
HIPPO – Solving Large Security Constrained
Unit Commitment Problem

Feng Pan, Jesse Holzer, Yonghong Chen

FERC Technical Conference
June 23, 2020

1

HIPPO Background

Funded by ARPA-E,
11/2016 – 1/2020.

Problem – Day-ahead
security constrained unit
commitment problem

Challenge - Slow solution
times lead to inefficient
cost, reduced reliability
and slow adaptation of
new market designs.

Solution – A solution
framework based on
parallel and concurrent
optimization.

Goal – 10+ speedup.

Team - PNNL

• PNNL
• Feng Pan, Jesse Holzer, Arun Veeremany

• MISO
• Yonghong Chen, Joanna Wu, Yamin Ma, Jessica Harrison

• GE
• Jie Wan, Xiaofeng Yu

• GUROBI Optimization
• Ed Rothberg

• University of Florida
• Yongpei Gu, Yanan Yu

• Cognitive Analytics
• Jim Ostrowski, Jonathan Schrock

Characteristics of SCUC at
MISO
• MISO has a large footprint.

• System-level constraints
• Watch-list includes about 7000 security constraints
• Three system-level constraints for reserve products in each

period

• Generator-level
• Additional binary variables for committing regulating

reserve.
• Generators can have two sets of bounds
• Limits on total daily energy use and startups

• Many virtual bids ~ 16,000+

MISO Facts

2

Renewable
12.21%

Gas/Oil
40.45%

Coal
39.88%

Nuclear
7.46%

Key Statistics

Market Participants

MWs of Generating Capacity (Mkt)

Peak Load (MW)

Generating Units (Market)

Network Buses

Miles of Transmission Lines

Square Miles of Territory

States Served

Millions of People Served

408

178,140

132,893

1390

43,962

65,800

900,000

15
Plus Manitoba Province, Canada

42

SCUC Runtime vs Individual Elements

Runtime vs load Runtime vs number of Security Constraints

SCUC Runtime vs Individual Elements

Runtime vs number of commitment variables Runtime vs number of virtual bids

Solving Unit Commitment
in Day-ahead Market

Cost Minimization
Solve security

constrained unit
commitment (SCUC)

Security Check
simultaneous
feasibility test

(SFT)

SFT

Solve SCUC

Solving Day-ahead Unit Commitment – Approach
Used in Practice

SFT

Fix schedule and solve SCED

Solve SCUC and obtain commitment
schedule

SFT

Solve SCUC

Shorter Computation Time
Suboptimal

Long Computation Time
Optimal

Limited iterations to solve another
SCUC (most time polishing)

Goal of the HIPPO Project

Achieve Optimality with full iteration between SCUC
and SFT at fast speed

SFT

Solve SCUCSpeedup

Speedup

Convergence

Sequential vs Callback

SFT

Solve SCUC

• SCUC (MIP) is solved multiple
times

• SFT is called 2-5 times

Solve SCUC
with SFT callback

• SCUC (MIP) is solved once
• SFT is called many times (for every

incumbent solution)

Improve Computation

Solve SCUC Solve SFT

HIPPO - Solving SCUC

BETTER
FORMULATION SMALLER MIP

TIGHTER
RELAXATION

MARKET-BASED
METHOD

DECOMPOSITIO
N

PARALLELIZATIO
N

Formulation

Tighter
constraints

Strong valid
inequalities

Matching
formulation

Anti-
symmetry

Neighborhood
search

RINS

Polishing

Variable fixing

Decomposition

Benders

ADMM

Constraint
based

partition

Relaxation

Lagrangian
relaxation

Almost-
symmetry

Concurrent Optimizer launches multiple algorithms simultaneously and
enables them to communicate

Sample Configuration - HIPPO Concurrent Optimizer

Performance – Solving SCUC

Performance – Solving SCUC

HIPPO - Solving SFT

CHOLESKY
FACTORIZATION

LOWER RANK
SMW UPDATE

ORDER OF
COMPUTATION

PRE-PROCESSING AGGREGATION
OF BUSES PARALLELIZATION

Solving Ax = b with many similar A matrices

Performance – Solving SFT

• 1K ctgs, 10K monitored branches, 36 time periods,
• Startup time for SFT is with SCUC construction and presolve time
• Very fast solve time. 3 to 9 seconds, compared to 800 seconds with old method

