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Background

• Solving multi-stage multi-period SCUC and SCED in the 
presence of uncertain resources (renewables, DERs, EVs…)
– Deterministic optimization: employ point forecasts of 

randomness. 
• Not accurately capturing the uncertainties. 

– Stochastic optimization: employ “scenarios” that represent 
randomness 
• Computational complexity drastically increases. 

• Unknown uncertainties.  

– Robust optimization: employ uncertainty sets and worst-
case assumptions. 
• Conservative



Motivation

• Can we reach the social optimum defined by the stochastic 
optimization, without having the ISO actually solving this 
computationally challenging problem? 

• Goals 
– Practicality: Design a “sufficiently simple” market 

mechanism where the ISO solves a computationally 
tractable problem, and yet

– Efficiency: the market reaches social efficiency at its 
equilibria granted strategic behaviors of the participants. 



Approach

• Indirect mechanism design: Resources as market participants
– Information collection

– System operation

– Payment allocation



Approach

• Indirect mechanism design: Existing example: Energy market
– Information collection
• Generators submit their cost functions and constraints

– System operation
• SCUC and SCED

– Payment allocation
• Multi-settlement payments with LMPs



Approach

• Indirect mechanism design: With uncertain resources
– Information collection
• What information should we elicit from uncertain resources?

– System operation
• What optimization problems should we solve given these info?

– Payment allocation
• How should we pay each uncertain resource? 

• Key question: how would the market equilibrium perform re: 
social efficiency, granted the market participants act strategically, 
not assuming perfect competition or truthfulness?



Related Work
• Grid operation and planning with uncertain renewables

• [Varaiya, Wu, Bialek 11], [DeJonghe, Hobbs, Belmans 12]

• Market equilibrium in deterministic settings
• Single stage: [Hu & Ralph 07] [Ruiz et al. 14] [Anderson & 

Philpott 02] [Joahri & Tsitsiklis 11] [Lin & Bitar 17] 
• Multi-stage: [Allaz & Vila 93] [Yao, Adler, Oren 08]

• Renewables bidding and payments in power markets
• Single RPP [Bitar et al. 12] [Morales, Conejo, Pérez-Ruiz 10]

[Baringo & Conejo 13, 16] 
• Many RPPs / aggregation [Baeyens et al. 13], [Nayyar et al. 13], 

[Lin & Bitar 14], [Z. et al. 15] [Khazaei & Z. 17, 18],  [Zhang 
Rajagopal Johari 15]. 



Integrating Renewables: Uncongested Case 
[Khazaei and Z. 18] 

• Model: A two-stage (DA-RT) single-period problem

– Two sets of conventional generators,    
• DA generators: 
– Can be slow but cheap

• RT generators:
– Can be Fast but expensive

There can be an arbitrary overlap between the two sets. 

– N Renewable Power Producers (RPPs)
– Not yet considering UC, security constraints, etc. 
– Focus on the behaviors of strategic RPPs.
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c) Upon receiving these information, the ISO per-
forms an optimal dispatch of the DA conventional
generators to meet the load.

2) In the RT market,
a) The RT conventional generators submit their bid-

ding curves to the ISO.
b) The RPPs’ actual generation are realized.
c) The ISO computes the remaining difference be-

tween the total generation and load, and performs
an optimal dispatch of the RT conventional gener-
ators to resolve the difference.

Before specifying the details of the above steps, we list the
assumptions made in this paper as follows:

1) Transmission network constraints are not considered.
This is equivalent to considering all the generators, RPPs
and loads located at a single node.

2) The conventional generators submit their generation cost
functions truthfully. In other words, we do not consider
market power issues among the conventional generators.

3) The RPPs have zero variable cost in their generation.
With the above Assumption 1) and 2), it is convenient

to consider that the market has just a single equivalent
aggregate DA conventional generator and a single equivalent
aggregate RT conventional generator for the ISO to dispatch.
In addition, we consider N RPPs in the system. Our focus
is to understand the strategic behaviors of the RPPs and the
ensuing consequences on the social welfare. The notations of
the relevant variables are defined as follows:

q

DA

G

, q

RT

G

Power dispatch of the (aggregate)
DA and RT conventional generators.

C

DA

G

(·), Cost functions of the (aggregate)
C

RT

G

(·) DA and RT conventional generators.
L Total (inelastic) load.
c

i

Firm power commitment submitted by RPP i.
cN The quantity equal to

P
N

i=1 ci.
X

i

, x

i

The random variable modeling the power
output of RPP i, and the realization of it.

XN , xN The random variable modeling the total
output of the RPPs, and the realization of it.

p

f

, p

r DA, RT market clearing prices.
P
i

,⇡

i

The realized and expected profit of RPP i.

We now specify the details of how the ISO and the RPPs
interact in the two-settlement market mechanism.
DA and RT market clearing: First, we consider that every
RPP takes responsibility of its RT deviation from its DA
firm power commitment. In particular, when performing DA
dispatch of the (aggregate) conventional generator, the ISO
takes the RPPs’ commitments as firm ones, and does not worry
about any possible RT deviations from them. As a result, the
ISO’s DA dispatch is simply given by

q

DA

G

= L� cN . (1)

In the RT market, the only sources of a possible difference
between the total generation and load are the deviations of the
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!"#$

%& − (&0

Fig. 1. Three scenarios of the RT generation cost function CRT
G (·).

RPP’s realized generation from their DA commitments. The
ISO then dispatch the RT conventional generator to resolve
the difference. The ISO’s RT dispatch is thus given by

q

RT

G

= cN � xN . (2)

With (1) and (2), the DA and RT market clearing prices
are the marginal costs for producing one more unit of power
using the DA and RT conventional generators, respectively:

p

f =
dC

DA

G

(q)

dq

����
q

DA

G

, p

r =
dC

RT

G

(q)

dq

����
q

RT

G

. (3)

Clearly, the DA and RT market clearing prices depend on the
RPPs’ decisions on {c

i

} and their realized generation {x
i

},
resulting in a price making two-settlement market.

Remark 1: In general, there are three possible shapes of
C

RT

G

(·), as depicted in Fig. 1: a) In Scenario 1, RPPs can
sell their excess power in the RT market for profits; b) In
Scenario 2, RPPs cannot sell excess power for profits, but can
curtail them at no cost; c) In Scenario 3, RPPs are penalized
for having excess power, and thus both positive and negative
imbalances are penalized. We note that the results of this paper
are applicable to all possible scenarios.
RPPs’ profits: Last but not least, as the RPPs take respon-
sibility of their own deviations from their DA commitments,
they pay (or possibly get paid) for the dispatch of the RT
conventional generator (cf. (2)) in full. Specifically, the profit
earned by an RPP i in this two-settlement market is given by

P
i

= p

f (cN ) · c
i

� p

r(cN � xN ) · (c
i

� x

i

), (4)

where the DA and RT prices are functions of cN and cN�xN ,
respectively.

B. Benchmark: The Social Optimization Problem

We now turn to a fundamental question that precedes the
analysis of the two-settlement market, that is, what is the
socially optimal two-stage dispatch? Specifically, in the ideal
case where the ISO has the information and control of all
the players (i.e., DA and RT conventional generators, and
RPPs,) we are interested in the DA and RT dispatch that
minimizes the expected overall generation cost to meet the



Optimal Dispatch (Uncongested)

• Stochastic optimization (assuming RPPs’ variable costs are zero)

• DA and RT Prices --- Marginal Cost of Generation

• Lemma (Optimal Dispatch, Uncongested)

– The DA dispatch is optimal iff .                          
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load. Understanding the social optimum not only is important
in its own right, but also provides a benchmark against which
the performance of the market mechanism discussed in the
previous sub-section can be compared.

In the following sections, we will first analyze the social
optimum of the two-stage dispatch problem, and then analyze
the social efficiency of the competitive DA-RT market in
which RPPs take responsibility of their own deviations from
DA commitments.

III. SOCIAL OPTIMUM FOR TWO-STAGE DISPATCH

In solving the social optimization problem, the ISO is
assumed to know all the information about the conventional
generators and the RPPs, including the joint probability dis-
tribution of the RPPs’ generation {X

i

}. The goal of the ISO
is to minimize the expected overall cost of the system:

min
q

DA

G

C

DA

G

�
q

DA

G

�
+ E

XN

⇥
C

RT

G

�
L� q

DA

G

� xN
�⇤

, (5)

where xN =
P

N

i=1 xi

. Note that, the only free decision
variable for the ISO is the DA conventional generation dis-
patch q

DA

G

. The RT dispatch must always satisfy q

RT

G

=
L� q

DA

G

� xN to meet the load.
Now, even though there is no commitment from the RPPs

when studying the social optimum, we still can define an
auxiliary variable cN = L� q

DA

G

. This is for the convenience
of comparison later with the results in Section IV. Note that
this definition is consistent with (1). With a change of variable
with the so-defined cN , the social optimization problem (5) is
equivalent to the following,

min
cN

C

DA

G

(L� cN ) + E
XN

⇥
C

RT

G

(cN � xN )
⇤
. (6)

Furthermore, even though there is no market when studying
the social optimum, we still can also define the DA and RT
prices as follows, again using the change of variable with cN :

p

f = �dC

DA

G

(L� cN )

dcN
, p

r =
dC

RT

G

(cN � xN )

dcN
(7)

Note that these are consistent with the prices in (3).
We now have the following lemma on characterizing the

social optimum.
Lemma 1: The optimal solution of (6), denoted by c

o

N , is
computed from the following condition,

�p

f

z }| {
dC

DA

G

(L� cN )

dcN

����
cN=c

o

N

(8)

+

E
XN [pr]

z }| {
dE

XN

⇥
C

RT

G

(cN � xN )
⇤

dcN

�����
cN=c

o

N

= 0,

, p

f = E
XN [pr] . (9)

The proof of Lemma 1 follows directly from the optimality
condition of (6).

Remark 2: An instructive interpretation of Lemma 1 is as
follows. Consider an ISO deciding the total commitment cN
on behalf of the RPPs: The socially optimal total commitment
c

o

N equalizes the DA market clearing price and the expected
RT market clearing price.

While the social optimum can be achieved using Lemma
1, it however requires the ISO to a) know key probabilistic
forecast information from the RPPs, and b) performs central-
ized optimization and control. Instead, in practice, it is very
appealing to use market mechanisms to integrate the RPPs into
the power system as discussed in Section II-A, which is the
focus of the next section.

IV. COMPETITIVE MARKET WITH RENEWABLE POWER
PRODUCERS

In this section, we analyze the two-settlement market mech-
anism as described in Section II-A, where each RPP submits a
DA firm power commitment, and takes responsibility for any
RT deviation from it. From the RT realized profit of RPP i

(4), its DA expected profit is given by

⇡

i

= E
XN [P

i

] = p

f (cN ) · c
i

� c

i

· E
XN [pr (cN � xN )]

+ E
XN [pr (cN � xN ) · x

i

] (10)

When participating in the two-settlement market, each RPP
has total freedom in choosing its DA commitment c

i

, and thus
a strategic RPP would like to choose one that maximizes its
expected profit ⇡

i

(cf. (10)). The strategic behaviors of the
RPPs can thus be studied in a non-cooperative game theoretic
framework as in the remainder of the section.

A. Nash Equilibrium Achieves Asymptotic Social Efficiency

We study the following non-cooperative game modeling the
strategic behaviors of the RPPs in the two-settlement market,
which we term the commitment game:

1) Players: the set of RPPs participating in the DA-RT
market: N = {1, . . . , N}.

2) Strategies: the firm power commitments made by the
RPPs, {c

i

}.
3) Payoffs: Each RPP i’s payoff is its expected profit (10).
We now state the main result of this paper.
Theorem 1: Social efficiency is achieved at each pure Nash

equilibrium (NE) of the commitment game as N �! 1.
Proof: Suppose the strategy profile

�
c

?,ne

1 , · · · , c?,ne
N

 
is

a pure NE of the commitment game, and c

?,ne

N =
P

N

i=1 c
?,ne

i

is
the total commitment of the RPPs at this pure NE. Since each
RPP’s expected profit is maximized at this pure NE, {c?,ne

i

}
must satisfy the following necessary best response conditions:

d⇡

i

dc

i

���
(c1,··· ,cN )=(c?,ne

1 ,··· ,c?,ne

N

)
= 0, 8i 2 N . (11)

Summing up the N equations above, we have
X

i2N

d⇡

i

dc

i

���
(c1,··· ,cN )=(c?,ne

1 ,··· ,c?,ne

N

)
= 0. (12)

Moreover, we have further investigated a similar simple mechanism for the general price-making sce-
nario, where the cost functions of the conventional generators can be any (differentiable) convex functions
[59]. As such, the overall system cost and the prices the RPPs face at DA and RT are characterized by:

C

DA
G

�
q

DA
G

�
+ EXN

⇥
C

RT
G

�
q

RT
G

�⇤
, p

f =
dC

DA
G (q)

dq

����
qDA
G

, p

r =
dC

RT
G (q)

dq

����
qRT
G

, (3)

where C

DA
G and C

RT
G are the aggregate cost functions of the conventional generators at DA and RT, qDA

G and
q

RT
G are the dispatched amount of these generators, the prices are determined by the marginal costs of these

generators, and q

RT
G = L � q

DA
G � xN to meet the load at RT given the renewables. We have shown that,

a) the simple mechanism induces a unique Nash Equilibrium among the RPPs, b) there is in general a gap
between the social cost at NE and that at the social optimum (i.e., the minimum overall system cost with
the optimal dispatch of the conventional generators), and a closed-form expression for this gap is found,
and c) as the number of RPPs increases, the gap between the NE and the social optimum diminishes.

Fairness, market power, transaction costs, and simplicity of design Our preliminary result for the
price making environments offers key insights in predicting market outcomes in the real-world, and opens
up many interesting research directions. First, while asymptotic social efficiency is achieved at the market
equilibrium, the fairness of the cost/payment allocation to the RPPs at equilibria needs to be studied, in
particular in conjunction with the proposed fair cost attribution study in Section 3.2.1. Furthermore, our
preliminary result provides a rigorous characterization of the market power of each RPP in a price making
environment. The RPPs’ desire of gaining more market power (and thus earning higher expected payoffs)
would incentivize them to merge together, leading to fewer number of RPPs. This however moves the entire
system/market further away from social efficiency, as the gap to efficiency is a strictly decreasing function of
the number of RPPs [59]. On the other hand, many other factors in practice would naturally prevent having
an arbitrarily large number of RPPs in a market. Such concerns include transaction costs, namely, various
types of overhead for including an RPP in a market. Indeed, in many existing wholesale power markets,
the participants need to be of sufficient sizes (e.g., aggregators of DERs may participate in certain ancillary
service markets, but not individual DERs). We will investigate the price making environment with various
cost models that capture real-world transaction costs. Three questions will be answered: a) From a social
planner’s perspective, how to achieve social efficiency for a power system with renewables and transaction
costs? b) How can we design the mechanism of integrating RPPs so that new market equilibria would be
close to the social optimum? c) With market-power-seeking behaviors from RPPs, what is the ensuing cost
to social efficiency, and how can we design rules of the market/mechanism to reduce such cost? Last but
not least, we will investigate indirect mechanism design for more general settings with multiple (more than
two) time scales, in conjunction with the cost attribution study for multiple time scales in Section 3.2.1.

In general, designing indirect mechanisms vastly opens up possibilities for practically achieving efficiency
and fair cost attribution for integrating renewable energies. We will explore an overarching tradeoff be-
tween the simplicity of the mechanism and the hardness of its analysis: direct mechanisms are hard to
implement, but conceptually easier to analyze; indirect mechanisms typically have simplicity as a design
goal, but are much more involved to analyze. In pursuing mechanisms’ practicality, we will investigate
mechanisms that are easy to implement, and how they perform towards our design goals: predictable outcome,
efficiency, and fair cost attribution. For example, in our preliminary results above, we have focused on very
simple information collection and dispatch steps: the operator just elicits one number from each RPP, and
simply sums up all the numbers as the total DA commitment of all the RPPs. A major advantage of having
simplicity as a guiding design principle is the broad applicability of the mechanisms. In particular, a mecha-
nism can be developed for simplified settings, and then easily transplantable to scenarios that do not make
simplifying assumptions. This moreover enables us to start with first principles to come up with simple
mechanism designs, and gradually move towards more complex settings with continuous adjustments.

