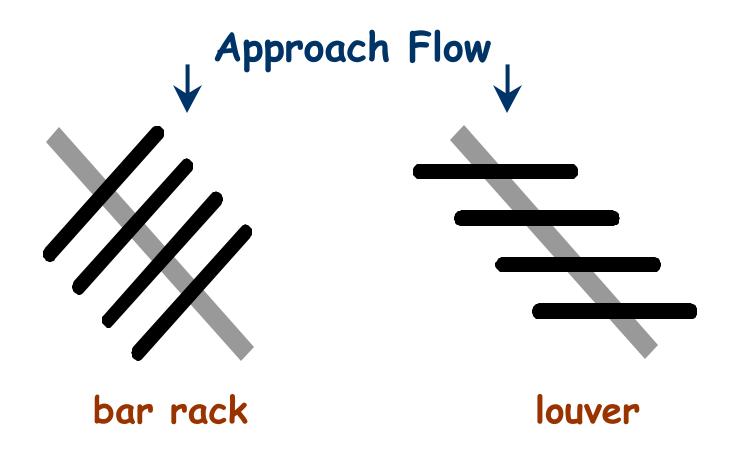
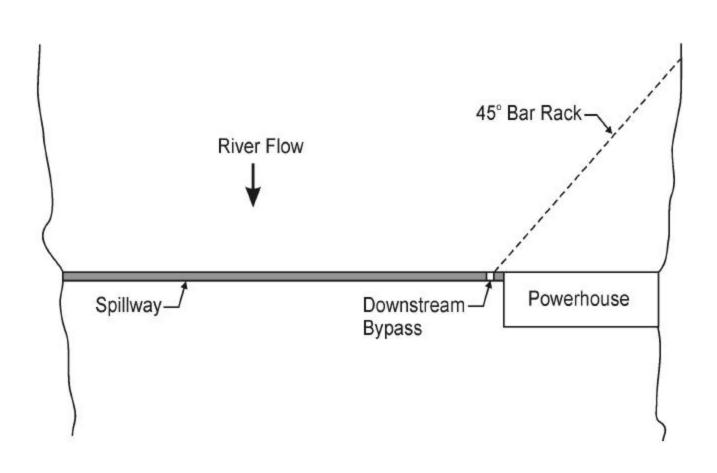
The Use of Angled Bar Racks and Louvers for Guiding Fish at FERC-Licensed Projects

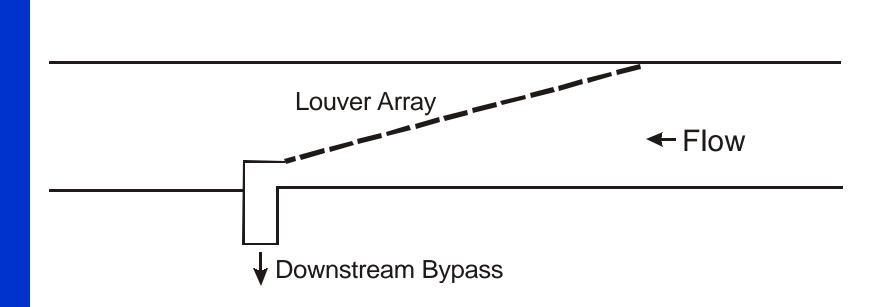
FERC Fish Passage Workshop November 13, 2003


Steve Amaral

ALDEN Research Laboratory, Inc.


Use of Angled Bar Racks and Louvers for Guiding Fish at Hydro Projects

- Angled Bar Rack and Louver Design
- Development and Application of Angled Bar Racks
- Development and Application of Louvers
- ◆ EPRI Laboratory Evaluation of Bar Racks and Louvers
- Considerations for Successful Application
- Future Research Needs
- ◆ Conclusions


