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Unit Commitment (UC)

@ Two types of decisions to make:

» Which generators to turn on/off and when.

» Generation amount of those “on” generators.

o Constraints to respect:
» Generator characteristics (e.g., min-up/-down time, ramping rate
capacity).
» System-wise restrictions (e.g., transmission line capacity, system

spinning reserve).

@ Settings: system operators, market participants, minimize the total
cost, maximize the revenue, cost functions, and time dependent
start-up costs.

o Existing studies for extended formulations:

[Frangioni and Gentile, 2015], [Guan et al., 2018], [Knueven et al., 2018].
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The Network Flow Representation for General Initial
Conditions ([Zhang et al., 2020])
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The Network Flow Representation for General Initial
Conditions
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The Network Flow Representation for General Initial
Conditions
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The Network Flow Representation for General Initial
Conditions
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The Network Flow Representation for General Initial
Conditions
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Remark: O(T?) binary decision variables and O(T) constraints for the
network-flow constraints part.
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Convex Hull Pricing

System Optimization Model (UCED problem)

Zap = min £ (x u
QIP Xg:Ygilg,V8EG ggg g( gy Vg g)
s.t. Z Xg = d,
g€g

(Xg: Vg, Ug) € Xg,Vg € G.
Remark:

© Transmission constraints can be incorporated similarly.

@ X, represents the feasible region of commitment and dispatch
decisions for generator g.

See [Gribik et al., 2007], [Schiro et al., 2016], [Wang et al., 2016], [Hua and Baldick, 2017], [Yu et al., 2020], among others.
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Convex Hull Pricing

Profit Maximization for Each Participant

Vg(/\) — max )\TXg - fg(Xg’ng Ug)
Xg,Yg,Ug,VEEG
s.t. (Xg, Vg, Ug) € Xg,Vg €G.

Uplift Payment
* k% T * * k%%
UgO\ X2,y i) = ve(A) — (NTxt — (x5, vi, ul),
where (xg, vz, uz) is the optimal solution corresponding to Z3.

g

See [Gribik et al., 2007], [Schiro et al., 2016], [Wang et al., 2016], [Hua and Baldick, 2017], [Yu et al., 2020], among others.
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Convex Hull Pricing

Lagrangian Relaxation and Convex Hull Pricing

D(\)= i f —AT Ad.
maxy ( ) g;g((xg,y?tig)eXg g(Xgayg7ug) Xg) +

Remark: An optimal Lagrangian multiplier is an exact convex hull price.

See [Gribik et al., 2007], [Schiro et al., 2016], [Wang et al., 2016], [Hua and Baldick, 2017], [Yu et al., 2020], among others.
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Convex Hull Pricing

Theorem 1:{Hua and Baidick, 2017 Assuming fg x, (Xg, Yg, Ug) is the convex
envelope of f,(-) taken over X, Vg € G, the optimal dual vector

corresponding to constraint (5b) in the following CHP-Primal formulation
is an exact convex hull price.

7 = i f. , ba
Xg’YngI[LgGQZ g,Xg(Xgayg Ug) ( )

geg
s.t. ng =d, (5b)

g€g

(Xg,Yg, Ug) € conv(Xg),Vg € G. (5¢)

Remark: When the objective function is piecewise linear, the algorithm proposed

in [vuetal, 2020] can efficiently solve the above formulation by gradually adding the
network-flow based integral formulation for some generators.
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Practical Challenges

Max-up time limit: For some generators in the MISO market, there are

restrictions on maximum time periods that the generator can stay online
because of machine deterioration.

t+L;

Z Vi > Uy VEE T
j=t+1

For the extended integral formulation: We can set the maximum length of
each “ON" arc in the network flow graph to accommodate this.
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Practical Challenges

Flexible min-up/-down time limit: For example, participants may submit a
must-run offer for a generator for hours 1 — 5 and 10 — 24 with the
min-down time limit as 6 hours. This will force UCED to commit this
generator between 6 and 9 even if it is costly. So the min-down time limit

is relaxed to be 1 between hours 6 and 9 so that the generator will not be
committed if it is costly.

t
> ke < Vte[L+1,|Tz.
J:t—L—‘rl

71

Z wtVj <1- ut_g,Vt € [E—F 1, |T|]Z
Jj=t—{+1

For the extended integral formulation: We can create the “ON"” and
“OFF" interval arcs in terms of arc length to accommodate these.