3.3 Thrust 2: Fair Cost Attribution to Variability of Renewables
Variability of renewables, in particular at short time scales, is another major concern that are costly to com-
pensate for in power systems. Indeed, as the time scales become shorter (e.g., minutes, or even seconds),
we typically rely on standby reserves (e.g., fast generators, energy storage, and demand response) to absorb
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load. Understanding the social optimum not only is important
in its own right, but also provides a benchmark against which
the performance of the market mechanism discussed in the
previous sub-section can be compared.

In the following sections, we will first analyze the social
optimum of the two-stage dispatch problem, and then analyze
the social efficiency of the competitive DA-RT market in
which RPPs take responsibility of their own deviations from
DA commitments.

III. SOCIAL OPTIMUM FOR TWO-STAGE DISPATCH

In solving the social optimization problem, the ISO is
assumed to know all the information about the conventional
generators and the RPPs, including the joint probability dis-
tribution of the RPPs’ generation {X

i

}. The goal of the ISO
is to minimize the expected overall cost of the system:

min
q

DA

G

C

DA

G

�
q

DA

G

�
+ E

XN

⇥
C

RT

G

�
L� q

DA

G

� xN
�⇤

, (5)

where xN =
P

N

i=1 xi

. Note that, the only free decision
variable for the ISO is the DA conventional generation dis-
patch q

DA

G

. The RT dispatch must always satisfy q

RT

G

=
L� q

DA

G

� xN to meet the load.
Now, even though there is no commitment from the RPPs

when studying the social optimum, we still can define an
auxiliary variable cN = L� q

DA

G

. This is for the convenience
of comparison later with the results in Section IV. Note that
this definition is consistent with (1). With a change of variable
with the so-defined cN , the social optimization problem (5) is
equivalent to the following,

min
cN

C

DA

G

(L� cN ) + E
XN

⇥
C

RT

G

(cN � xN )
⇤
. (6)

Furthermore, even though there is no market when studying
the social optimum, we still can also define the DA and RT
prices as follows, again using the change of variable with cN :

p

f = �dC

DA

G

(L� cN )

dcN
, p

r =
dC

RT

G

(cN � xN )

dcN
(7)

Note that these are consistent with the prices in (3).
We now have the following lemma on characterizing the

social optimum.
Lemma 1: The optimal solution of (6), denoted by c

o

N , is
computed from the following condition,

�p

f

z }| {
dC

DA

G

(L� cN )

dcN

����
cN=c

o

N

(8)

+

E
XN [pr]

z }| {
dE

XN

⇥
C

RT

G

(cN � xN )
⇤

dcN

�����
cN=c

o

N

= 0,

, p

f = E
XN [pr] . (9)

The proof of Lemma 1 follows directly from the optimality
condition of (6).

Remark 2: An instructive interpretation of Lemma 1 is as
follows. Consider an ISO deciding the total commitment cN
on behalf of the RPPs: The socially optimal total commitment
c

o

N equalizes the DA market clearing price and the expected
RT market clearing price.

While the social optimum can be achieved using Lemma
1, it however requires the ISO to a) know key probabilistic
forecast information from the RPPs, and b) performs central-
ized optimization and control. Instead, in practice, it is very
appealing to use market mechanisms to integrate the RPPs into
the power system as discussed in Section II-A, which is the
focus of the next section.

IV. COMPETITIVE MARKET WITH RENEWABLE POWER
PRODUCERS

In this section, we analyze the two-settlement market mech-
anism as described in Section II-A, where each RPP submits a
DA firm power commitment, and takes responsibility for any
RT deviation from it. From the RT realized profit of RPP i

(4), its DA expected profit is given by

⇡

i

= E
XN [P

i

] = p

f (cN ) · c
i

� c

i

· E
XN [pr (cN � xN )]

+ E
XN [pr (cN � xN ) · x

i

] (10)

When participating in the two-settlement market, each RPP
has total freedom in choosing its DA commitment c

i

, and thus
a strategic RPP would like to choose one that maximizes its
expected profit ⇡

i

(cf. (10)). The strategic behaviors of the
RPPs can thus be studied in a non-cooperative game theoretic
framework as in the remainder of the section.

A. Nash Equilibrium Achieves Asymptotic Social Efficiency

We study the following non-cooperative game modeling the
strategic behaviors of the RPPs in the two-settlement market,
which we term the commitment game:

1) Players: the set of RPPs participating in the DA-RT
market: N = {1, . . . , N}.

2) Strategies: the firm power commitments made by the
RPPs, {c

i

}.
3) Payoffs: Each RPP i’s payoff is its expected profit (10).
We now state the main result of this paper.
Theorem 1: Social efficiency is achieved at each pure Nash

equilibrium (NE) of the commitment game as N �! 1.
Proof: Suppose the strategy profile

�
c

?,ne

1 , · · · , c?,ne
N

 
is

a pure NE of the commitment game, and c

?,ne

N =
P

N

i=1 c
?,ne

i

is
the total commitment of the RPPs at this pure NE. Since each
RPP’s expected profit is maximized at this pure NE, {c?,ne

i

}
must satisfy the following necessary best response conditions:

d⇡

i

dc

i

���
(c1,··· ,cN )=(c?,ne

1 ,··· ,c?,ne

N

)
= 0, 8i 2 N . (11)

Summing up the N equations above, we have
X

i2N

d⇡

i

dc

i

���
(c1,··· ,cN )=(c?,ne

1 ,··· ,c?,ne

N

)
= 0. (12)



Proposed Market Mechanism

• Information collection
– At DA, each RPP i submits a “commitment”, ci, to the ISO.
–

• System operation
– At DA, the ISO takes the commitment as “firm”, and 

dispatch the DA generators:                        .

– At RT, the renewables are realized, the RT generators are 
dispatched to balance the system:                         . 

• Payment allocation to RPPs according to the DA and RT Prices

– A price-making environment
10

c) Upon receiving these information, the ISO per-
forms an optimal dispatch of the DA conventional
generators to meet the load.

2) In the RT market,
a) The RT conventional generators submit their bid-

ding curves to the ISO.
b) The RPPs’ actual generation are realized.
c) The ISO computes the remaining difference be-

tween the total generation and load, and performs
an optimal dispatch of the RT conventional gener-
ators to resolve the difference.

Before specifying the details of the above steps, we list the
assumptions made in this paper as follows:

1) Transmission network constraints are not considered.
This is equivalent to considering all the generators, RPPs
and loads located at a single node.

2) The conventional generators submit their generation cost
functions truthfully. In other words, we do not consider
market power issues among the conventional generators.

3) The RPPs have zero variable cost in their generation.
With the above Assumption 1) and 2), it is convenient

to consider that the market has just a single equivalent
aggregate DA conventional generator and a single equivalent
aggregate RT conventional generator for the ISO to dispatch.
In addition, we consider N RPPs in the system. Our focus
is to understand the strategic behaviors of the RPPs and the
ensuing consequences on the social welfare. The notations of
the relevant variables are defined as follows:

q

DA

G

, q

RT

G

Power dispatch of the (aggregate)
DA and RT conventional generators.

C

DA

G

(·), Cost functions of the (aggregate)
C

RT

G

(·) DA and RT conventional generators.
L Total (inelastic) load.
c

i

Firm power commitment submitted by RPP i.
cN The quantity equal to

P
N

i=1 ci.
X

i

, x

i

The random variable modeling the power
output of RPP i, and the realization of it.

XN , xN The random variable modeling the total
output of the RPPs, and the realization of it.

p

f

, p

r DA, RT market clearing prices.
P
i

,⇡

i

The realized and expected profit of RPP i.

We now specify the details of how the ISO and the RPPs
interact in the two-settlement market mechanism.
DA and RT market clearing: First, we consider that every
RPP takes responsibility of its RT deviation from its DA
firm power commitment. In particular, when performing DA
dispatch of the (aggregate) conventional generator, the ISO
takes the RPPs’ commitments as firm ones, and does not worry
about any possible RT deviations from them. As a result, the
ISO’s DA dispatch is simply given by

q

DA

G

= L� cN . (1)

In the RT market, the only sources of a possible difference
between the total generation and load are the deviations of the

Scenario	3

Scenario	2

Scenario	1
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Fig. 1. Three scenarios of the RT generation cost function CRT
G (·).

RPP’s realized generation from their DA commitments. The
ISO then dispatch the RT conventional generator to resolve
the difference. The ISO’s RT dispatch is thus given by

q

RT

G

= cN � xN . (2)

With (1) and (2), the DA and RT market clearing prices
are the marginal costs for producing one more unit of power
using the DA and RT conventional generators, respectively:

p

f =
dC

DA

G

(q)

dq

����
q

DA

G

, p

r =
dC

RT

G

(q)

dq

����
q

RT

G

. (3)

Clearly, the DA and RT market clearing prices depend on the
RPPs’ decisions on {c

i

} and their realized generation {x
i

},
resulting in a price making two-settlement market.

Remark 1: In general, there are three possible shapes of
C

RT

G

(·), as depicted in Fig. 1: a) In Scenario 1, RPPs can
sell their excess power in the RT market for profits; b) In
Scenario 2, RPPs cannot sell excess power for profits, but can
curtail them at no cost; c) In Scenario 3, RPPs are penalized
for having excess power, and thus both positive and negative
imbalances are penalized. We note that the results of this paper
are applicable to all possible scenarios.
RPPs’ profits: Last but not least, as the RPPs take respon-
sibility of their own deviations from their DA commitments,
they pay (or possibly get paid) for the dispatch of the RT
conventional generator (cf. (2)) in full. Specifically, the profit
earned by an RPP i in this two-settlement market is given by

P
i

= p

f (cN ) · c
i

� p

r(cN � xN ) · (c
i

� x

i

), (4)

where the DA and RT prices are functions of cN and cN�xN ,
respectively.

B. Benchmark: The Social Optimization Problem

We now turn to a fundamental question that precedes the
analysis of the two-settlement market, that is, what is the
socially optimal two-stage dispatch? Specifically, in the ideal
case where the ISO has the information and control of all
the players (i.e., DA and RT conventional generators, and
RPPs,) we are interested in the DA and RT dispatch that
minimizes the expected overall generation cost to meet the

c) Upon receiving these information, the ISO per-
forms an optimal dispatch of the DA conventional
generators to meet the load.

2) In the RT market,
a) The RT conventional generators submit their bid-

ding curves to the ISO.
b) The RPPs’ actual generation are realized.
c) The ISO computes the remaining difference be-

tween the total generation and load, and performs
an optimal dispatch of the RT conventional gener-
ators to resolve the difference.

Before specifying the details of the above steps, we list the
assumptions made in this paper as follows:

1) Transmission network constraints are not considered.
This is equivalent to considering all the generators, RPPs
and loads located at a single node.

2) The conventional generators submit their generation cost
functions truthfully. In other words, we do not consider
market power issues among the conventional generators.

3) The RPPs have zero variable cost in their generation.
With the above Assumption 1) and 2), it is convenient

to consider that the market has just a single equivalent
aggregate DA conventional generator and a single equivalent
aggregate RT conventional generator for the ISO to dispatch.
In addition, we consider N RPPs in the system. Our focus
is to understand the strategic behaviors of the RPPs and the
ensuing consequences on the social welfare. The notations of
the relevant variables are defined as follows:

q

DA

G

, q

RT

G

Power dispatch of the (aggregate)
DA and RT conventional generators.

C

DA

G

(·), Cost functions of the (aggregate)
C

RT

G

(·) DA and RT conventional generators.
L Total (inelastic) load.
c

i

Firm power commitment submitted by RPP i.
cN The quantity equal to

P
N

i=1 ci.
X

i

, x

i

The random variable modeling the power
output of RPP i, and the realization of it.

XN , xN The random variable modeling the total
output of the RPPs, and the realization of it.

p

f

, p

r DA, RT market clearing prices.
P
i

,⇡

i

The realized and expected profit of RPP i.

We now specify the details of how the ISO and the RPPs
interact in the two-settlement market mechanism.
DA and RT market clearing: First, we consider that every
RPP takes responsibility of its RT deviation from its DA
firm power commitment. In particular, when performing DA
dispatch of the (aggregate) conventional generator, the ISO
takes the RPPs’ commitments as firm ones, and does not worry
about any possible RT deviations from them. As a result, the
ISO’s DA dispatch is simply given by

q

DA

G

= L� cN . (1)

In the RT market, the only sources of a possible difference
between the total generation and load are the deviations of the
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Fig. 1. Three scenarios of the RT generation cost function CRT
G (·).

RPP’s realized generation from their DA commitments. The
ISO then dispatch the RT conventional generator to resolve
the difference. The ISO’s RT dispatch is thus given by

q

RT

G

= cN � xN . (2)

With (1) and (2), the DA and RT market clearing prices
are the marginal costs for producing one more unit of power
using the DA and RT conventional generators, respectively:
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dq
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, p

r =
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G

(q)

dq
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. (3)

Clearly, the DA and RT market clearing prices depend on the
RPPs’ decisions on {c

i

} and their realized generation {x
i

},
resulting in a price making two-settlement market.

Remark 1: In general, there are three possible shapes of
C

RT

G

(·), as depicted in Fig. 1: a) In Scenario 1, RPPs can
sell their excess power in the RT market for profits; b) In
Scenario 2, RPPs cannot sell excess power for profits, but can
curtail them at no cost; c) In Scenario 3, RPPs are penalized
for having excess power, and thus both positive and negative
imbalances are penalized. We note that the results of this paper
are applicable to all possible scenarios.
RPPs’ profits: Last but not least, as the RPPs take respon-
sibility of their own deviations from their DA commitments,
they pay (or possibly get paid) for the dispatch of the RT
conventional generator (cf. (2)) in full. Specifically, the profit
earned by an RPP i in this two-settlement market is given by

P
i

= p

f (cN ) · c
i

� p

r(cN � xN ) · (c
i

� x

i

), (4)

where the DA and RT prices are functions of cN and cN�xN ,
respectively.

B. Benchmark: The Social Optimization Problem

We now turn to a fundamental question that precedes the
analysis of the two-settlement market, that is, what is the
socially optimal two-stage dispatch? Specifically, in the ideal
case where the ISO has the information and control of all
the players (i.e., DA and RT conventional generators, and
RPPs,) we are interested in the DA and RT dispatch that
minimizes the expected overall generation cost to meet the

c) Upon receiving these information, the ISO per-
forms an optimal dispatch of the DA conventional
generators to meet the load.

2) In the RT market,
a) The RT conventional generators submit their bid-

ding curves to the ISO.
b) The RPPs’ actual generation are realized.
c) The ISO computes the remaining difference be-

tween the total generation and load, and performs
an optimal dispatch of the RT conventional gener-
ators to resolve the difference.

Before specifying the details of the above steps, we list the
assumptions made in this paper as follows:

1) Transmission network constraints are not considered.
This is equivalent to considering all the generators, RPPs
and loads located at a single node.

2) The conventional generators submit their generation cost
functions truthfully. In other words, we do not consider
market power issues among the conventional generators.

3) The RPPs have zero variable cost in their generation.
With the above Assumption 1) and 2), it is convenient

to consider that the market has just a single equivalent
aggregate DA conventional generator and a single equivalent
aggregate RT conventional generator for the ISO to dispatch.
In addition, we consider N RPPs in the system. Our focus
is to understand the strategic behaviors of the RPPs and the
ensuing consequences on the social welfare. The notations of
the relevant variables are defined as follows:

q

DA

G

, q

RT

G

Power dispatch of the (aggregate)
DA and RT conventional generators.