Angled Bar Rack and Louver Design

Angled Bar Rack Design

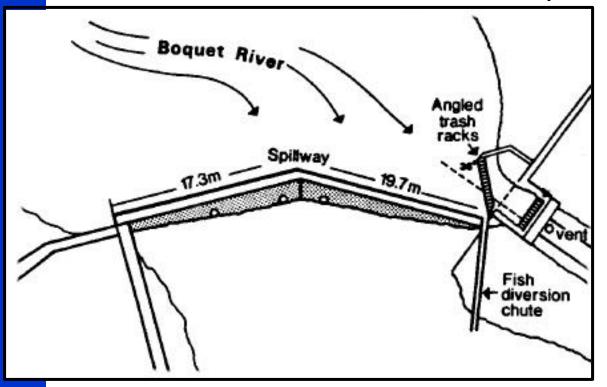
Louver Array Design

Angled Bar Rack and Louver Design

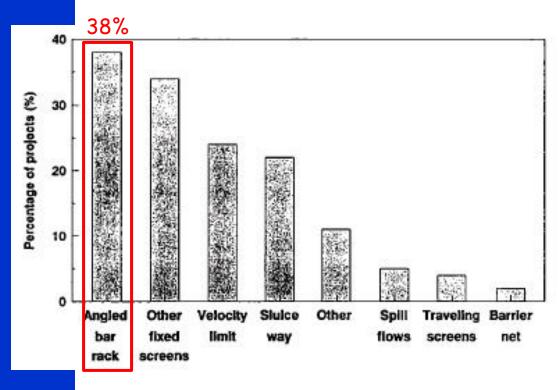
USFWS Design Criteria

- 3 ft minimum bypass width
- Bypass flow either 2% of total rated turbine capacity or 20 cfs, whichever is greater
- Maximum clear spacing of 1-inch (based on salmon smolt requirements)
- ◆ Bypass conduits with minimum diameter of 24 inches and minimum 10-ft radius bends.
- ◆ Discharge 6-10 ft above normal tailwater
- Discharge plunge pool depth at least 25% of total differential head

ANGLED BAR RACKS


Guidance Mechanism and Design Considerations

- Primarily designed to physically exclude fish and guide them to a bypass; behavioral avoidance probably occurs.
- ◆ Most facilities have been installed at 45° to the flow and have clear bar spacings between 1 and 2 inches.
- Important hydraulic parameters include approach and bypass velocity.
- Important biological parameters include behavior and swimming capabilities of species and size classes targeted for protection.


ANGLED BAR RACKS Concept Development

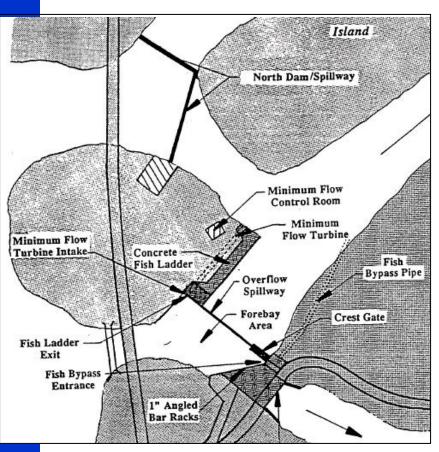
Migration of Landlocked Atlantic Salmon Smolts and Effectiveness of a Fish Bypass Structure at a Small-Scale Hydroelectric Facility

Nettles and Gloss (1987)

- Atlantic salmon
- ♦ 45 degrees
- ♦ 1-inch spacing

Cada and Sale (1993)

 32 projects (38% of total examined) had angled bar racks

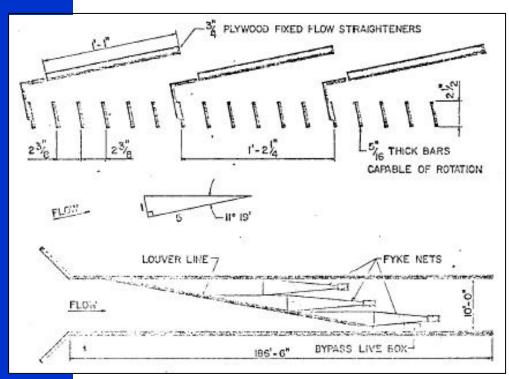

Number of Angled Bar Rack Installations in NE (Data courtesy Curt Orvis, USFWS)

State	Number	
CT	1	
MA	3	
ME	5	
NH	3	FGE's have ranged
NJ	3	From 20 - 100%
NY	17	
VA	1	
VT	3	
Total	36	•

- Angled bar racks have been prescribed for use at many hydroelectric projects in the Eastern U.S.
- Most bar rack installations and have targeted anadromous species (Atlantic salmon, juvenile Alosa)
- Field results have been mixed; effectiveness is dependent on fish behavior and hydraulics
- ◆ Laboratory data suggest 45° bar racks may have FGE's <60% for American eel and riverine fishes

ANGLED BAR RACKS Lower Saranac Hydroelectric Project

Simmons (2000); Normandeau Assoc. (1994, 1997)


- 1-inch, 45-degree angled bar rack
- Atlantic salmon and steelhead smolts
- <50% FGE with bypass flow <2% of turbine capacity</p>
- >80% FGE (97% for Atlantic salmon) with bypass flow >2% of turbine capacity