Yongpei Guan (UF) Convex Hull Pricing June 2020



Practical Challenges

Time-variant parameters: In MISO, market participants are allowed to
offer capacity and ramp rates varying by the hour.

For the extended integral formulation: Make the parameters dynamic
instead of static in the model.
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Case Studies without Transmission Constraints

Table: Test results for MISO without transmission constraints

Solution Uplift Payment  Time  Save . Diff
Case | Model %) $) (s) $) Optimal ($/MWh)
MIP 59,195,531 - - - -
LMP - 11,613 36 - N
TLP 59,193,235 1,899 13 9,714 N
IA1 59,194,229 1,302 108  +597 Y
C10 0.68
1A2 59,194,229 1,302 115 +597 Y
IACI 59,194,229 1,302 o(+0) 4597 Y
IAC2 59,194,229 1,302 o(+0) +597 Y
OPT 59,194,229 1,302 9,584 4597 *
MIP 49,628,808 - - - -
LMP - 9,918 38 - N
TLP 49,620,385 1,448 17 8,470 N
IA1 49,627,991 817 372 +631 Y
C11 0.38
1A2 49,627,991 817 115 +631 Y
IAC1 49,627,991 817 o(+0) +631 Y
IAC2 49,627,991 817 o(+0) +631 Y
OPT 49,627,991 817 16,269 +631 *
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Case Studies with Transmission Constraints

Table: Test results for MISO with transmission constraints

Solution Uplift Payment  Time Save . Diff
Case | Model $) (%) (s) %) Optimal ($/MWh)
MIP 61,717,153 - 584 - -
LMP - 1,667,967 68 - N
TLP 61,506,521 92,541 60 1575426 N
IAL 61,602,290 87,824 1,182 44,717 Y
C10(T) | a2 61,602,200 87,824 1240 44,717 Y 349
IAC1 61,602,200 87,824 o(+0)  +4,717 Y
IAC2 61,602,200 87,824 o(+0)  +4,717 Y
OPT 61,602,290 87,824 81,630 14,717 "
MIP 50,071,004 - 271 - -
LMP ; 476,190 58 - N
TLP 50,020,529 24,538 41 451,652 N
IAL 50,030,415 23,498 512 +1,041 N
CUM | a2 50,030,417 23,495 626  +1,044 Y 2.19
IAC1 50,030,417 23,495 o(+39)  +1,044 Y
IAC2 50,030,417 23,495 o(+0)  +1,044 Y
OPT 50,030,417 23,495 31,857 11,044 "
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Maximum Daily Starts

Source

o

L L L L
Time 1 - t - k T

Figure: The Network Flow Graph with Maximum Daily Starts being Two
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Convex Envelope

@ The convex envelope f-(x) of a function f(x) is defined as the largest
convex function that is below f(x) for all x in the convex set S.

@ Convex envelope of a piecewise linear cost function of N pieces

[Hua and Baldick, 2017]:

ax_app + by, =1,
ne?‘ll,..),(N} P s
Py = max app+ byB, 0< B <1,
N weh3X, 3P B B
0, 6=0.

@ Convex envelope of a quadratic cost function [Hua and Baldick, 2017

ap® + bp + c, 5=1,
Q=1qap?/B+bp+cB, 0<pB<1,
0, B =0.
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Convergence of Convex Envelope

Theorem 2: (zhang et al., 20201 Suppose Py is a convex piecewise linear cost
function with N pieces that is used for approximating the convex quadratic
cost function @ when 8 = 1. As the number of pieces N — oo, the
optimal objective value of the CHP-Primal problem (5) with the piecewise

linear convex envelope Py converges to that of (5) with the quadratic
convex envelope Q.