C

DA

G

(·), Cost functions of the (aggregate)
C

RT

G

(·) DA and RT conventional generators.
L Total (inelastic) load.
c

i

Firm power commitment submitted by RPP i.
cN The quantity equal to

P
N

i=1 ci.
X

i

, x

i

The random variable modeling the power
output of RPP i, and the realization of it.

XN , xN The random variable modeling the total
output of the RPPs, and the realization of it.

p

f

, p

r DA, RT market clearing prices.
P
i

,⇡

i

The realized and expected profit of RPP i.

We now specify the details of how the ISO and the RPPs
interact in the two-settlement market mechanism.
DA and RT market clearing: First, we consider that every
RPP takes responsibility of its RT deviation from its DA
firm power commitment. In particular, when performing DA
dispatch of the (aggregate) conventional generator, the ISO
takes the RPPs’ commitments as firm ones, and does not worry
about any possible RT deviations from them. As a result, the
ISO’s DA dispatch is simply given by

q

DA

G

= L� cN . (1)

In the RT market, the only sources of a possible difference
between the total generation and load are the deviations of the
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Fig. 1. Three scenarios of the RT generation cost function CRT
G (·).

RPP’s realized generation from their DA commitments. The
ISO then dispatch the RT conventional generator to resolve
the difference. The ISO’s RT dispatch is thus given by

q

RT

G

= cN � xN . (2)

With (1) and (2), the DA and RT market clearing prices
are the marginal costs for producing one more unit of power
using the DA and RT conventional generators, respectively:

p

f =
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DA

G

(q)

dq
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q

DA

G

, p

r =
dC

RT

G

(q)

dq

����
q

RT

G

. (3)

Clearly, the DA and RT market clearing prices depend on the
RPPs’ decisions on {c

i

} and their realized generation {x
i

},
resulting in a price making two-settlement market.

Remark 1: In general, there are three possible shapes of
C

RT

G

(·), as depicted in Fig. 1: a) In Scenario 1, RPPs can
sell their excess power in the RT market for profits; b) In
Scenario 2, RPPs cannot sell excess power for profits, but can
curtail them at no cost; c) In Scenario 3, RPPs are penalized
for having excess power, and thus both positive and negative
imbalances are penalized. We note that the results of this paper
are applicable to all possible scenarios.
RPPs’ profits: Last but not least, as the RPPs take respon-
sibility of their own deviations from their DA commitments,
they pay (or possibly get paid) for the dispatch of the RT
conventional generator (cf. (2)) in full. Specifically, the profit
earned by an RPP i in this two-settlement market is given by

P
i

= p

f (cN ) · c
i

� p

r(cN � xN ) · (c
i

� x

i

), (4)

where the DA and RT prices are functions of cN and cN�xN ,
respectively.

B. Benchmark: The Social Optimization Problem

We now turn to a fundamental question that precedes the
analysis of the two-settlement market, that is, what is the
socially optimal two-stage dispatch? Specifically, in the ideal
case where the ISO has the information and control of all
the players (i.e., DA and RT conventional generators, and
RPPs,) we are interested in the DA and RT dispatch that
minimizes the expected overall generation cost to meet the

Moreover, we have further investigated a similar simple mechanism for the general price-making sce-
nario, where the cost functions of the conventional generators can be any (differentiable) convex functions
[59]. As such, the overall system cost and the prices the RPPs face at DA and RT are characterized by:

C

DA
G

�
q

DA
G

�
+ EXN

⇥
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RT
G

�
q

RT
G

�⇤
, p

f =
dC

DA
G (q)

dq

����
qDA
G

, p

r =
dC

RT
G (q)

dq

����
qRT
G

, (3)

where C

DA
G and C

RT
G are the aggregate cost functions of the conventional generators at DA and RT, qDA

G and
q

RT
G are the dispatched amount of these generators, the prices are determined by the marginal costs of these

generators, and q

RT
G = L � q

DA
G � xN to meet the load at RT given the renewables. We have shown that,

a) the simple mechanism induces a unique Nash Equilibrium among the RPPs, b) there is in general a gap
between the social cost at NE and that at the social optimum (i.e., the minimum overall system cost with
the optimal dispatch of the conventional generators), and a closed-form expression for this gap is found,
and c) as the number of RPPs increases, the gap between the NE and the social optimum diminishes.

Fairness, market power, transaction costs, and simplicity of design Our preliminary result for the
price making environments offers key insights in predicting market outcomes in the real-world, and opens
up many interesting research directions. First, while asymptotic social efficiency is achieved at the market
equilibrium, the fairness of the cost/payment allocation to the RPPs at equilibria needs to be studied, in
particular in conjunction with the proposed fair cost attribution study in Section 3.2.1. Furthermore, our
preliminary result provides a rigorous characterization of the market power of each RPP in a price making
environment. The RPPs’ desire of gaining more market power (and thus earning higher expected payoffs)
would incentivize them to merge together, leading to fewer number of RPPs. This however moves the entire
system/market further away from social efficiency, as the gap to efficiency is a strictly decreasing function of
the number of RPPs [59]. On the other hand, many other factors in practice would naturally prevent having
an arbitrarily large number of RPPs in a market. Such concerns include transaction costs, namely, various
types of overhead for including an RPP in a market. Indeed, in many existing wholesale power markets,
the participants need to be of sufficient sizes (e.g., aggregators of DERs may participate in certain ancillary
service markets, but not individual DERs). We will investigate the price making environment with various
cost models that capture real-world transaction costs. Three questions will be answered: a) From a social
planner’s perspective, how to achieve social efficiency for a power system with renewables and transaction
costs? b) How can we design the mechanism of integrating RPPs so that new market equilibria would be
close to the social optimum? c) With market-power-seeking behaviors from RPPs, what is the ensuing cost
to social efficiency, and how can we design rules of the market/mechanism to reduce such cost? Last but
not least, we will investigate indirect mechanism design for more general settings with multiple (more than
two) time scales, in conjunction with the cost attribution study for multiple time scales in Section 3.2.1.

In general, designing indirect mechanisms vastly opens up possibilities for practically achieving efficiency
and fair cost attribution for integrating renewable energies. We will explore an overarching tradeoff be-
tween the simplicity of the mechanism and the hardness of its analysis: direct mechanisms are hard to
implement, but conceptually easier to analyze; indirect mechanisms typically have simplicity as a design
goal, but are much more involved to analyze. In pursuing mechanisms’ practicality, we will investigate
mechanisms that are easy to implement, and how they perform towards our design goals: predictable outcome,
efficiency, and fair cost attribution. For example, in our preliminary results above, we have focused on very
simple information collection and dispatch steps: the operator just elicits one number from each RPP, and
simply sums up all the numbers as the total DA commitment of all the RPPs. A major advantage of having
simplicity as a guiding design principle is the broad applicability of the mechanisms. In particular, a mecha-
nism can be developed for simplified settings, and then easily transplantable to scenarios that do not make
simplifying assumptions. This moreover enables us to start with first principles to come up with simple
mechanism designs, and gradually move towards more complex settings with continuous adjustments.

3.3 Thrust 2: Fair Cost Attribution to Variability of Renewables
Variability of renewables, in particular at short time scales, is another major concern that are costly to com-
pensate for in power systems. Indeed, as the time scales become shorter (e.g., minutes, or even seconds),
we typically rely on standby reserves (e.g., fast generators, energy storage, and demand response) to absorb

8



Benefits for the ISO

• ISO’s dispatch problem is much simpler.

– The uncertainty of renewables are hidden from the ISO, but 
taken on by the RPPs. 

• ISO only elicits one number, ci, from each RPP.  
– Very simple to implement. 

11

c) Upon receiving these information, the ISO per-
forms an optimal dispatch of the DA conventional
generators to meet the load.

2) In the RT market,
a) The RT conventional generators submit their bid-

ding curves to the ISO.
b) The RPPs’ actual generation are realized.
c) The ISO computes the remaining difference be-

tween the total generation and load, and performs
an optimal dispatch of the RT conventional gener-
ators to resolve the difference.

Before specifying the details of the above steps, we list the
assumptions made in this paper as follows:

1) Transmission network constraints are not considered.
This is equivalent to considering all the generators, RPPs
and loads located at a single node.

2) The conventional generators submit their generation cost
functions truthfully. In other words, we do not consider
market power issues among the conventional generators.

3) The RPPs have zero variable cost in their generation.
With the above Assumption 1) and 2), it is convenient

to consider that the market has just a single equivalent
aggregate DA conventional generator and a single equivalent
aggregate RT conventional generator for the ISO to dispatch.
In addition, we consider N RPPs in the system. Our focus
is to understand the strategic behaviors of the RPPs and the
ensuing consequences on the social welfare. The notations of
the relevant variables are defined as follows:

q

DA

G

, q

RT

G

Power dispatch of the (aggregate)
DA and RT conventional generators.

C

DA

G

(·), Cost functions of the (aggregate)
C

RT

G

(·) DA and RT conventional generators.
L Total (inelastic) load.
c

i

Firm power commitment submitted by RPP i.
cN The quantity equal to

P
N

i=1 ci.
X

i

, x

i

The random variable modeling the power
output of RPP i, and the realization of it.

XN , xN The random variable modeling the total
output of the RPPs, and the realization of it.

p

f

, p

r DA, RT market clearing prices.
P
i

,⇡

i

The realized and expected profit of RPP i.

We now specify the details of how the ISO and the RPPs
interact in the two-settlement market mechanism.
DA and RT market clearing: First, we consider that every
RPP takes responsibility of its RT deviation from its DA
firm power commitment. In particular, when performing DA
dispatch of the (aggregate) conventional generator, the ISO
takes the RPPs’ commitments as firm ones, and does not worry
about any possible RT deviations from them. As a result, the
ISO’s DA dispatch is simply given by

q

DA

G

= L� cN . (1)

In the RT market, the only sources of a possible difference
between the total generation and load are the deviations of the
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Fig. 1. Three scenarios of the RT generation cost function CRT
G (·).

RPP’s realized generation from their DA commitments. The
ISO then dispatch the RT conventional generator to resolve
the difference. The ISO’s RT dispatch is thus given by

q

RT

G

= cN � xN . (2)

With (1) and (2), the DA and RT market clearing prices
are the marginal costs for producing one more unit of power
using the DA and RT conventional generators, respectively:

p

f =
dC
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G

(q)

dq

����
q

DA

G

, p

r =
dC

RT

G

(q)

dq

����
q

RT

G

. (3)

Clearly, the DA and RT market clearing prices depend on the
RPPs’ decisions on {c

i

} and their realized generation {x
i

},
resulting in a price making two-settlement market.

Remark 1: In general, there are three possible shapes of
C

RT

G

(·), as depicted in Fig. 1: a) In Scenario 1, RPPs can
sell their excess power in the RT market for profits; b) In
Scenario 2, RPPs cannot sell excess power for profits, but can
curtail them at no cost; c) In Scenario 3, RPPs are penalized
for having excess power, and thus both positive and negative
imbalances are penalized. We note that the results of this paper
are applicable to all possible scenarios.
RPPs’ profits: Last but not least, as the RPPs take respon-
sibility of their own deviations from their DA commitments,
they pay (or possibly get paid) for the dispatch of the RT
conventional generator (cf. (2)) in full. Specifically, the profit
earned by an RPP i in this two-settlement market is given by

P
i

= p

f (cN ) · c
i

� p

r(cN � xN ) · (c
i

� x

i

), (4)

where the DA and RT prices are functions of cN and cN�xN ,
respectively.

B. Benchmark: The Social Optimization Problem

We now turn to a fundamental question that precedes the
analysis of the two-settlement market, that is, what is the
socially optimal two-stage dispatch? Specifically, in the ideal
case where the ISO has the information and control of all
the players (i.e., DA and RT conventional generators, and
RPPs,) we are interested in the DA and RT dispatch that
minimizes the expected overall generation cost to meet the

c) Upon receiving these information, the ISO per-
forms an optimal dispatch of the DA conventional
generators to meet the load.

2) In the RT market,
a) The RT conventional generators submit their bid-

ding curves to the ISO.
b) The RPPs’ actual generation are realized.
c) The ISO computes the remaining difference be-

tween the total generation and load, and performs
an optimal dispatch of the RT conventional gener-
ators to resolve the difference.

Before specifying the details of the above steps, we list the
assumptions made in this paper as follows:

1) Transmission network constraints are not considered.
This is equivalent to considering all the generators, RPPs
and loads located at a single node.

2) The conventional generators submit their generation cost
functions truthfully. In other words, we do not consider
market power issues among the conventional generators.

3) The RPPs have zero variable cost in their generation.
With the above Assumption 1) and 2), it is convenient

to consider that the market has just a single equivalent
aggregate DA conventional generator and a single equivalent
aggregate RT conventional generator for the ISO to dispatch.
In addition, we consider N RPPs in the system. Our focus
is to understand the strategic behaviors of the RPPs and the
ensuing consequences on the social welfare. The notations of
the relevant variables are defined as follows:

q

DA

G

, q

RT

G

Power dispatch of the (aggregate)
DA and RT conventional generators.

C

DA

G

(·), Cost functions of the (aggregate)
C

RT

G

(·) DA and RT conventional generators.
L Total (inelastic) load.
c

i

Firm power commitment submitted by RPP i.
cN The quantity equal to

P
N

i=1 ci.
X

i

, x

i

The random variable modeling the power
output of RPP i, and the realization of it.

XN , xN The random variable modeling the total
output of the RPPs, and the realization of it.

p

f

, p

r DA, RT market clearing prices.
P
i

,⇡

i

The realized and expected profit of RPP i.

We now specify the details of how the ISO and the RPPs
interact in the two-settlement market mechanism.
DA and RT market clearing: First, we consider that every
RPP takes responsibility of its RT deviation from its DA
firm power commitment. In particular, when performing DA
dispatch of the (aggregate) conventional generator, the ISO
takes the RPPs’ commitments as firm ones, and does not worry
about any possible RT deviations from them. As a result, the
ISO’s DA dispatch is simply given by

q

DA

G

= L� cN . (1)

In the RT market, the only sources of a possible difference
between the total generation and load are the deviations of the
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Fig. 1. Three scenarios of the RT generation cost function CRT
G (·).

RPP’s realized generation from their DA commitments. The
ISO then dispatch the RT conventional generator to resolve
the difference. The ISO’s RT dispatch is thus given by

q

RT

G

= cN � xN . (2)

With (1) and (2), the DA and RT market clearing prices
are the marginal costs for producing one more unit of power
using the DA and RT conventional generators, respectively:
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(q)

dq
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q

DA
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, p

r =
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G

(q)

dq

����
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. (3)

Clearly, the DA and RT market clearing prices depend on the
RPPs’ decisions on {c

i

} and their realized generation {x
i

},
resulting in a price making two-settlement market.

Remark 1: In general, there are three possible shapes of
C

RT

G

(·), as depicted in Fig. 1: a) In Scenario 1, RPPs can
sell their excess power in the RT market for profits; b) In
Scenario 2, RPPs cannot sell excess power for profits, but can
curtail them at no cost; c) In Scenario 3, RPPs are penalized
for having excess power, and thus both positive and negative
imbalances are penalized. We note that the results of this paper
are applicable to all possible scenarios.
RPPs’ profits: Last but not least, as the RPPs take respon-
sibility of their own deviations from their DA commitments,
they pay (or possibly get paid) for the dispatch of the RT
conventional generator (cf. (2)) in full. Specifically, the profit
earned by an RPP i in this two-settlement market is given by

P
i

= p

f (cN ) · c
i

� p

r(cN � xN ) · (c
i

� x

i

), (4)

where the DA and RT prices are functions of cN and cN�xN ,
respectively.