LOUVERS Guidance Mechanism and Design Considerations

- Louvers create hydraulic conditions that elicit behavioral avoidance reactions from approaching fish
- ◆ Important design parameters include structure angle (15-30 degrees), slat spacing (1 to 12 inches), and bypass design
- Important hydraulic parameters include approach and bypass velocity
- ◆ Important biological parameters include behavior and swimming capabilities of species and size classes targeted for protection

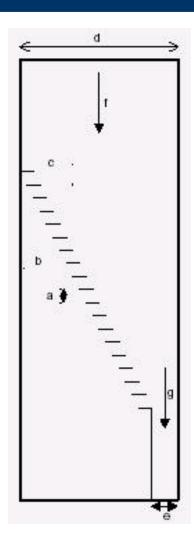
LOUVERS Concept Development

Bates and Vinsonhaler (1957)

- Tracy Pumping Plant
- Chinook salmon, striped bass

Bates and Jewett (1961)

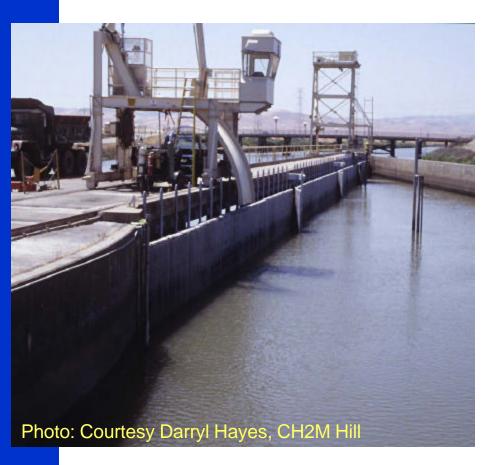
- Maxwell Irrigation Canal
- Steelhead


Ruggles and Ryan (1964)

- British Columbia
- Pacific salmon

Ducharme (1972)

- Ruth Falls, NS
- Atlantic salmon


ANGLED BAR RACKS Concept Development

Optimum Louver Design Criteria

Slat Spacing	>= 2 inches
Angle to Flow	15-30 degrees
Approach Velocity	<= 3 ft/s
Bypass Velocity Ratio	>= 1.5

Hanks and Haefner 1997

- Louvers have been effective at guiding anadromous species at several hydro projects
- Limited or no field information for most riverine species and American eel
- Laboratory data indicate that louvers could guide a wide range of species (> 2 inches in length) at rates greater than 80% (EPRI 2001)

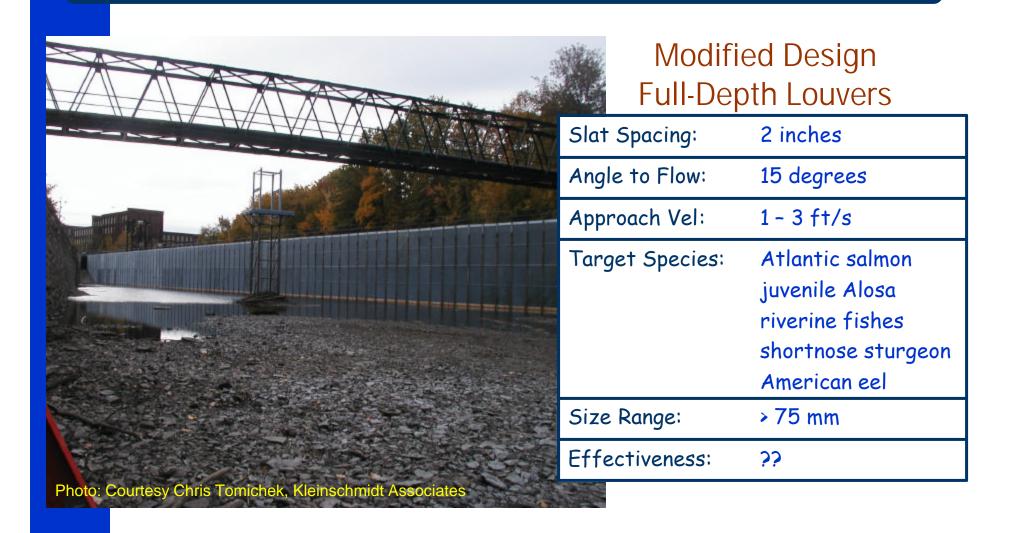
Existing and Interim Facilities

- Holyoke Canal (Hadley Falls Project)
- Vernon
- ♦ Garvins Falls
- ♦ Eastman Falls
- ♦ Gardner Falls
- Cowlitz River (Mayfield Dam)

