

Modelling of Energy Storage Resources in New York Electricity Market

Sina Parhizi

NYISO

FERC technical conference: Increase Real-Time and Day-Ahead Market Efficiency and Enhancing Resilience Through Improved Software

June 23, 2020

NYISO by the numbers

Supply & Demand

33,956 record peak demand, in MW,

July 2013

700+

power generating units

26%

of electric energy from renewables in 2018

First stage: Commitment Model

- Energy Market Design for Non-Continuous Storage Resources:
 - Today, the NYISO treats large pumped storage as a generation when injecting and negative generation when withdrawing since they cannot continuously ramp from injection to withdrawal
 - NYISO does not impose a daily energy (MWh) constraint on its pumped storage resource. The MP manages the participation mode (injecting, withdrawing) of the resource via its offers
- In the first stage, effort focused on changing its existing pumped storage model into a technology-agnostic energy storage resource (ESR) model while trying to meet the following objectives:
 - Incorporate state-of-charge (SOC) or energy level management into the optimization
 - Incorporate the operating parameters for ESRs recommended in Order No. 841

Some ESR Operational Features

- The general rule for evaluating offers is that resources should inject when LBMP > injectionOffer, and the resource should withdraw when LBMP < withdrawalBid
- This simple rule does not adequately address storage optimization when there is intertemporal coupling of schedules to withdraw and inject energy across the hours of the Day-Ahead Market (DAM) run, and the resource has a limited SOC
- ESRs will be able to provide ancillary services

ESR Commitment Model Parameters

Registration		Registration / Biddable		Biddable		
Transition Time	[minutes]	Min. Load	[MW]	Incremental Bid Curve	[\$/MW]	
Upper Charge Limit	[MWh]	Min. Generation	[MW]	Beginning State of Charge	[MWh]	
Lower Charge Limit	[MWh]	Min. Load Cost	[\$]	Ending State of Charge	[MWh]	
Charge Rate (Max. Load)	[MW]	Min. Generation Cost	[\$]	***************************************		
Discharge Rate (UOL)	[MW]	Start-up Cost	[\$]	Bid Modes	[-]	
Energy level (SoC)	[Yes/No]	Start-up Load Cost	[\$]			
Min. Charge Time	[minutes]	***************************************		•		
Max. Charge Time	[minutes]	000000000		***************************************		
Min. Run Time	[minutes]	***************************************				
Max. Run Time	[minutes]	00000000				
Min. Downtime	[minutes]	***************************************		•		
Withdrawing conversion losses	[%]	000000000		***************************************		
njecting conversion losses	[%]	***************************************				
Through-Put	[MWh]	***************************************		<u>Key</u>		
Response Rate(s)	[MW/min]	***************************************				
Start-up Notification Time	[minutes]	***************************************		Existing Parameter		
Maximum Stops per Day	[n]	***************************************		Additional Storage Par	ameter	

Commitment Model Simulations

- Simulations showed that, under certain conditions, acceptable solution times for DAM clearing would be exceeded
- The simulations demonstrated that an ESR's capability normally can be more efficiently utilized by offering as a price taker in the DAM, and the solve time is within an acceptable range in this case
- Accurate ESR parameters, including inject/withdraw efficiency, are necessary to produce efficient DAM schedules for ESRs and other resources
- Some of the proposed constraints/parameters causing challenges to the optimization performance include:
 - Dead-band zone in the MW range
 - Min and max State of Charge (SOC)
 - Efficiency factor
 - Injection/withdrawal transition time
 - Offer incremental cost

Constraints Impacting Performance

Dead-band

Between withdrawal and injecting

Min. Injection Limit * Uwdr $[S_{unit},t] \le Inj[S_{unit},t] \le O$ perating High Limit *Uinj $[S_{unit},t] = VS_{unit} \in S$ torage Operating Low Limit * Uinj $[S_{unit},t] \le VS_{unit} \in S$ torage

Storage Mode Constraint

 A storage unit cannot be simultaneously injecting and withdrawing energy at the same time

$$Uwdr[S_{unit}, t] + Uinj[S_{unit}, t] \le 1 \quad \forall S_{unit} \in Storage$$

Constraints Impacting Performance

Efficiency

$$Energy[S_{unit},t+1] = Energy[S_{unit},t] - \frac{Inj[S_{unit},t]}{EffG} - Wdr[S_{unit},t] * EffP$$