B. Benchmark: The Social Optimization Problem

We now turn to a fundamental question that precedes the
analysis of the two-settlement market, that is, what is the
socially optimal two-stage dispatch? Specifically, in the ideal
case where the ISO has the information and control of all
the players (i.e., DA and RT conventional generators, and
RPPs,) we are interested in the DA and RT dispatch that
minimizes the expected overall generation cost to meet the



Outcome of the Proposed Mechanism

• A Non-Cooperative Game of RPPs
– When submitting its DA commitment ci, a strategic RPP i will 

maximize its expected profit, given by

• The expected profit depends on others’ commitments, the 
conventional generators’ cost functions and production levels, 
and the joint distribution of the renewables. 

– The Game among the RPPs in the DA market
• Players: the N RPPs
• Strategies: Each RPP’s firm power commitment at DA
• Payoffs: Each RPP’s expected profit 
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load. Understanding the social optimum not only is important
in its own right, but also provides a benchmark against which
the performance of the market mechanism discussed in the
previous sub-section can be compared.

In the following sections, we will first analyze the social
optimum of the two-stage dispatch problem, and then analyze
the social efficiency of the competitive DA-RT market in
which RPPs take responsibility of their own deviations from
DA commitments.

III. SOCIAL OPTIMUM FOR TWO-STAGE DISPATCH

In solving the social optimization problem, the ISO is
assumed to know all the information about the conventional
generators and the RPPs, including the joint probability dis-
tribution of the RPPs’ generation {X

i

}. The goal of the ISO
is to minimize the expected overall cost of the system:

min
q

DA

G

C

DA

G

�
q

DA

G

�
+ E

XN

⇥
C

RT

G

�
L� q

DA

G

� xN
�⇤

, (5)

where xN =
P

N

i=1 xi

. Note that, the only free decision
variable for the ISO is the DA conventional generation dis-
patch q

DA

G

. The RT dispatch must always satisfy q

RT

G

=
L� q

DA

G

� xN to meet the load.
Now, even though there is no commitment from the RPPs

when studying the social optimum, we still can define an
auxiliary variable cN = L� q

DA

G

. This is for the convenience
of comparison later with the results in Section IV. Note that
this definition is consistent with (1). With a change of variable
with the so-defined cN , the social optimization problem (5) is
equivalent to the following,

min
cN

C

DA

G

(L� cN ) + E
XN

⇥
C

RT

G

(cN � xN )
⇤
. (6)

Furthermore, even though there is no market when studying
the social optimum, we still can also define the DA and RT
prices as follows, again using the change of variable with cN :

p

f = �dC

DA

G

(L� cN )

dcN
, p

r =
dC

RT

G

(cN � xN )

dcN
(7)

Note that these are consistent with the prices in (3).
We now have the following lemma on characterizing the

social optimum.
Lemma 1: The optimal solution of (6), denoted by c
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N , is
computed from the following condition,
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XN [pr] . (9)

The proof of Lemma 1 follows directly from the optimality
condition of (6).

Remark 2: An instructive interpretation of Lemma 1 is as
follows. Consider an ISO deciding the total commitment cN
on behalf of the RPPs: The socially optimal total commitment
c

o

N equalizes the DA market clearing price and the expected
RT market clearing price.

While the social optimum can be achieved using Lemma
1, it however requires the ISO to a) know key probabilistic
forecast information from the RPPs, and b) performs central-
ized optimization and control. Instead, in practice, it is very
appealing to use market mechanisms to integrate the RPPs into
the power system as discussed in Section II-A, which is the
focus of the next section.

IV. COMPETITIVE MARKET WITH RENEWABLE POWER
PRODUCERS

In this section, we analyze the two-settlement market mech-
anism as described in Section II-A, where each RPP submits a
DA firm power commitment, and takes responsibility for any
RT deviation from it. From the RT realized profit of RPP i

(4), its DA expected profit is given by

⇡

i

= E
XN [P

i

] = p

f (cN ) · c
i
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� x
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)]
(11)

When participating in the two-settlement market, each RPP
has total freedom in choosing its DA commitment c

i

, and thus
a strategic RPP would like to choose one that maximizes its
expected profit ⇡

i

(cf. (10)). The strategic behaviors of the
RPPs can thus be studied in a non-cooperative game theoretic
framework as in the remainder of the section.

A. Nash Equilibrium Achieves Asymptotic Social Efficiency

We study the following non-cooperative game modeling the
strategic behaviors of the RPPs in the two-settlement market,
which we term the commitment game:

1) Players: the set of RPPs participating in the DA-RT
market: N = {1, . . . , N}.

2) Strategies: the firm power commitments made by the
RPPs, {c

i

}.
3) Payoffs: Each RPP i’s payoff is its expected profit (10).
We now state the main result of this paper.
Theorem 1: Social efficiency is achieved at each pure Nash

equilibrium (NE) of the commitment game as N �! 1.
Proof: Suppose the strategy profile
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1 , · · · , c?,ne
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is

a pure NE of the commitment game, and c

?,ne

N =
P

N

i=1 c
?,ne

i

is
the total commitment of the RPPs at this pure NE. Since each
RPP’s expected profit is maximized at this pure NE, {c?,ne

i

}
must satisfy the following necessary best response conditions:

d⇡
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dc

i

���
(c1,··· ,cN )=(c?,ne

1 ,··· ,c?,ne

N

)
= 0, 8i 2 N . (12)



Outcome of the Proposed Mechanism (cont.)

• The outcome of the commitment game – Nash Equilibrium
– NE: a set of commitments c1, c2, …, cN, such that each ci

optimally solves its best response problem, simultaneously,

• Questions
– Does NE induces the optimal operation decisions by the ISO 

fully considering the RPPs’ uncertainties?                                   
In other words, is the NE “efficient”?
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load. Understanding the social optimum not only is important
in its own right, but also provides a benchmark against which
the performance of the market mechanism discussed in the
previous sub-section can be compared.

In the following sections, we will first analyze the social
optimum of the two-stage dispatch problem, and then analyze
the social efficiency of the competitive DA-RT market in
which RPPs take responsibility of their own deviations from
DA commitments.

III. SOCIAL OPTIMUM FOR TWO-STAGE DISPATCH

In solving the social optimization problem, the ISO is
assumed to know all the information about the conventional
generators and the RPPs, including the joint probability dis-
tribution of the RPPs’ generation {X

i

}. The goal of the ISO
is to minimize the expected overall cost of the system:
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⇥
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P
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variable for the ISO is the DA conventional generation dis-
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� xN to meet the load.
Now, even though there is no commitment from the RPPs

when studying the social optimum, we still can define an
auxiliary variable cN = L� q

DA

G

. This is for the convenience
of comparison later with the results in Section IV. Note that
this definition is consistent with (1). With a change of variable
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Furthermore, even though there is no market when studying
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prices as follows, again using the change of variable with cN :
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Note that these are consistent with the prices in (3).
We now have the following lemma on characterizing the

social optimum.
Lemma 1: The optimal solution of (6), denoted by c
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computed from the following condition,
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The proof of Lemma 1 follows directly from the optimality
condition of (6).

Remark 2: An instructive interpretation of Lemma 1 is as
follows. Consider an ISO deciding the total commitment cN
on behalf of the RPPs: The socially optimal total commitment
c

o

N equalizes the DA market clearing price and the expected
RT market clearing price.

While the social optimum can be achieved using Lemma
1, it however requires the ISO to a) know key probabilistic
forecast information from the RPPs, and b) performs central-
ized optimization and control. Instead, in practice, it is very
appealing to use market mechanisms to integrate the RPPs into
the power system as discussed in Section II-A, which is the
focus of the next section.

IV. COMPETITIVE MARKET WITH RENEWABLE POWER
PRODUCERS

In this section, we analyze the two-settlement market mech-
anism as described in Section II-A, where each RPP submits a
DA firm power commitment, and takes responsibility for any
RT deviation from it. From the RT realized profit of RPP i

(4), its DA expected profit is given by
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When participating in the two-settlement market, each RPP
has total freedom in choosing its DA commitment c

i

, and thus
a strategic RPP would like to choose one that maximizes its
expected profit ⇡

i

(cf. (10)). The strategic behaviors of the
RPPs can thus be studied in a non-cooperative game theoretic
framework as in the remainder of the section.

A. Nash Equilibrium Achieves Asymptotic Social Efficiency
We study the following non-cooperative game modeling the

strategic behaviors of the RPPs in the two-settlement market,
which we term the commitment game:

1) Players: the set of RPPs participating in the DA-RT
market: N = {1, . . . , N}.

2) Strategies: the firm power commitments made by the
RPPs, {c

i

}.
3) Payoffs: Each RPP i’s payoff is its expected profit (10).
We now state the main result of this paper.
Theorem 1: Social efficiency is achieved at each pure Nash

equilibrium (NE) of the commitment game as N �! 1.
Proof: Suppose the strategy profile
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is

a pure NE of the commitment game, and c
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N =
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i=1 c
?,ne

i

is
the total commitment of the RPPs at this pure NE. Since each
RPP’s expected profit is maximized at this pure NE, {c?,ne

i

}
must satisfy the following necessary best response conditions:
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Main Results (Uncongested)

• Theorem (Asymptotic Efficiency of Pure NE)
The social efficiency is achieved at any pure NE as                ,  

Moreover, the gap between the NE and the social optimum 
has a closed-form characterization, 
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are functions of cN and cN � xN given by,

p

f (cN ) =
dC

DA

G

(q)

dq

����
L�cN

= �dC

DA

G

(L� cN )

dcN
,

p

r (cN � xN ) =
dC

RT

G

(q)

dq

����
cN�xN

=
dC

RT

G

(cN � xN )

dcN
.

(2)

In other words, the prices are determined by the marginal
costs of the DA and RT conventional generators, which de-
pend on their actual levels of generation. We note that the
simple structure of this mechanism allows an ISO to easily
adopt it into the current DA-RT market.

3. ASYMPTOTIC SOCIAL EFFICIENCY

One of the main goals of designing any mechanism is to
maximize the social welfare, i.e., to achieve social efficiency.
Putting it in the context of our problem, efficiency means that
the resulting system cost from the outcome of the mechanism
would be the same as that with an omniscient ISO who opti-
mally dispatches the RPPs and conventional generators. We
term the system cost of the latter case socially optimal, and
use it as a benchmark against which we compare the outcome
of the proposed mechanism.

3.1. Benchmark: The Social Optimum

In this section, we solve the optimal dispatch of the RPPs and
conventional generators in the ideal case where an omniscient
ISO has all the information and controls all the players (i.e.,
the DA and RT conventional generators, and the RPPs). We
are interested in the DA and RT dispatches that minimize the
expected overall generation cost to meet the load. To find
the social optimum for such a two-stage dispatch problem, an
omniscient ISO knows the joint probability distribution of the
RPPs’ generation {X

i

}, and solves,

min
cN

C

DA

G

(L� cN ) + E
XN

⇥
C

RT

G

(cN � xN )
⇤
. (3)

Assuming C

DA

G

and C

RT

G

are convex functions, (3) is a con-
vex optimization problem. It can be shown that the optimal
solution of (3), denoted by c

o

N , is the solution to the equation,

p

f (coN ) = E
XN [pr (coN � xN )] . (4)

In other words, the socially optimal DA-RT dispatch equal-
izes the DA price and the expected RT price.

3.2. Competitive Market with Renewable Power Produc-
ers

Now, we analyze the competitive DA-RT market with strate-
gic RPPs under the proposed mechanism in the above price-
making DA-RT markets. In this abstract, we assume the con-
ventional generators are truthful. The case where both the

conventional generators and the RPPs are strategic is left for
future work. We calculate the pure Nash equilibrium (NE) for
this market, and compare it with the social optimum derived
in Section 3.1.

We first formulate the non-cooperative game among the
RPPs which we term the commitment game. The players of
this game are the RPPs participating in the DA-RT market.
The strategy/action of each RPP i is its firm DA commitment
c

i

. The expected payoff of an RPP i at DA is given by

⇡

i

= E [P
i

] = p

f (cN ) · c
i

� c

i

· E [pr (cN � xN )]

+ E [pr (cN � xN ) · x
i

] . (5)

A strategic RPP would select its DA commitment c
i

to max-
imize its expected payoff at DA (5). We are interested in the
pure NE that would result from the actions of the strategic
RPPs. We denote a pure NE of the commitment game by�
c

?,ne

1 , · · · , c?,ne
N

 
, and denote by c

?,ne

N =
P

i2N c

?,ne

i

the
total commitment of the RPPs at this pure NE.

Theorem 1: The social efficiency is achieved at any pure
NE as N ! 1, i.e.,

lim
N!1

c

?,ne

N = c

o

N , (6)

where c

o

N is the socially optimal solution derived from (4).
We then have the following lemma on the existence and

uniqueness of the pure NE.
Lemma 1: If the DA and RT conventional generators have

convex quadratic cost functions, there always exists a unique
pure NE among the RPPs.
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In other words, the prices are determined by the marginal
costs of the DA and RT conventional generators, which de-
pend on their actual levels of generation. We note that the
simple structure of this mechanism allows an ISO to easily
adopt it into the current DA-RT market.
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the resulting system cost from the outcome of the mechanism
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mally dispatches the RPPs and conventional generators. We
term the system cost of the latter case socially optimal, and
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In this section, we solve the optimal dispatch of the RPPs and
conventional generators in the ideal case where an omniscient
ISO has all the information and controls all the players (i.e.,
the DA and RT conventional generators, and the RPPs). We
are interested in the DA and RT dispatches that minimize the
expected overall generation cost to meet the load. To find
the social optimum for such a two-stage dispatch problem, an
omniscient ISO knows the joint probability distribution of the
RPPs’ generation {X

i

}, and solves,

min
cN

C

DA

G

(L� cN ) + E
XN

⇥
C

RT

G

(cN � xN )
⇤
. (3)

Assuming C

DA

G

and C

RT

G

are convex functions, (3) is a con-
vex optimization problem. It can be shown that the optimal
solution of (3), denoted by c

o

N , is the solution to the equation,

p

f (coN ) = E
XN [pr (coN � xN )] . (4)

In other words, the socially optimal DA-RT dispatch equal-
izes the DA price and the expected RT price.

3.2. Competitive Market with Renewable Power Produc-
ers

Now, we analyze the competitive DA-RT market with strate-
gic RPPs under the proposed mechanism in the above price-
making DA-RT markets. In this abstract, we assume the con-
ventional generators are truthful. The case where both the

conventional generators and the RPPs are strategic is left for
future work. We calculate the pure Nash equilibrium (NE) for
this market, and compare it with the social optimum derived
in Section 3.1.

We first formulate the non-cooperative game among the
RPPs which we term the commitment game. The players of
this game are the RPPs participating in the DA-RT market.
The strategy/action of each RPP i is its firm DA commitment
c

i

. The expected payoff of an RPP i at DA is given by

⇡

i

= E [P
i

] = p

f (cN ) · c
i

� c

i

· E [pr (cN � xN )]

+ E [pr (cN � xN ) · x
i

] . (5)

A strategic RPP would select its DA commitment c
i

to max-
imize its expected payoff at DA (5). We are interested in the
pure NE that would result from the actions of the strategic
RPPs. We denote a pure NE of the commitment game by�
c

?,ne

1 , · · · , c?,ne
N

 
, and denote by c

?,ne

N =
P

i2N c

?,ne

i

the
total commitment of the RPPs at this pure NE.

Theorem 1: The social efficiency is achieved at any pure
NE as N ! 1, i.e.,

lim
N!1

c

?,ne

N = c

o

N , (6)

where c

o

N is the socially optimal solution derived from (4).
We then have the following lemma on the existence and

uniqueness of the pure NE.
Lemma 1: If the DA and RT conventional generators have

convex quadratic cost functions, there always exists a unique
pure NE among the RPPs.