SFT configuration 3node*12processor 1node *12 processor 1node*36processor 6node*6processor
Pre-processing #Matrix/Node 12 12 36 6

#nodes 3 1 1 6
#Matrix 36 12 36 36

49.83 | 212.91 | 261 33.76 | 217.23 | 261 441.19 | 608.93 | 261 18.88 | 185.56 | 261
3.61 | 236.38 | 6 6.04 | 362.93 | 5 5.16 | 752.99 | 5 3.97 | 212.07 | 6
3.45 | 262.06 | 0 5.89 | 703.35 | 2 5.06 | 1089.43 | 2 3.53 | 361.49 | 1
3.55 | 309.53 | 4 5.59 | 709.1 | 2 5.17 | 1094.76 | 2 3.54 | 780.8 | 2
3.17 | 332.59 | 0 5.61 | 714.89 | 1 5.04 | 1099.99 | 1 3.4 | 790.79 | 0
3.36 | 514.85 | 2 5.68 | 720.76 | 1 4.98 | 1105.15 | 1 3.62 | 794.65 | 1
3.15 | 541.2 | 0 5.77 | 726.79 | 0 5.07 | 1110.47 | 0 3.45 | 798.28 | 0

3.06 | 875.21 | 1
3.01 | 878.38 | 0

Total Time 879 727 1111 798

SFT check time | end time | #violation

18

Reading data &
model building

SCUC
Pre-solve

LP Relaxation

MIP searching
(SFT check)

HR1 HR12…

HR13 HR24

HR25 HR36

…

…

1,000 contingencies are
embedded in one matrix:
all solved at once

MIP callback API checks SFT
and adds new constraints
for each new incumbent
solutionCallback API

Fast SFT (contingency
violation + sensitivity)

New SFT design uses parallel processing, is easily configurable across server nodes &
uses efficient communication between SFT & MIP.

SFT matrix preparation
runs in parallel with SCUC
preparation

Pre-
processing

Active
solving

SFT preparation for 36 intervals
can be a bottleneck and require
3 nodes.
(1interval1node and
36interval3node are similar)

Performance – SCUC + SFT

• Production solver used
sequential iterations

• Production solver took 2-
5 iterations to solve
SCUC+SFT to
convergence.

• HIPPO launched about
~10 different algorithms

HIPPO Performance in
Future Market Designs

Will HIPPO Concurrent Optimizer be
scalable in future SCUC instances?

Preliminary Results for
SCUC with 15-min
Interval

Cases
HIPPO concurrent polishing

+ MIP solving time (s)
Default MIP time

(s) Speedup ratio
Hard 1 919 24,625 26.81
Hard 2 1,055 12,243 11.60
Hard 3 1,244 63,014 50.65
Hard 4 1,349 21,095 15.63
Hard 5 1,660 43,728 26.35

Normal 1 781 1,055 1.35
Normal 2 1,392 1,369 0.98
Normal 3 734 2,454 3.35
Normal 4 780 1,588 2.04
Normal 5 783 1,623 2.07

• Launch hourly interval and 15-min
interval in HIPPO Concurrent Optimizer

• Use solution from hourly model with
1% MIP gap as an initial solution to
Polishing Method.

• Polishing method iteratively make
improvements until 0.1% gap or $24K
absolute gap

Y. Chen, F. Pan, J. Holzer, E. Rothberg, Y. Ma, A. Veeramany, High Performance Computing Based Market Economics
Driven Neighborhood Search & Polishing Algorithm for Security Constrained Unit Commitment, IEEE Tran. on Power
Systems, Accepted.

Future Work

Move HIPPO to
MISO cloud
environment for
further testing and
evaluation.

1

Develop HIPPO as a
software platform
for market design
and prototyping.

2

Integration to future
market clearing
system.

3

