questions