4. REFERENCES

[1] E.Y. Bitar, R. Rajagopal, P.P. Khargonekar, K. Poolla, and
P. Varaiya, “Bringing wind energy to market,” IEEE
Transactions on Power Systems, vol. 27, no. 3, pp. 1225–
1235, 2012.

[2] A. Nayyar, K. Poolla, and P. Varaiya, “A statistically
robust payment sharing mechanism for an aggregate of
renewable energy producers,” Proc. European Control
Conference (ECC), pp. 3025–3031, 2013.

[3] W. Lin and E. Bitar, “Forward electricity markets with
uncertain supply: Cost sharing and efficiency loss,” Proc.
IEEE 53rd Conference on Decision and Control (CDC),
pp. 1707–1713, 2014.

[4] Y. Zhao, J. Qin, R. Rajagopal, A. Goldsmith, and H. V.
Poor, “Wind aggregation via risky power markets,” IEEE
Transactions on Power Systems, vol. 30, no. 3, pp. 1571–
1581, May 2015.

[5] H. Khazaei and Y. Zhao, “Indirect mechanism design for
efficient and stable renewable energy aggregation,” IEEE
Transactions on Power Systems, to appear.

Summing up the N equations above, we have
X

i2N

d⇡

i

dc

i

���
(c1,··· ,cN )=

(

c

?,ne

1 ,··· ,c?,ne

N

)

= 0. (14)

With some algebra, (14) simplifies to the following condition:

(N � 1) ·
✓
p

f

�
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?,ne

N
�
� E

XN

⇥
p

r

�
c

?,ne

N � xN
�⇤◆

+

dE
XN [PN ]

dcN

����
c

?,ne

N

= 0, (15)

where PN , p

f

cN � p

r

(cN � xN ) · (cN � xN ), which is the
total profit of the RPPs. As a result, when N > 1,

p

f

�
c

?,ne

N
�
� E

XN

⇥
p

r

�
c

?,ne

N � xN
�⇤

= �

dE
XN [PN ]
dcN

���
c

?,ne

N

N � 1

,

(16)

and the right hand side of (16) converges to zero as N ! 1
(under mild technical conditions). Therefore, as the number
of RPPs goes to infinity, the social efficiency condition (9)
is achieved, meaning that the dispatch of the DA and RT
conventional generators achieves the minimum overall cost in
the system.

Remark 3 (Social Efficiency-RPPs’ Profit Tradeoff): The
result from Theorem 1, in particular (15), has a very interesting
and intuitive interpretation. As the number of RPPs vary, the
NE of the market makes a tradeoff between achieving social
efficiency (by equalling the DA price and the expected RT
price) and maximizing the RPPs’ total expected profit (by
setting dE

XN [PN ]
dcN

|
c

?,ne

N
= 0). For the case of only one RPP, i.e.,

N = 1, the NE maximizes the expected profit of that RPP. As
the number of RPPs increases, the NE of the market moves
from generating the maximum expected total profit for the
RPPs to the social optimum. As N ! 1,

�
p

f � E
XN [p

r

]

�
!

0, and social efficiency is achieved asymptotically (cf. (9)).

B. Discussion

We further make the following observations from the main
result presented above.

• Centralized Stochastic Optimization Not Needed: With
a simple design of the two-settlement market mechanism
that integrates RPPs in a competitive fashion, social
efficiency is achieved asymptotically. This is without
requiring a central decision making process by the ISO
for the RPPs, which would involve a) gathering neces-
sary information from the RPPs, and b) making optimal
dispatch decisions using stochastic optimization (cf. (5)).

• Market Power of RPPs: The tradeoff described in
Remark 3 in fact offers an interesting characterization of
the market power of the RPPs in a competitive market.
As an extreme case, consider all the RPPs are aggregated
as one giant RPP and participate in the two-settlement
market. Then, the NE of the market reduces to the
profit maximization strategy of the single aggregate RPP,
solved by (15) with N = 1. This extreme case is when

the RPPs has the maximum market power, due to their
full aggregation. As the number of RPPs increases, the
difference between the DA market price and the expected
RT market price decreases and converges to zero. This
represents decreasing market power of the RPPs. When
N ! 1, RPPs do not have market power at all, and the
market becomes socially efficient.

V. SIMULATION

In this section, we conduct simulation studies to demonstrate
the main results in the previous sections. We use quadratic
functions to model the (aggregate) cost functions of the
conventional generators in the DA and RT markets as follows:
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Accordingly, with q

DA

G

= L � cN and q

RT

G

= cN � xN (cf.
(1), (2)), the DA and RT market prices become (cf. (3) and
(7))
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The socially optimal total commitment of the RPPs c

o

N (cf.
(8)) and the total commitment at the NE of the market c?,neN
(cf. (15)) have closed form expressions as follows:
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where µN , E[XN ], and
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To measure the social welfare, the expected overall system
cost is calculated as C

DA

G

+ E
XN

⇥
C

RT

G

⇤
.

We employ the following parameters for the simulations.

↵

G

�
$/(MWh)

2
�

�

G

($/(MWh))

DA 0.01 15
RT 0.02 30

We simulate with all the RPPs’ generation being inde-
pendent and identically distributed (IID) Gaussian random
variables, X

i

⇠ N

�
µ,�

2
�
, 8i 2 N . Consequently, XN =P

i2N X

i

⇠ N

�
µN ,�

2
N
�
, where µN = N · µ, and �N =p

N · �. Throughout all the simulations, we consider a fixed
(aggregate) expectation and (aggregate) standard deviation of
the RPPs’ total generation XN , with µN = 500MW , and
�N = 30MW . The simulated mean and variance of each
individual RPP would thus depend on the number of RPPs
N . For example, if there are N = 100 RPPs, then each of
them would have µ

i

=

µN
N

= 5MW and �

i

=

�Np
N

= 3MW .
The total load is set to be 1000MW .



Remarks

• To compute the NE solution, each RPP i only needs the two-
dimensional joint pdf of Xi and XN, not the joint pdf of all RPPs.

• The mechanism offers a justified way for paying the RPPs. 

c) Upon receiving these information, the ISO per-
forms an optimal dispatch of the DA conventional
generators to meet the load.

2) In the RT market,
a) The RT conventional generators submit their bid-

ding curves to the ISO.
b) The RPPs’ actual generation are realized.
c) The ISO computes the remaining difference be-

tween the total generation and load, and performs
an optimal dispatch of the RT conventional gener-
ators to resolve the difference.

Before specifying the details of the above steps, we list the
assumptions made in this paper as follows:

1) Transmission network constraints are not considered.
This is equivalent to considering all the generators, RPPs
and loads located at a single node.

2) The conventional generators submit their generation cost
functions truthfully. In other words, we do not consider
market power issues among the conventional generators.

3) The RPPs have zero variable cost in their generation.
With the above Assumption 1) and 2), it is convenient

to consider that the market has just a single equivalent
aggregate DA conventional generator and a single equivalent
aggregate RT conventional generator for the ISO to dispatch.
In addition, we consider N RPPs in the system. Our focus
is to understand the strategic behaviors of the RPPs and the
ensuing consequences on the social welfare. The notations of
the relevant variables are defined as follows:

q

DA

G

, q

RT

G

Power dispatch of the (aggregate)
DA and RT conventional generators.

C

DA

G

(·), Cost functions of the (aggregate)
C

RT

G

(·) DA and RT conventional generators.
L Total (inelastic) load.
c

i

Firm power commitment submitted by RPP i.
cN The quantity equal to

P
N

i=1 ci.
X

i

, x

i

The random variable modeling the power
output of RPP i, and the realization of it.

XN , xN The random variable modeling the total
output of the RPPs, and the realization of it.

p

f

, p

r DA, RT market clearing prices.
P
i

,⇡

i

The realized and expected profit of RPP i.

We now specify the details of how the ISO and the RPPs
interact in the two-settlement market mechanism.
DA and RT market clearing: First, we consider that every
RPP takes responsibility of its RT deviation from its DA
firm power commitment. In particular, when performing DA
dispatch of the (aggregate) conventional generator, the ISO
takes the RPPs’ commitments as firm ones, and does not worry
about any possible RT deviations from them. As a result, the
ISO’s DA dispatch is simply given by

q

DA

G

= L� cN . (1)

In the RT market, the only sources of a possible difference
between the total generation and load are the deviations of the

Scenario	3

Scenario	2

Scenario	1

!"#$

%& − (&0

Fig. 1. Three scenarios of the RT generation cost function CRT
G (·).

RPP’s realized generation from their DA commitments. The
ISO then dispatch the RT conventional generator to resolve
the difference. The ISO’s RT dispatch is thus given by

q

RT

G

= cN � xN . (2)

With (1) and (2), the DA and RT market clearing prices
are the marginal costs for producing one more unit of power
using the DA and RT conventional generators, respectively:

p

f

=

dC

DA

G

(q)

dq

����
q

DA

G

, p

r

=

dC

RT

G

(q)

dq

����
q

RT

G

. (3)

Clearly, the DA and RT market clearing prices depend on the
RPPs’ decisions on {c

i

} and their realized generation {x
i

},
resulting in a price making two-settlement market.

Remark 1: In general, there are three possible shapes of
C

RT

G

(·), as depicted in Fig. 1: a) In Scenario 1, RPPs can
sell their excess power in the RT market for profits; b) In
Scenario 2, RPPs cannot sell excess power for profits, but can
curtail them at no cost; c) In Scenario 3, RPPs are penalized
for having excess power, and thus both positive and negative
imbalances are penalized. We note that the results of this paper
are applicable to all possible scenarios.
RPPs’ profits: Last but not least, as the RPPs take respon-
sibility of their own deviations from their DA commitments,
they pay (or possibly get paid) for the dispatch of the RT
conventional generator (cf. (2)) in full. Specifically, the profit
earned by an RPP i in this two-settlement market is given by

P
i

= p

f

(cN ) · c
i

� p

r

(cN � xN ) · (c
i

� x

i

), (4)

where the DA and RT prices are functions of cN and cN�xN ,
respectively.

P
i

= p

f

(c

ne

N ) · cne
i

� p

r

(c

ne

N � xN ) · (cne
i

� x

i

), (5)

B. Benchmark: The Social Optimization Problem

We now turn to a fundamental question that precedes the
analysis of the two-settlement market, that is, what is the
socially optimal two-stage dispatch? Specifically, in the ideal
case where the ISO has the information and control of all



Numerical Experiments 

• Simulation setting
– Generators’ parameters

– Renewables’ parameters
• For a variety of N, consider N i.i.d RPPs. 

• Consider a fixed expectation (500MW) and standard deviation 
(30MW) for the total renewable generation.
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RPP’s expected profit is maximized at this pure NE, {c?,ne
i

}
must satisfy the following necessary best response conditions:

d⇡

i

dc

i

���
(c1,··· ,cN )=

(

c

?,ne

1 ,··· ,c?,ne

N

)

= 0, 8i 2 N . (14)

Summing up the N equations above, we have
X

i2N

d⇡

i

dc

i

���
(c1,··· ,cN )=

(

c

?,ne

1 ,··· ,c?,ne

N

)

= 0. (15)

With some algebra, (14) simplifies to the following condition:

(N � 1) ·
✓
p

f

�
c

?,ne

N
�
� E

XN

⇥
p

r

�
c

?,ne

N � xN
�⇤◆

+

dE
XN [PN ]

dcN

����
c

?,ne

N

= 0, (16)

where PN , p

f

cN � p

r

(cN � xN ) · (cN � xN ), which is the
total profit of the RPPs. As a result, when N > 1,

p

f

�
c

?,ne

N
�
� E

XN

⇥
p

r

�
c

?,ne

N � xN
�⇤

= �

dE
XN [PN ]
dcN

���
c

?,ne

N

N � 1

,

(17)

and the right hand side of (16) converges to zero as N ! 1
(under mild technical conditions). Therefore, as the number
of RPPs goes to infinity, the social efficiency condition (9)
is achieved, meaning that the dispatch of the DA and RT
conventional generators achieves the minimum overall cost in
the system.

Remark 3 (Social Efficiency-RPPs’ Profit Tradeoff): The
result from Theorem 1, in particular (15), has a very interesting
and intuitive interpretation. As the number of RPPs vary, the
NE of the market makes a tradeoff between achieving social
efficiency (by equalling the DA price and the expected RT
price) and maximizing the RPPs’ total expected profit (by
setting dE

XN [PN ]
dcN

|
c

?,ne

N
= 0). For the case of only one RPP, i.e.,

N = 1, the NE maximizes the expected profit of that RPP. As
the number of RPPs increases, the NE of the market moves
from generating the maximum expected total profit for the
RPPs to the social optimum. As N ! 1,

�
p

f � E
XN [p

r

]

�
!

0, and social efficiency is achieved asymptotically (cf. (9)).

B. Discussion

We further make the following observations from the main
result presented above.

• Centralized Stochastic Optimization Not Needed: With
a simple design of the two-settlement market mechanism
that integrates RPPs in a competitive fashion, social
efficiency is achieved asymptotically. This is without
requiring a central decision making process by the ISO
for the RPPs, which would involve a) gathering neces-
sary information from the RPPs, and b) making optimal
dispatch decisions using stochastic optimization (cf. (5)).

• Market Power of RPPs: The tradeoff described in
Remark 3 in fact offers an interesting characterization of
the market power of the RPPs in a competitive market.
As an extreme case, consider all the RPPs are aggregated

as one giant RPP and participate in the two-settlement
market. Then, the NE of the market reduces to the
profit maximization strategy of the single aggregate RPP,
solved by (15) with N = 1. This extreme case is when
the RPPs has the maximum market power, due to their
full aggregation. As the number of RPPs increases, the
difference between the DA market price and the expected
RT market price decreases and converges to zero. This
represents decreasing market power of the RPPs. When
N ! 1, RPPs do not have market power at all, and the
market becomes socially efficient.

V. SIMULATION

In this section, we conduct simulation studies to demonstrate
the main results in the previous sections. We use quadratic
functions to model the (aggregate) cost functions of the
conventional generators in the DA and RT markets as follows:

C

DA

G

(q) =

1

2

↵

DA

G

· q2 + �

DA

G

· q,

C

RT

G

(q) =
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2

↵

RT

G

· q2 + �

RT

G

· q. (18)

Accordingly, with q

DA

G

= L � cN and q

RT

G

= cN � xN (cf.
(1), (2)), the DA and RT market prices become (cf. (3) and
(7))
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RT
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. (19)

The socially optimal total commitment of the RPPs c

o

N (cf.
(8)) and the total commitment at the NE of the market c?,neN
(cf. (15)) have closed form expressions as follows:
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, (20)

where µN , E[XN ], and
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(21)

To measure the social welfare, the expected overall system
cost is calculated as C

DA

G

+ E
XN

⇥
C

RT

G

⇤
.

We employ the following parameters for the simulations.

↵

G

�
$/(MWh)

2
�

�

G

($/(MWh))

DA 0.01 15
RT 0.02 30

We simulate with all the RPPs’ generation being inde-
pendent and identically distributed (IID) Gaussian random
variables, X

i

⇠ N

�
µ,�

2
�
, 8i 2 N . Consequently, XN =P

i2N X

i

⇠ N

�
µN ,�

2
N
�
, where µN = N · µ, and �N =p

N · �. Throughout all the simulations, we consider a fixed
(aggregate) expectation and (aggregate) standard deviation of
the RPPs’ total generation XN , with µN = 500MW , and
�N = 30MW . The simulated mean and variance of each
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and the right hand side of (16) converges to zero as N ! 1
(under mild technical conditions). Therefore, as the number
of RPPs goes to infinity, the social efficiency condition (9)
is achieved, meaning that the dispatch of the DA and RT
conventional generators achieves the minimum overall cost in
the system.

