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INTRODUCTION

UNCERTAINTY

a}

1. Additionally, zonal level reserve requirement is a potential solution to
limit exposure to network congestion when dispatch reserve from
outside.

2. Improve system flexibility and deliverability by zonal reserve
requirement setting and deliverability assurance.

http://www.news.gatech.edu/features/building-power-grid-future
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PROBABILISTIC ZONAL RESERVE REQUIREMENT

= Uncertainty sources — load, conventional unit, and wind generation
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PROBABILISTIC ZONAL RESERVE REQUIREMENT

» Probability distribution of line flow
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» Energy Deliverability Improvement — critical line between zones
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ENHANCED UNIT COMMITMENT FORMULATION WITH ZONAL
RESERVE SETTINGS

= Objective
minz Co{pg} + SUgzgs + SDgyg e + RPP(r),)
g,t
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» Reserve requirement constraints:
— System level: - Deliverability constraints
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SIMULATION AND RESULTS

= Test System
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SIMULATION AND RESULTS

= Simulation Overflow
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SIMULATION AND RESULTS

= Setting and Assumption
— Two simulation periods: July 2006 (high load), and October 2006 (low load)
— Load PDF is normal distribution
— Wind generation is 20% of the load
— Capacity reserve margin is 10%
— System level reserve requirement: largest unit failure + 10% demand
— Load/reserve curtailment penalty: $1,800/MWh, $500/MWh
— Wind curtailment opportunity cost $30/MWh
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SIMULATION AND RESULTS

= Critical line based on line overflow probability in DA
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SIMULATION AND RESULTS

» Impacts on Operating Reserves
Scheduled reserve quantity in zone 1
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SIMULATION AND RESULTS

= Operational Cost

TABLE 1
RT AVERAGE OPERATIONAL COST IN JULY AND OCTOBER.

July October
BASE | ZONE BASE | ZONE

Energy/Reserve 3896.17 3902.6 3230.25 3233.5
Unserved Energy 32.22 8.94 0 0

RT-Cost (K$)

Unserved Reserves 79.51 58.22 16.32 8.38
Wind Curtailment 12.23 6.35 53.63 51.60
Total 4020.13 | 3976.11 3300.2 3293.23

— The ZONE has a higher operational cost of energy/reserve than the BASE

— The ZONE vyields a fewer curtailments for energy, reserve and wind

— The ZONE strategy schedules energy and reserves more efficiently to manage
energy balance and potential congestions with wind power forecasts.

Park, Byungkwon, Zhi Zhou, Audun Botterud, and Prakash Thimmapuram. "Probabilistic Zonal Reserve Requirements for Improved Energy
Deliverability with Wind Power." IEEE Transactions on Power Systems (2020).
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SIMULATION AND RESULTS

= Electricity and reserve prices
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SIMULATION AND RESULTS

» Impacts of wind uncertainty on reserves and operational cost
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» Impact of forecasting error on cost saving
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DISCUSSION AND FUTURE WORK

= Discussion
— More energy and reserve will be scheduled with more critical line identified,
hence provide more flexibility

— Performance better with
» Higher uncertainties.
» With systems that requires more flexibility

» Future work
— Power flow probability distribution estimation
— Zonal reserve requirement accounting for line outages
— Incorporation of machine learning techniques for the identification of critical
lines and reserve requirements
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