Remark: The convergence of convex envelope is equivalent to the
convergence of the corresponding uplift payment.
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I[EEE 118-bus Case Studies

54 generators and 118 buses

Operation periods: 24 hours

Run on a PC with Intel Core i7-6500U CPU at 2.50GHz and 8GB
memory

Optimizer: Gurobi 8.0.1
The required relative MIP gap is set to be le-3

_ |Obj_Quad — Obj_PWL|

Gap Obj_Quad

x 100%
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Case Studies on Convergence Rate

Table: Numerical Results on Piecewise Linear Approximation for Cases without
Transmission Constraints

Casel Case2 Case3 Cased Caseb
1 0.96% 0.95% 0.96% 0.97% 0.95%
3 0.17% 0.15% 0.16% 0.16% 0.15%
5 0.12% 0.10% 0.11% 0.11% 0.10%
8 0.09% 0.08% 0.09% 0.09% 0.08%

Obj_Quad ($)‘1,447,671 1,450,365 1,447,701 1,444,700 1,447,508
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Case Studies on Convergence Rate

Table: Numerical Results on Piecewise Linear Approximation for Cases with

Transmission Constraints

Casel(T) Case2(T) Case3(T) Case4(T) Caseb(T)
1 1.21% 1.20% 1.17% 1.20% 1.19%
3 0.20% 0.21% 0.16% 0.19% 0.19%
5 0.12% 0.13% 0.09% 0.11% 0.11%
8 0.09% 0.10% 0.06% 0.09% 0.08%

Obj_Quad ($)‘1,458,611 1,461,483 1,458,312 1,455,994 1,458,493
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Case Studies on MIP Performance

Table: Numerical Results on UCED problems without Transmission Constraints

Quad PWL (8)
Obj($)  Time(sec)  Obj($)  Time(sec)

Casel 1,446,482 7.019 1,446,317 0.969 0.01%
Case2 1,449,478 4.248 1,449,231 1.077 0.02%
Case3 1,446,982 1.286 1,446,463 1.048 0.04%
Case4 1,443,585 3.613 1,443,424 0.946 0.01%
Caseb 1,446,669 4.706 1,446,444 1.525 0.02%
Case6 1,229,302 2.226 1,229,152 1.103 0.01%
Case7 1,445,314 3.806 1,445,164 1.207 0.01%
Case8 1,444,865 11.63 1,444,714 0.946 0.01%
Case9 1,446,019 3.853 1,445,834 1.097 0.01%
Casel0 1,442,819 6.203 1,442,607 0.897 0.01%

Gap
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Case Studies on MIP Performance

Table: Numerical Results on UCED problems with Transmission Constraints

Quad PWL (8)
Obj($)  Time(sec)  Obj($)  Time(sec) Gap
Casel(T) 1,457,809 57.593 1,457,560 6.316 0.02%
Case2(T) 1,460,905 45.685 1,460,350 5.413 0.04%
Case3(T) 1,458,470 12.522 1,458,222 5.691 0.02%
Case4(T) 1,455,879  46.088 1456110  4.454  0.02%
Case5(T) 1,457,868 63.008 1,458,417 6.687 0.04%
Case6(T) 1,237,245 8.201 1,237,112 5.028 0.01%
Case7(T) 1,457,670 11.506 1,457,513 7.247 0.01%
Case8(T) 1,457,254 6.676 1,456,949 5.448 0.02%
Case9(T) 1,457,860 12.257 1,457,896 5419  0.00%
CaselO(T) 1,454,085 36.421 1,454,490 4.278 0.03%
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Other Ongoing Topics

@ Incorporating maximum energy

@ Incorporating combined-cycles

o = = E DA
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