Remark 3 (Social Efficiency-RPPs’ Profit Tradeoff): The
result from Theorem 1, in particular (15), has a very interesting
and intuitive interpretation. As the number of RPPs vary, the
NE of the market makes a tradeoff between achieving social
efficiency (by equalling the DA price and the expected RT
price) and maximizing the RPPs’ total expected profit (by
setting dE

XN [PN ]
dcN
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= 0). For the case of only one RPP, i.e.,

N = 1, the NE maximizes the expected profit of that RPP. As
the number of RPPs increases, the NE of the market moves
from generating the maximum expected total profit for the
RPPs to the social optimum. As N ! 1,
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0, and social efficiency is achieved asymptotically (cf. (9)).

B. Discussion

We further make the following observations from the main
result presented above.

• Centralized Stochastic Optimization Not Needed: With
a simple design of the two-settlement market mechanism
that integrates RPPs in a competitive fashion, social
efficiency is achieved asymptotically. This is without
requiring a central decision making process by the ISO
for the RPPs, which would involve a) gathering neces-
sary information from the RPPs, and b) making optimal
dispatch decisions using stochastic optimization (cf. (5)).

• Market Power of RPPs: The tradeoff described in
Remark 3 in fact offers an interesting characterization of
the market power of the RPPs in a competitive market.
As an extreme case, consider all the RPPs are aggregated

as one giant RPP and participate in the two-settlement
market. Then, the NE of the market reduces to the
profit maximization strategy of the single aggregate RPP,
solved by (15) with N = 1. This extreme case is when
the RPPs has the maximum market power, due to their
full aggregation. As the number of RPPs increases, the
difference between the DA market price and the expected
RT market price decreases and converges to zero. This
represents decreasing market power of the RPPs. When
N ! 1, RPPs do not have market power at all, and the
market becomes socially efficient.

V. SIMULATION

In this section, we conduct simulation studies to demonstrate
the main results in the previous sections. We use quadratic
functions to model the (aggregate) cost functions of the
conventional generators in the DA and RT markets as follows:

C

DA

G

(q) =

1

2

↵

DA

G

· q2 + �

DA

G

· q,

C

RT

G

(q) =

1

2

↵

RT

G

· q2 + �

RT

G

· q. (18)

Accordingly, with q

DA

G

= L � cN and q

RT

G

= cN � xN (cf.
(1), (2)), the DA and RT market prices become (cf. (3) and
(7))

p

f

= �dC

DA

G

dcN
= ↵

DA

G

· (L� cN ) + �

DA

G

,

p

r

=

dC

RT

G

dcN
= ↵

RT

G

· (cN � xN ) + �

RT

G

. (19)

The socially optimal total commitment of the RPPs c
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(8)) and the total commitment at the NE of the market c?,neN
(cf. (15)) have closed form expressions as follows:
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the RPPs’ total generation XN , with µN = 500MW , and
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Numerical Experiments (cont.)

• Total Expected System Cost: Optimum vs. NE
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Fig. 2. Total expected system costs: NE vs. social optimum.
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Fig. 4. RPPs’ total profit at the NE.

individual RPP would thus depend on the number of RPPs
N . For example, if there are N = 100 RPPs, then each of
them would have µ

i

=

µN
N

= 5MW and �

i

=

�Np
N

= 3MW .
The total load is set to be 1000MW .

In our simulations, we vary the number of RPPs N , and
evaluate the social optimum and the NE of the two-settlement
market for the above setting. The expected overall system costs
are plotted in Figure 2. Because the probability distribution of
the total generation of the RPPs are kept fixed (µN = 500MW

and �N = 30MW ), the social optimum stays fixed. As the
number of RPPs N increases, it is observed that the expected
overall system cost at the market NE converges quickly to
the social optimum. The DA market clearing prices and the
expected RT market clearing prices are plotted in Figure 3.
When N is small, there is a clear discrepancy between the DA
and the expected RT prices. As N increases, the two prices
converge to each other. Lastly, we plot the expected total profit
of all the RPPs in Figure 4. Clearly, as the number of RPPs
increases, competition among themselves becomes greater, and
their total expected profit decreases.

VI. CONCLUSION

We study a simple mechanism that integrates RPPs in a
price-making DA-RT two-settlement power market: each RPP
submits a firm DA power commitment, and, by participating
in the RT market, is responsible for any RT deviation from
it. It is proved that, the NE among the RPPs in the market
converges to the social optimum as the number of RPPs
increases. Thus, competition among the RPPs promotes the
social welfare. The analytical derivation of the NE offers an
elegant characterization of the market power of the RPPs. The
developed theoretical results are demonstrated by simulation
studies.
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Integrating Renewables: Congested Case
[Khazaei, Z. and Sun 19] 

• A two-stage (DA-RT) single-period problem

– Conventional generators and RPPs at arbitrary 
locations in a power network. 

– Not yet considering UC, security constraints, etc. 

• The optimal DA dispatch requires solving a two-stage
stochastic optimization problem with power network 
constraints. 

18



Proposed Market Mechanism

• Information collection
– At DA, each RPP i submits a “commitment”, ci, to the ISO.
–

• System operation
– At DA, the ISO takes the commitments as “firm”, and solves 

a deterministic OPF for DA dispatch to balance the system.

– At RT, the renewables {Xi} are realized, the ISO solves a 
deterministic OPF for RT dispatch to balance the system. 

• Payment allocation according to the DA and RT LMPs     
(price making)

19

4. The final payment to an RPP k located at a bus m is pDA
m · ci � pRT

m · (ci �Xi).

Importantly, a) the system operator only needs to solve the same type of deterministic op-
timization problems as when there’s no uncertainty, b) the RPPs are responsible for their own
uncertainties by paying/getting paid, via the RT market, for their deviations from their commit-
ments, and c) the RPPs’ DA commitments {sk} directly impact the generation dispatch and the
LMPs at both DA and RT. As such, the RPPs are price making, as opposed to price taking.

Next, with each RPP strategically submitting his DA commitments by maximizing his own
expected profit, we show that the NE of this mechanism rapidly converges to social e�ciency, i.e.,
the optimal operation considering all the uncertainties (1a), as the number of RPPs K increases.
Theorem: Assuming the power network is uncongested, the gap between the expected
social cost at NE and that at social e�ciency converges to zero at a rate of O( 1

K ) [58].
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Notably, even though the renewables’ uncertainties are com-
pletely hidden from the system operator’s decision process, the
mechanism itself pushes the system operator’s control decisions to
socially optimum in the presence of uncertainties via the strategic
behaviors of the RPPs. An intuitive explanation is that, as the
number of RPPs increases, so does the competition among them.
This mechanism is able to leverage this competition to push the
NE to social e�ciency without needing the system operator to
ever consider any uncertainties in her optimization.

Our simulation results not only corroborate the proven the-
orem for the uncongested case, but also shows that it continues
to hold for the general case where line congestions occur. Specif-
ically, Figure 2 is from assuming an uncongested network: As the number of RPPs increases, the
expected social cost at NE quickly converges to the minimum one at the social optimum. Figure 3
is from simulations on the IEEE 14-bus test case with line congestion constraints (and congestions
indeed occur both at the social optimum and at NE): A similar convergence of the NE to the social
optimum is observed.
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E�cient Computation of Nash Equilibria and E�cient
Mechanism Design A major motivation for us to e�ciently
compute the NE of a market is to address the following ques-
tion: Before we implement certain market mechanism in
the real world, do we understand or can we predict what
would happen given the strategic behaviors of the market
participants? While such capability is critical to have, however,
it can be technically very challenging to obtain. It is thus un-
derstandable that, in practice, market designers (e.g. ISOs) and
policy makers need to rely on intuitions and ad-hoc solutions, and
often take truthfulness as an assumption. As such, unexpected
market issues may come to our knowledge only after they emerge in the real-world implementation
of the new market mechanism.

In our preliminary works above, we are able to predict the market outcomes — NE a) in
closed form for uncongested cases [58], and b) via an algorithm that searches over congestion
patterns for general congested cases [59]. In a nutshell, finding an NE requires guessing the correct
congestion pattern at the NE. As such, there is fundamentally an exponential complexity due to the
combinatorial number of possible congestion patterns. Interestingly, we are able to find the NE for

8



Benefits for the ISO

• ISO’s only solves a deterministic DA dispatch, and hence can 
directly apply existing software/solvers.
– The uncertainty of renewables are hidden from the ISO, but 

taken on by the RPPs. 

• ISO only elicits one number, ci, from each RPP.  
– Very simple to implement. 
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Outcome of the Proposed Mechanism

• A Non-Cooperative Game of RPPs
• The crux of the work is efficient computation of the NE.
• We develop a method for efficiently computing the NE based 

on finding the congestion pattern at NE. 

Uncongested congested, IEEE 14-bus

21

4. The final payment to an RPP k located at a bus m is pDA
m · sk � pRT

m · (sk �Xk).

Importantly, a) the system operator only needs to solve the same type of deterministic op-
timization problems as when there’s no uncertainty, b) the RPPs are responsible for their own
uncertainties by paying/getting paid, via the RT market, for their deviations from their commit-
ments, and c) the RPPs’ DA commitments {sk} directly impact the generation dispatch and the
LMPs at both DA and RT. As such, the RPPs are price making, as opposed to price taking.

Next, with each RPP strategically submitting his DA commitments by maximizing his own
expected profit, we show that the NE of this mechanism rapidly converges to social e�ciency, i.e.,
the optimal operation considering all the uncertainties (1a), as the number of RPPs K increases.
Theorem: Assuming the power network is uncongested, the gap between the expected
social cost at NE and that at social e�ciency converges to zero at a rate of O( 1

K ) [58].
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Notably, even though the renewables’ uncertainties are com-
pletely hidden from the system operator’s decision process, the
mechanism itself pushes the system operator’s control decisions to
socially optimum in the presence of uncertainties via the strategic
behaviors of the RPPs. An intuitive explanation is that, as the
number of RPPs increases, so does the competition among them.
This mechanism is able to leverage this competition to push the
NE to social e�ciency without needing the system operator to
ever consider any uncertainties in her optimization.

Our simulation results not only corroborate the proven the-
orem for the uncongested case, but also shows that it continues
to hold for the general case where line congestions occur. Specif-
ically, Figure 2 is from assuming an uncongested network: As the number of RPPs increases, the
expected social cost at NE quickly converges to the minimum one at the social optimum. Figure 3
is from simulations on the IEEE 14-bus test case with line congestion constraints (and congestions
indeed occur both at the social optimum and at NE): A similar convergence of the NE to the social
optimum is observed.
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compute the NE of a market is to address the following ques-
tion: Before we implement certain market mechanism in
the real world, do we understand or can we predict what
would happen given the strategic behaviors of the market
participants? While such capability is critical to have, however,
it can be technically very challenging to obtain. It is thus un-
derstandable that, in practice, market designers (e.g. ISOs) and
policy makers need to rely on intuitions and ad-hoc solutions, and
often take truthfulness as an assumption. As such, unexpected
market issues may come to our knowledge only after they emerge in the real-world implementation
of the new market mechanism.

In our preliminary works above, we are able to predict the market outcomes — NE a) in
closed form for uncongested cases [58], and b) via an algorithm that searches over congestion
patterns for general congested cases [59]. In a nutshell, finding an NE requires guessing the correct
congestion pattern at the NE. As such, there is fundamentally an exponential complexity due to the
combinatorial number of possible congestion patterns. Interestingly, we are able to find the NE for
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Fig. 1. (a) Probability of consistency of RT congestion pattern vs. the uncertainty of RPPs, (b) Expected system cost: competing RPPs
vs. social optimum as the number of RPPs grows, (c) Difference between DA and expected RT LMPs as the number of RPPs grows.

TABLE. II. DATA OF NODAL DEMANDS

bus 0 1 2 3 4 5 6
load 0 43.4 64.8 41.6 15.2 22.4 20
bus 7 8 9 10 11 12 13
load 50 59 18 27 32.2 27.6 29.8

TABLE. III. DATA OF RPPS

bus Mean (MWh) Standard Deviation (MWh)
4 70 10.5
11 50 7.5

are simultaneously congested. The following pure NE is
found: (c?1, c

?

2) = (77.270, 46.095). The corresponding
DA congestion pattern is that a single line #19 is
congested.

Next, we check the probability of consistency of
the RT congestion pattern (cf. Section IV-B2) which is
assumed to be the same as the DA one. We employ an
Monte Carlo approach for computing this probability.
We generate 500 scenarios for the renewable generation
(cf. Table III) assuming normal distribution. For each
scenario, we clear the RT market by optimally dispatch-
ing the RT conventional generators (cf. (3a) - (3c)) and
find the actual RT congestion pattern. The probability of
consistency of RT congestion pattern is then computed
as the ratio between a) the number of scenarios where
the assumed and actual RT congestion patterns agree,
and b) the total number of scenarios (in our case 500).
The resulting probability is 76% for the nominal case in
Table III, a reasonably high consistency.

Intuitively, this probability of consistency at RT de-
pends on the level of uncertainty of the renewables. As
such, we evaluate this probability with varying level of
uncertainty: For std/mean of RPPs’ generation ranging
from 0 to 25%, we repeat the scenario based Monte Carlo
computation of the probability as above, and plot the
resulting probabilities of consistency at RT in Figure 1a.
As expected, when there is no uncertainty, the assumed

TABLE. IV. DATA OF DA AND RT GENERATORS

DA Conventional Generators RT Conventional Generators

bus
↵

D

(
$

(MWh)2
)

�

D

(
$

MWh
)

bus
↵

R

(
$

(MWh)2
)

�

R

(
$

MWh
)

7 0.06 3.51 4 0.24 9.35
8 0.09 3.89 12 0.26 11.51
11 0.08 2.15

RT congestion pattern appears with 100% probability.
Even with a 25% std/mean of the RPPs’ generation
(corresponding to very poor forecast), the probability of
consistency at RT is still above 65%.

B. Convergence of NE to social efficiency

We now investigate the important question of how
close the NE is from social efficiency. Inspired by the
intuition from [22], we expect that the gap between the
NE and the social optimum decreases as the number
of RPPs grows. Here, we break up the RPP at each
of the two buses into an increassing number of equal-
sized market participants. For each case, we recompute
the NE. The expected system costs for all these cases
are plotted in Fig. 1b, and compared with the social
optimum obtained by solving a two-stage stochastic
optimization problem. Indeed, the expected system cost
at the NE decreases as the total number of RPPs grows,
and converges to that at the social optimum, (although
we only plotted for up to a total of 30 RPPs, and the
convergence is numerically confirmed as the number of
RPPs further increases). Details for computing the social
optimum can be found in Appendix C, where a penalty
factor of  = 5000 is employed (cf. (41a) - (41f)). We
further plot the trends of the differences between the DA
and RT LMPs as the number of RPPs grows in Figure 1c.
Notably, a) due to the congestion at the NE, the LMPs at
all the buses are different; nonetheless, b) their DA-RT



Finding NE in the Congested Case

• Observations
– No analytical form of LMPs. 
• For each RPP, the best response condition, while can be 

evaluated numerically, does not enjoy an analytical form. 
• The results from the uncongested case do not hold. 



Finding NE in the Congested Case

• Observations
– No analytical form of LMPs. 
• For each RPP, the best response condition, while can be 

evaluated numerically, does not enjoy an analytical form. 
• The results from the uncongested case do not hold. 

• Idea
– If, for some reason, the congestion pattern at NE is known:
• Finding the NE becomes much simplified, and in fact reduces 

to solving a set of linear equations when generators have 
quadratic generation costs. 



Finding NE assuming a Congestion Pattern
– DA market clearing

– RT market clearing

3

strategic behaviors of RPPs. As such, we assume that a) the conventional generators are truthful in submitting to
the ISO their costs, capacities, etc., and b) the loads are inelastic and known.