- It is necessary to differentiate withdrawing- and injecting- power (i.e. to use $Inj[S_{unit},t]$ and $Wdr[S_{unit},t]$) to model efficiency. This is true even without considering commitment statuses for the storage unit
- Max. SOC

$$Energy[S_{unit}, t] \leq Maximum Reservior Level (MWh)$$

- Transition time
 - Example: transition time of 1-hour

$$\begin{aligned} \textit{Uinj} \ [S_{unit} \ t] + \textit{Uwdr} \big[S_{unit} \ t+1 \big] &\leq 1 \\ \textit{Uinj} [S_{unit} \ t+1] + \textit{Uwdr} \big[S_{unit} \ t \big] &\leq 1 \end{aligned} \qquad \forall S_{unit} \epsilon \textit{Storage} \end{aligned}$$

Pursuing a Dispatch-Only Model

- Due to complexities and performance concerns with the ternary design, the NYISO developed a dispatch only model for ESRs to comply with Order 841
 - This decision was influenced by the fact that storage technology is almost exclusively batteries in the NYISO's interconnection queue
- The dispatch-only model does not include a dead-band
 - 1. This approach reduces the number of binary variables needed to model an ESR from 2 to 1
 - 2. A binary variable is still needed to model round-trip efficiency
- ESR's are modeled as generators accounting for the following unique features:
 - 1. They can bid from negative to positive
 - 2. ESR's are assumed to be always on (dispatch only, no commitment)
 - 3. Their energy is limited
 - 4. ESR's are assumed to be lossless when injecting, and having losses when withdrawing (ESR round-trip efficiency is applied on the withdrawal side). Therefor, their SOC rate of change is different when injecting and withdrawing

Dispatch-Only Model Features

State of Charge

- Energy $[S_{unit}, t+1] = Energy [S_{unit}, t] Inj [S_{unit}, t] Wdr [S_{unit}, t] *Eff$
- $Energy[S_{unit}, t] \leq Maximum Storage Level (MWh)$

"Eff" is Roundtrip efficiency and is only applied when withdrawing

Efficiency

- It is necessary to differentiate injecting and withdrawing power (i.e. to use $Wdr[S_{unit},t]$ and $Inj[S_{unit},t]$) to model efficiency. This fact holds in a dispatch-only model as well
- The following constraint is needed to ensure mutually exclusive injecting and withdrawing:

$$Inj[S_{unit},t] * Wdr[S_{unit},t] = 0$$

 This type of constraint, called complementarity constraint, makes the problem nonlinear

Linearization

 Complementarity constraint makes the problem non-linear. This linearization is proposed to make the problem convex:

$$0 \leq Inj[S_{unit}t] \leq (1 - Us[S_{unit}t]) *Inj^{max}[S_{unit}]$$
$$Us[S_{unit}t] *Wdr^{min}[S_{unit}] \leq Wdr[S_{unit}t] \leq 0$$

 Binary variable "Us" must be introduced to linearize this constraint, but its addition could make the problem much more difficult to solve.

Methods recommended to improve performance

- ABB's recommendation to improve performance include:
 Consider a two-step bid-curve such that the following condition is met at the zero crossover point:
- Withdraw_incremental_cost ≤ Inject_incremental_cost * efficiency
 MW
- Under this condition, complementarity constraint is exactly relaxed:
 - If bids follow the condition, complementarity is never binding
 - Testing shows this conditions improve optimization performance

Reference: Z. Li, Q. Guo, H. Sun and J. Wang, "Sufficient Conditions for Exact Relaxation of Complementarity Constraints for Storage-Concerned Economic Dispatch," in *IEEE Transactions on Power Systems*, vol. 31, no. 2, pp. 1653-1654, March 2016.

\$/MWł

Revenue vs. Surplus

 Realistically, ESR would bid in such a way that net of injecting surplus and withdrawing surplus is positive

Efficiency Modeling

- There is already a mixed integer constraint in NYISO dispatch, modelling ramp rates as a piecewise constant curve
- Each segment j has binary variable $I_{i,t}^H$ to indicate whether it is dispatched or not
- These binary variables can be used to model efficiency, and inject-withdraw mode

Conclusion

- NYISO's prototyping effort has achieved the goal of demonstrating acceptable performance for a model complying with the FERC order
- NYISO has successfully designed and tested an optimization prototype that considers physical features of ESR's, allows them to offer their full range (inject to withdraw) and set the price
- Future efforts will focus on further improving the model and introducing a full commitment model to ESR optimization

Our mission, in collaboration with our stakeholders, is to serve the public interest and provide benefit to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policymakers, stakeholders and investors in the power system

Questions?