Guidance efficiencies generally have ranged from 50 to 90%

FERC Fish Passage Workshop

Application at FERC-Licensed Projects Holyoke Canal Louver Facility



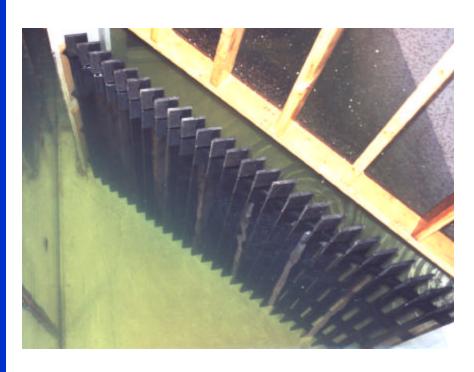
Original Design Partial-Depth Louvers

Slat Spacing:	2 inches
Angle to Flow:	15 degrees
Approach Vel:	1 - 3 ft/s
Target Species:	Atlantic salmon juvenile Alosa
Size Range:	75 - 200 mm
Effectiveness:	80 - 95%

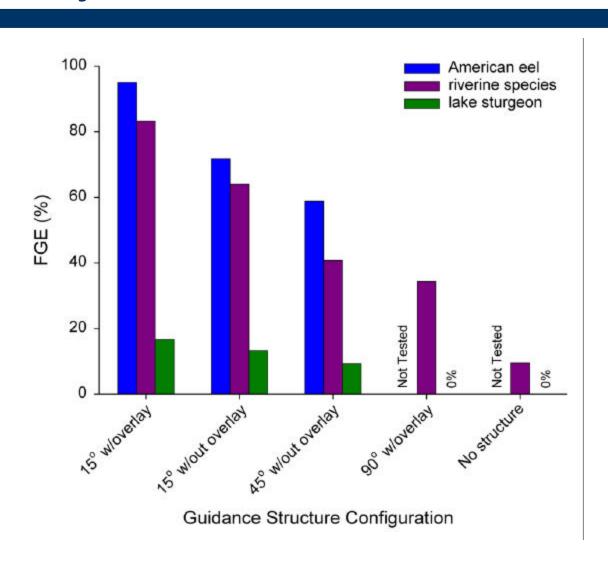
FERC Fish Passage Workshop

Application at FERC-Licensed Projects Holyoke Canal Louver Facility

FERC Fish Passage Workshop

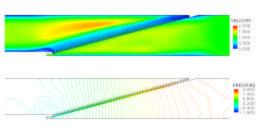

Application at FERC-Licensed Projects Cowlitz River Hydroelectric Project

Mayfield Dam


Slat Spacing:	2.25 inches	
Angle to Flow:	22 degrees	
Approach Velocity: 2.5 - 3 ft/s		
Target Species:	Salmon	
Size Range:	100 - 200 mm	
Effectiveness:	> 70%	

ANGLED BAR RACKS AND LOUVERS Laboratory Evaluation (EPRI 2001)

ANGLED BAR RACKS AND LOUVERS Laboratory Evaluation (EPRI 2001)


ANGLED BAR RACKS AND LOUVERS Considerations for Successful Application

- Site Layout location and orientation of spillway, bypass, and intake relative to one another and approaching flow
- ◆ Target Species migration behaviors, reaction to flow fields, spatial and temporal distributions, swimming capabilities, and target size range
- Hydraulics a thorough understanding of hydraulic conditions experienced by fish approaching a guidance structure is absolutely necessary for successful application
- Bypass Fish may guide effectively, but will not enter a bypass that is poorly located or has suboptimal hydraulic conditions

ANGLED BAR RACKS AND LOUVERS Future Research Needs

- Design criteria for effective guidance of riverine species and American eel (laboratory data need to be supported by field studies)
- Better understanding of how fish respond to varying flow conditions and near-field hydraulics associated with guidance structures and bypasses

- Potential modifications to existing designs to improve guidance efficiency (e.g., bottom overlays, slat modifications, bypass design)
- More field data on effectiveness with respect to various design parameters (structure angle, slat spacing, approach velocity) and a wide range of species

ANGLED BAR RACKS AND LOUVERS Conclusions

- Angled bar racks (45°) have been effectively applied for guiding salmon smolts and juvenile clupeids at some FERClicensed projects.
- ◆ Limited field data available for riverine species and American eel; laboratory studies indicate angled bar racks may be ineffective (<60% FGE).
- Louvers have been employed at a limited number of sites, mainly due to engineering constraints.
- Most louver applications have been effective for anadromous species; laboratory data indicate louvers could be effective means for guiding riverine fishes and American eel.
- Better understanding and more analysis of existing data.
- More research needed to refine when, where, and how to use these technologies. Important tools include physical models (for engineering/biological testing), CFD, and field monitoring.