A. Proposed mechanism with price-making RPPs

Motivated by the near-zero variable cost of renewable generation, we propose a two-settlement market where
both conventional generators and RPPs participate in as follows:

1) In the DA market:
a) Each DA conventional generator submits its bidding curve to the ISO.
b) Each RPP k submits a firm commitment c

k

for its power delivery at RT.
c) Upon receiving these information, the ISO considers the RPPs’ DA commitments as firm, i.e., negative

loads, and performs an optimal dispatch of the DA conventional generators to meet all the loads.
d) The ISO pays each RPP using the DA LMPs computed from the optimal DA dispatch, in the amount

of �D

⌦k
c
k

.
2) In the RT market,

a) Each RT conventional generator submits its bidding curve to the ISO.
b) Each RPP’s actual generation x

k

is realized.
c) The ISO resolves all the deviations between the RPPs’ DA commitments and their realized generation

by optimally dispatching the RT conventional generators.
d) The ISO pays each RPP using the RT LMPs computed from the optimal RT dispatch, in the (possibly

negative) amount of �R

⌦k
· (x

k

� c
k

).
Before continuing, we summarize the notations of the relevant variables in Table I.

B. DA and RT Market Clearing

We now describe the details of the ISO’s optimal dispatch problems that clear the DA and RT markets.
a) DA market: In the DA market, the ISO takes the RPPs’ commitments {c

k

} as firm, and then schedules the
DA conventional generators to meet the net loads by solving the following DA economic dispatch problem:
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where PTDF refers to power transmission distribution factor, and q̃D
u

=
P
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D
G,u

qD
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� LD

u

is the
nodal net power injection at bus u. Note that at some buses there may be no DA conventional generator and/or no
RPP. We write the vector q̃D as:

q̃

D = ED

G

q

D + E
R

c�L

D, (2)

where the element on row r and column t of ED

G

is 1 if the DA conventional generator t is located on bus r, and
is 0 otherwise. Similarly, the element on row r and column t of E

R

is 1 if the RPP
t

is located on bus r, and is
0 otherwise. From solving the DA economic dispatch on (1a)-(1c), we get the DA-LMPs

�

�

D

�

. The payment to
RPP k (located at bus ⌦

k

) at the DA market is �D

⌦k
c
k

.
b) RT market: In the RT market, the RPPs observe their actual power generation {x

i

}. The deviations between
the RPPs’ DA commitments and their actual power generation is settled by optimally dispatching the RT conventional
generators:
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b) RT market: In the RT market, the RPPs observe their actual power generation {x
i

}. The deviations between
the RPPs’ DA commitments and their actual power generation is settled by optimally dispatching the RT conventional
generators:
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is the net nodal power injection at bus u in
the RT market. q̂R

j

= qR
j

+ qD
i

if the RT generator j participated in the DA market as DA generator i, otherwise,
q̂R
j

= qR
j

. Note that on some buses there may be no RT conventional generator and/or no RPP. We write the vector
q̃

R as:
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q
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q

D + E
R
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where the element on row r and column t of ER

G

is 1 if the RT conventional generator t is located on bus r, and
is 0 otherwise.

Remark 1: LR is the vector of fictitious nodal loads at the RT market, and all the components of this vector are
zero. The reason for keeping L

R in the formulations is that it helps to derive the nodal LMPs in the RT market
(cf. (36) and (37) in Appendix B.)

Remark 2: As we mentioned in Section II-A, there may be cases where some of the conventional generators
participate in both the DA and RT markets. If generator i in the DA market is the same as the generator j in the
RT market, then qD

i

(derived from solving (1a)-(1c)) is its dispatch in the DA market, and qR
j

(derived from solving
(3a)-(4)) is its dispatch in the RT market. Hence the total dispatch of this generator in the two-settlement market
is qD

i

+ qR
j

.
From solving RT economic dispatch (3a)-(4), we get the RT-LMPs

�

�

R

�

. The payment to RPP
k

, located at bus
⌦

k

, at the RT market is �R

⌦k
· (x

k

� c
k

).
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is thus
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C. Outcome of the mechanism: commitment game and its Nash equilibria
Now we analyze the outcome of the proposed mechanism (cf. Section II-A). This amounts to analyzing the Nash

equilibria of the two-settlement market. In the proposed mechanism, each RPP has one decision variable, its DA
commitment. Intuitively, RPP

k

will choose a c
k

that maximizes its expected payoff (6). The strategic behaviors of
the RPPs can be modeled as a non-cooperative game, termed the commitment game:

• Players: The set of RPPs participating in the DA-RT market: S
R

= {1, · · · ,K} .
• Strategies: The set of firm generation commitments made by the RPPs.
• Payoffs: Each RPP k’s payoff is its expected payment ⇡

k

defined in (6).
The solution concept that best predicts the outcome in such a non-cooperative game is the Nash equilibria (NE):
At a pure NE, no player has an incentive to unilaterally change its strategy, i.e., every RPP is best responding (i.e.
playing an optimal commitment level) given all other RPPs’ commitments. Specifically, for the commitment game,
Pure NE: A DA commitment profile (c?1, · · · , c?

K

) is a pure NE if and only if, for every RPP
k

2 S
R

, we have
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k
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c
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, 8c
k

2 �
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, (7)

where c?�k

is the vector of commitments of the other RPPs except RPP
k

at the NE, and �
k

is the strategy space
of RPP

k

. We allow each RPP to submit any real number as its DA commitment, i.e. �
k

= R.
In order to analyze the commitment game, it would be convenient to have closed form expressions of the DA

and RT LMPs. We show in the next section that, assuming the knowledge of which lines are congested, a closed
form expression of the corresponding LMPs can be derived.
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– DA market clearing assuming a congestion pattern

– RT market clearing assuming a congestion pattern

– RPPs best responses assuming a congestion pattern - a set of linear equations
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III. CLOSED FORM EXPRESSIONS OF LMPS

In this section, we derive the closed form expressions of the LMPs in the DA and RT markets.

A. DA Market LMPs

The DA economic dispatch problem in (1a)-(1c) is a convex quadratic optimization problem. The KKT conditions
are necessary and sufficient conditions for the optimality of (1a)-(1c). Here, our objective is to leverage the KKT
conditions to obtain closed-form expressions of the LMPs. The difficulty lies in that we do not know a-priori which
inequalities (corresponding to the transmission line flow constraints) in (1c) are binding at the optimal solution. The
key idea to overcome this difficulty is the following: If we assume the knowledge of which lines are congested,
which we term assumed DA congestion pattern, the rest of the KKT conditions can then be solved in closed form.
We summarize this result as follows.

Theorem 1: For an assumed DA congestion pattern in the DA market, the optimal solution of the DA economic
dispatch in (1a)-(1c) is a linear function of the DA commitments of the RPPs as

q

D = GD

1 c+GD

2 . (8)

Similarly, the DA-LMPs at the DA market is a linear function of the DA commitments of the RPPs as

�

D = HD

1 c+HD

2 . (9)

The proof of Theorem 1 and the closed forms of matrices GD

1 , GD

2 , HD

1 , and HD

2 can be found in Appendix A.

B. RT market LMPs

The approach for finding closed form expressions of RT market LMPs is similar to that for the DA LMPs.
Assuming the knowledge of the congestion pattern at the RT market, the rest of the KKT conditions for the RT
dispatch problem (3a)-(4) can be solved in closed form.

Theorem 2: For an assumed RT congestion pattern in the RT market, a given set of power dispatches of DA
conventional generators in the DA market, the optimal solution of the RT economic dispatch in (3a)-(4) is a linear
function of the RPPs’ DA commitments and RT realizations as

q
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2 x+GR

3 . (10)

Similarly, the RT-LMPs is a linear function of the RPPs’ DA commitments and RT realizations as
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3 . (11)

The proof of Theorem 2 and the closed forms of matrices GR

1 , GR

2 , GR

3 , HR

1 , HR

2 , and HR

3 can be found in
Appendix B.

IV. ALGORITHM FOR FINDING NASH EQUILIBRIA

The key idea that helps finding an NE among the RPPs (cf. (7)) is that, if the DA and RT congestion patterns
at an NE are known, finding the NE {c?

k

} given the congestion patterns is easy. Then, one can search and test if
any DA and RT congestion patterns are indeed the ones that lead to an NE.

A. Best responses assuming DA and RT congestion patterns

Assuming any pair of DA and RT congestion patterns, we have from the last section the corresponding expressions
of the LMPs �D and �

R (9) and (11). Substituting these LMP expressions in (6), the vector of payoffs of the RPPs
⇡ , [⇡1, · · · ,⇡K
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From the linearity of the LMP expressions in (9) and (11), the payoffs of the RPPs in (12) are concave quadratic
functions. As such, the NE condition in (7) reduces to the following set of linear equations
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B. RT market LMPs

The approach for finding closed form expressions of RT market LMPs is similar to that for the DA LMPs.
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dispatch problem (3a)-(4) can be solved in closed form.

Theorem 2: For an assumed RT congestion pattern in the RT market, a given set of power dispatches of DA
conventional generators in the DA market, the optimal solution of the RT economic dispatch in (3a)-(4) is a linear
function of the RPPs’ DA commitments and RT realizations as

q

R = GR

1 c+GR

2 x+GR

3 . (10)

Similarly, the RT-LMPs is a linear function of the RPPs’ DA commitments and RT realizations as

�

R = HR

1 c+HR

2 x+HR

3 . (11)

The proof of Theorem 2 and the closed forms of matrices GR

1 , GR

2 , GR

3 , HR

1 , HR

2 , and HR

3 can be found in
Appendix B.

IV. ALGORITHM FOR FINDING NASH EQUILIBRIA

The key idea that helps finding an NE among the RPPs (cf. (7)) is that, if the DA and RT congestion patterns
at an NE are known, finding the NE {c?

k

} given the congestion patterns is easy. Then, one can search and test if
any DA and RT congestion patterns are indeed the ones that lead to an NE.

A. Best responses assuming DA and RT congestion patterns

Assuming any pair of DA and RT congestion patterns, we have from the last section the corresponding expressions
of the LMPs �D and �

R (9) and (11). Substituting these LMP expressions in (6), the vector of payoffs of the RPPs
⇡ , [⇡1, · · · ,⇡K

]> becomes

⇡ = diag
�

(E
R

)>�D

�

c+ E
⇥

diag
�

(E
R

)>�R

�

(x� c)
⇤

. (12)

From the linearity of the LMP expressions in (9) and (11), the payoffs of the RPPs in (12) are concave quadratic
functions. As such, the NE condition in (7) reduces to the following set of linear equations

d⇡
k

dc
k

�

�

�

(c1,··· ,cK)=(c?1 ,··· ,c?K)
= 0, 8k 2 S

R

. (13)
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III. CLOSED FORM EXPRESSIONS OF LMPS

In this section, we derive the closed form expressions of the LMPs in the DA and RT markets.

A. DA Market LMPs

The DA economic dispatch problem in (1a)-(1c) is a convex quadratic optimization problem. The KKT conditions
are necessary and sufficient conditions for the optimality of (1a)-(1c). Here, our objective is to leverage the KKT
conditions to obtain closed-form expressions of the LMPs. The difficulty lies in that we do not know a-priori which
inequalities (corresponding to the transmission line flow constraints) in (1c) are binding at the optimal solution. The
key idea to overcome this difficulty is the following: If we assume the knowledge of which lines are congested,
which we term assumed DA congestion pattern, the rest of the KKT conditions can then be solved in closed form.
We summarize this result as follows.

Theorem 1: For an assumed DA congestion pattern in the DA market, the optimal solution of the DA economic
dispatch in (1a)-(1c) is a linear function of the DA commitments of the RPPs as

q

D = GD

1 c+GD

2 . (8)

Similarly, the DA-LMPs at the DA market is a linear function of the DA commitments of the RPPs as

�

D = HD

1 c+HD

2 . (9)

The proof of Theorem 1 and the closed forms of matrices GD

1 , GD

2 , HD

1 , and HD

2 can be found in Appendix A.

B. RT market LMPs

The approach for finding closed form expressions of RT market LMPs is similar to that for the DA LMPs.
Assuming the knowledge of the congestion pattern at the RT market, the rest of the KKT conditions for the RT
dispatch problem (3a)-(4) can be solved in closed form.

Theorem 2: For an assumed RT congestion pattern in the RT market, a given set of power dispatches of DA
conventional generators in the DA market, the optimal solution of the RT economic dispatch in (3a)-(4) is a linear
function of the RPPs’ DA commitments and RT realizations as

q

R = GR

1 c+GR

2 x+GR

3 . (10)

Similarly, the RT-LMPs is a linear function of the RPPs’ DA commitments and RT realizations as

�

R = HR

1 c+HR

2 x+HR

3 . (11)

The proof of Theorem 2 and the closed forms of matrices GR

1 , GR

2 , GR

3 , HR

1 , HR

2 , and HR

3 can be found in
Appendix B.

IV. ALGORITHM FOR FINDING NASH EQUILIBRIA

The key idea that helps finding an NE among the RPPs (cf. (7)) is that, if the DA and RT congestion patterns
at an NE are known, finding the NE {c?

k

} given the congestion patterns is easy. Then, one can search and test if
any DA and RT congestion patterns are indeed the ones that lead to an NE.

A. Best responses assuming DA and RT congestion patterns

Assuming any pair of DA and RT congestion patterns, we have from the last section the corresponding expressions
of the LMPs �D and �

R (9) and (11). Substituting these LMP expressions in (6), the vector of payoffs of the RPPs
⇡ , [⇡1, · · · ,⇡K

]> becomes

⇡ = diag
�

(E
R

)>�D

�

c+ E
⇥

diag
�

(E
R

)>�R

�

(x� c)
⇤

. (12)

From the linearity of the LMP expressions in (9) and (11), the payoffs of the RPPs in (12) are concave quadratic
functions. As such, the NE condition in (7) reduces to the following set of linear equations

d⇡
k

dc
k

�

�

�

(c1,··· ,cK)=(c?1 ,··· ,c?K)
= 0, 8k 2 S

R

. (13)
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The details of this set of linear best response equations are provided below:
�

diag
�

diag
�

(E
R

)>
�

HD

1 �HR

1

���

+ (E
R

)>
�

HD

1 �HR

1

� �

c

+ (E
R

)>
�

HD

2 �HR

2 µ�HR

3

�

+ diag
�

diag
�

(E
R

)>HR

1

��

µ = 0. (14)

The solution to this set of linear equations (13)-(14), denoted by {c̃
k

}, provides an NE candidate of the
commitment game. Whether this renders a true NE depends on if the assumed DA and RT congestion patterns
are indeed the ones at a true NE. Notably, computing such an NE candidate is as easy as solving a set of linear
equations.

B. Algorithm to Find Pure NE

1) Consistency of DA congestion pattern: For an assumed DA congestion pattern to be one at a true NE, it
is necessary that the corresponding NE candidate {c̃

k

} satisfies the following condition: Given {c̃
k

} as the DA
firm commitments from the RPPs, as the ISO solves the optimal DA dispatch problem (cf. (1a)-(1c)), the resulting
actual DA congestion pattern is the same as the assumed one. Otherwise, the assumed DA congestion pattern is
an incorrect guess of that at a true NE.

2) Probability of consistency of RT congestion pattern: Similarly, we can check the consistency between the
assumed and actual RT congestion patterns. This is however more subtle than checking the consistency for DA
congestion patterns. Note that, the RPPs’ decisions, firm commitments {c

k

}, are made at DA, when their actual
generations at RT are still uncertain. As such, at DA, the future actual RT congestion pattern when the ISO clears
the RT market is uncertain. To be precise, given a set of RPPs’ DA commitments {c

k

} and the ISO’s DA dispatch
decisions, the optimal RT dispatch depends on the uncertain generation {x

k

}, and there is a probability distribution
over what RT congestion pattern would result from the optimal RT dispatch [23].

In this work, we proceed with an approximation of the above situation. Instead of having each RPP to consider
a probability distribution over RT congestion patterns, we assume that each RPP just considers one RT congestion
pattern. We will then evaluate the probability of this one congestion pattern appearing at RT: When this probability
is sufficiently high, we argue that this approximation is a close one.

Now, with the above approximation, instead of checking the consistency between the assumed and actual
congestion patterns as in DA, we check the probability of such consistency. Specifically, given an assumed RT
congestion pattern, the corresponding NE candidate {c̃

k

}, and the resulting DA optimal dispatch, a) depending on
the realized generation {x

k

}, the ISO would solve an optimal RT dispatch problem (3a)-(4), resulting in an RT
congestion pattern, and b) based on the uncertainty in {x

k

}, the probability of this resulting RT congestion pattern
being the same as the assumed one is computed as the probability of consistency.

Accordingly, a) we first require the “absolute” consistency of DA congestion pattern as in Section IV-B1,
(otherwise the NE candidate is not a true NE for sure), and then b) the probability of consistency of RT congestion
pattern can be interpreted as the probability that this NE candidate is a true NE.

3) The proposed algorithm of finding NE: Based on the above development, we provide the algorithm for finding
the pure NE of the commitment game in Algorithm 1. In this algorithm, various heuristics can be employed in
searching over congestion patterns. One approach is to collect a set of possible DA and RT congestion patterns
and simply cycle through all of them. As straightforward as this may sound, it can actually be quite effective in
practice, especially because the set of possible congestion patterns are often reasonably limited in power networks
[23], [24], [25], [26].

V. SIMULATIONS

In this section, we demonstrate the main results of the paper with simulations on the IEEE 14-bus system. A
Python module is written for simulating the two-settlement market and the proposed algorithm for finding NE. The
module and simulation codes are available at [28]. The nodal demands, nominal parameters of RPPs (which will
be further varied), and parameters of conventional generators are listed in Tables I, II, and III. We note that, the
standard deviation of RPPs’ generation in Table II can be interpreted as the standard deviation of the DA forecast
error of the renewable generation. In this nominal case, the forecast error has a standard deviation of 15% of
the point forecast of generation. This is in fact quite a conservative assumption on forecast accuracy, as it is less
accurate than a typical DA forecast (e.g., with a 11.9% std/mean as reported in [29]).

In what follows, we will first present results on finding the NE among two RPPs located at two different buses.
We will then show that the NE converges to social efficiency as the number of RPPs grows.
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III. CLOSED FORM EXPRESSIONS OF LMPS

In this section, we derive the closed form expressions of the LMPs in the DA and RT markets.

A. DA Market LMPs

The DA economic dispatch problem in (1a)-(1c) is a convex quadratic optimization problem. The KKT conditions
are necessary and sufficient conditions for the optimality of (1a)-(1c). Here, our objective is to leverage the KKT
conditions to obtain closed-form expressions of the LMPs. The difficulty lies in that we do not know a-priori which
inequalities (corresponding to the transmission line flow constraints) in (1c) are binding at the optimal solution. The
key idea to overcome this difficulty is the following: If we assume the knowledge of which lines are congested,
which we term assumed DA congestion pattern, the rest of the KKT conditions can then be solved in closed form.
We summarize this result as follows.

Theorem 1: For an assumed DA congestion pattern in the DA market, the optimal solution of the DA economic
dispatch in (1a)-(1c) is a linear function of the DA commitments of the RPPs as

q

D = GD

1 c+GD

2 . (8)

Similarly, the DA-LMPs at the DA market is a linear function of the DA commitments of the RPPs as

�

D = HD

1 c+HD

2 . (9)

The proof of Theorem 1 and the closed forms of matrices GD

1 , GD

2 , HD

1 , and HD

2 can be found in Appendix A.

B. RT market LMPs

The approach for finding closed form expressions of RT market LMPs is similar to that for the DA LMPs.
Assuming the knowledge of the congestion pattern at the RT market, the rest of the KKT conditions for the RT
dispatch problem (3a)-(4) can be solved in closed form.

Theorem 2: For an assumed RT congestion pattern in the RT market, a given set of power dispatches of DA
conventional generators in the DA market, the optimal solution of the RT economic dispatch in (3a)-(4) is a linear
function of the RPPs’ DA commitments and RT realizations as

q

R = GR

1 c+GR

2 x+GR

3 . (10)

Similarly, the RT-LMPs is a linear function of the RPPs’ DA commitments and RT realizations as

�

R = HR

1 c+HR

2 x+HR

3 . (11)

The proof of Theorem 2 and the closed forms of matrices GR

1 , GR

2 , GR

3 , HR

1 , HR

2 , and HR

3 can be found in
Appendix B.

IV. ALGORITHM FOR FINDING NASH EQUILIBRIA

The key idea that helps finding an NE among the RPPs (cf. (7)) is that, if the DA and RT congestion patterns
at an NE are known, finding the NE {c?

k

} given the congestion patterns is easy. Then, one can search and test if
any DA and RT congestion patterns are indeed the ones that lead to an NE.

A. Best responses assuming DA and RT congestion patterns

Assuming any pair of DA and RT congestion patterns, we have from the last section the corresponding expressions
of the LMPs �D and �

R (9) and (11). Substituting these LMP expressions in (6), the vector of payoffs of the RPPs
⇡ , [⇡1, · · · ,⇡K

]> becomes

⇡ = diag
�

(E
R

)>�D

�

c+ E
⇥

diag
�

(E
R

)>�R

�

(x� c)
⇤

. (12)

From the linearity of the LMP expressions in (9) and (11), the payoffs of the RPPs in (12) are concave quadratic
functions. As such, the NE condition in (7) reduces to the following set of linear equations

d⇡
k

dc
k

�

�

�

(c1,··· ,cK)=(c?1 ,··· ,c?K)
= 0, 8k 2 S

R

. ) (13)



Finding NE in the Congested Case

• Observations
– No analytical form of LMPs. 
• For each RPP, the best response condition, while can be 

evaluated numerically, does not enjoy an analytical form. 
• The results from the uncongested case do not hold. 

• Idea
– If, for some reason, the congestion pattern at NE is known:
• Finding the NE becomes much simplified, and in fact reduces 

to solving a set of linear equations when generators have 
quadratic generation costs. 

– How do we find the congestion pattern at NE?  



Finding NE in the Congested Case (cont.)

• Solution Algorithm
– Assuming a congestion pattern: 
• Find the set of RPP’s commitments {ci} at NE under this 

assumed congestion: This provides a candidate for the true 
NE. 



Finding NE in the Congested Case (cont.)

• Solution Algorithm
– Assuming a congestion pattern: 
• Find the set of RPP’s commitments {ci} at NE under this 

assumed congestion: This provides a candidate for the true 
NE. 

• Assuming the set of commitments at this candidate NE, solve 
the ISO’s problem of optimal deterministic dispatch. Observe 
the resulting congestion at the optimal solution. 



Finding NE in the Congested Case (cont.)

• Solution Algorithm
– Assuming a congestion pattern: 
• Find the set of RPP’s commitments {ci} at NE under this 

assumed congestion: This provides a candidate for the true 
NE. 

• Assuming the set of commitments at this candidate NE, solve 
the ISO’s problem of optimal deterministic dispatch. Observe 
the resulting congestion at the optimal solution. 

• If the assumed and the resulting congestion patterns agree, 
the NE candidate is a true NE. 



Finding NE in the Congested Case (cont.)

• Solution Algorithm
– Assuming a congestion pattern: 
• Find the set of RPP’s commitments {ci} at NE under this 

assumed congestion: This provides a candidate for the true 
NE. 

• Assuming the set of commitments at this candidate NE, solve 
the ISO’s problem of optimal deterministic dispatch. Observe 
the resulting congestion at the optimal solution. 

• If the assumed and the resulting congestion patterns agree, 
the NE candidate is a true NE. 

– Otherwise, test another congestion pattern assumption 
• E.g., move on to test the resulting congestion from the last 

iteration. 
• Or employ some other search algorithm. 



Computational Complexity

• The complexity of finding NE is decoupled into
a) Searching over congestion patterns
b) Computing NE candidate given a congestion pattern

• Step b) can be efficiently performed. 
– Thus, the computation can easily be scaled to having a large 

number of RPPs.

• Step a) is still combinatorial
– However, conventional wisdom in practice as well as recent 

works show that the congestion patterns that can actually 
appear are very limited [Ng et al. 18] [Misra Roald Ng 19].

– Various heuristics can be developed. 



Numerical Experiments 

• Simulation setting
– IEEE 14-bus system
• 3 DA conventional generators, 2 RT conventional generators
• RPPs located at 2 buses 
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Fig. 1. (a) Probability of consistency of RT congestion pattern vs. the uncertainty of RPPs, (b) Expected system cost: competing RPPs
vs. social optimum as the number of RPPs grows, (c) Difference between DA and expected RT LMPs as the number of RPPs grows.

TABLE. II. DATA OF NODAL DEMANDS

bus 0 1 2 3 4 5 6
load 0 43.4 64.8 41.6 15.2 22.4 20
bus 7 8 9 10 11 12 13
load 50 59 18 27 32.2 27.6 29.8

TABLE. III. DATA OF RPPS

bus Mean (MWh) Standard Deviation (MWh)
4 70 10.5
11 50 7.5

are simultaneously congested. The following pure NE is
found: (c?1, c

?

2) = (77.270, 46.095). The corresponding
DA congestion pattern is that a single line #19 is
congested.

Next, we check the probability of consistency of
the RT congestion pattern (cf. Section IV-B2) which is
assumed to be the same as the DA one. We employ an
Monte Carlo approach for computing this probability.
We generate 500 scenarios for the renewable generation
(cf. Table III) assuming normal distribution. For each
scenario, we clear the RT market by optimally dispatch-
ing the RT conventional generators (cf. (3a) - (3c)) and
find the actual RT congestion pattern. The probability of
consistency of RT congestion pattern is then computed
as the ratio between a) the number of scenarios where
the assumed and actual RT congestion patterns agree,
and b) the total number of scenarios (in our case 500).
The resulting probability is 76% for the nominal case in
Table III, a reasonably high consistency.

Intuitively, this probability of consistency at RT de-
pends on the level of uncertainty of the renewables. As
such, we evaluate this probability with varying level of
uncertainty: For std/mean of RPPs’ generation ranging
from 0 to 25%, we repeat the scenario based Monte Carlo
computation of the probability as above, and plot the
resulting probabilities of consistency at RT in Figure 1a.
As expected, when there is no uncertainty, the assumed

TABLE. IV. DATA OF DA AND RT GENERATORS

DA Conventional Generators RT Conventional Generators

bus
↵

D

(
$

(MWh)2
)

�

D

(
$

MWh
)

bus
↵

R

(
$

(MWh)2
)

�

R

(
$

MWh
)

7 0.06 3.51 4 0.24 9.35
8 0.09 3.89 12 0.26 11.51
11 0.08 2.15

RT congestion pattern appears with 100% probability.
Even with a 25% std/mean of the RPPs’ generation
(corresponding to very poor forecast), the probability of
consistency at RT is still above 65%.

B. Convergence of NE to social efficiency

We now investigate the important question of how
close the NE is from social efficiency. Inspired by the
intuition from [22], we expect that the gap between the
NE and the social optimum decreases as the number
of RPPs grows. Here, we break up the RPP at each
of the two buses into an increassing number of equal-
sized market participants. For each case, we recompute
the NE. The expected system costs for all these cases
are plotted in Fig. 1b, and compared with the social
optimum obtained by solving a two-stage stochastic
optimization problem. Indeed, the expected system cost
at the NE decreases as the total number of RPPs grows,
and converges to that at the social optimum, (although
we only plotted for up to a total of 30 RPPs, and the
convergence is numerically confirmed as the number of
RPPs further increases). Details for computing the social
optimum can be found in Appendix C, where a penalty
factor of  = 5000 is employed (cf. (41a) - (41f)). We
further plot the trends of the differences between the DA
and RT LMPs as the number of RPPs grows in Figure 1c.
Notably, a) due to the congestion at the NE, the LMPs at
all the buses are different; nonetheless, b) their DA-RT
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Fig. 1. (a) Probability of consistency of RT congestion pattern vs. the uncertainty of RPPs, (b) Expected system cost: competing RPPs
vs. social optimum as the number of RPPs grows, (c) Difference between DA and expected RT LMPs as the number of RPPs grows.

TABLE. II. DATA OF NODAL DEMANDS

bus 0 1 2 3 4 5 6
load 0 43.4 64.8 41.6 15.2 22.4 20
bus 7 8 9 10 11 12 13
load 50 59 18 27 32.2 27.6 29.8

TABLE. III. DATA OF RPPS

bus Mean (MWh) Standard Deviation (MWh)
4 70 10.5
11 50 7.5

are simultaneously congested. The following pure NE is
found: (c?1, c

?

2) = (77.270, 46.095). The corresponding
DA congestion pattern is that a single line #19 is
congested.

Next, we check the probability of consistency of
the RT congestion pattern (cf. Section IV-B2) which is
assumed to be the same as the DA one. We employ an
Monte Carlo approach for computing this probability.
We generate 500 scenarios for the renewable generation
(cf. Table III) assuming normal distribution. For each
scenario, we clear the RT market by optimally dispatch-
ing the RT conventional generators (cf. (3a) - (3c)) and
find the actual RT congestion pattern. The probability of
consistency of RT congestion pattern is then computed
as the ratio between a) the number of scenarios where
the assumed and actual RT congestion patterns agree,
and b) the total number of scenarios (in our case 500).
The resulting probability is 76% for the nominal case in
Table III, a reasonably high consistency.

Intuitively, this probability of consistency at RT de-
pends on the level of uncertainty of the renewables. As
such, we evaluate this probability with varying level of
uncertainty: For std/mean of RPPs’ generation ranging
from 0 to 25%, we repeat the scenario based Monte Carlo
computation of the probability as above, and plot the
resulting probabilities of consistency at RT in Figure 1a.
As expected, when there is no uncertainty, the assumed

TABLE. IV. DATA OF DA AND RT GENERATORS

DA Conventional Generators RT Conventional Generators
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7 0.06 3.51 4 0.24 9.35
8 0.09 3.89 12 0.26 11.51
11 0.08 2.15

RT congestion pattern appears with 100% probability.
Even with a 25% std/mean of the RPPs’ generation
(corresponding to very poor forecast), the probability of
consistency at RT is still above 65%.

B. Convergence of NE to social efficiency

We now investigate the important question of how
close the NE is from social efficiency. Inspired by the
intuition from [22], we expect that the gap between the
NE and the social optimum decreases as the number
of RPPs grows. Here, we break up the RPP at each
of the two buses into an increassing number of equal-
sized market participants. For each case, we recompute
the NE. The expected system costs for all these cases
are plotted in Fig. 1b, and compared with the social
optimum obtained by solving a two-stage stochastic
optimization problem. Indeed, the expected system cost
at the NE decreases as the total number of RPPs grows,
and converges to that at the social optimum, (although
we only plotted for up to a total of 30 RPPs, and the
convergence is numerically confirmed as the number of
RPPs further increases). Details for computing the social
optimum can be found in Appendix C, where a penalty
factor of  = 5000 is employed (cf. (41a) - (41f)). We
further plot the trends of the differences between the DA
and RT LMPs as the number of RPPs grows in Figure 1c.
Notably, a) due to the congestion at the NE, the LMPs at
all the buses are different; nonetheless, b) their DA-RT



Summary

• To reach social efficiency in the presence of renewable energies, we 
need not complicate the ISO’s optimization problem. 

• Instead, via properly designed market mechanism to engage RPPs, 
an ISO needs only to solve a deterministic optimization as usual. 

• The competition among the participants will “push” the market 
equilibrium to social efficiency as if a centralized stochastic 
optimization is solved. 

• The renewables are held responsible for their uncertainties. 



Next Steps

• Extension
– Integrating uncertain Demand Response providers

• Future work: Multi-stage and multi-period
– UC, security constraints 
– Integrating energy storage



Thanks!


