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The Use of Weather Forecast in 
Power Systems Operation

• Weather forecast is used for:
– Load forecast
– Renewable energy forecast (solar and wind)

• Extreme weather:
– System operators have access to weather forecast
– Some ISOs have meteorologists onsite
– The forecast is not systematically used to adjust 

operation
– Most adjustments are made through engineering 

judgment
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Impacts of Extreme Weather

• Extreme weather
– Windstorms: Hurricanes, Tornados
– Ice storms and snow storms

• Impacts:
– Load: load forecast models capture the impacts on 

load
– Generation: the impacts are often minimal
– T&D systems: T&D failures
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Example: Hurricane

• Damage level: 
Low

• Main cause: 
Flooding

• Wind:             
Rarely an issue

• Damage level: 
High

• Main cause: 
Wind force

• Flooding:             
May aggravate 
the situation

• Damage level: 
High

• Main cause: 
Wind force

• Flooding:             
May aggravate 
the situation
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Power Outage Statistics

• Hurricane season of 2017:
Harvey Irma Maria
August September September

• 300,000 customer 
outages in Texas

• 6 Million customer outages in FL  (59%)
• ~1 Million customer outages in GA (22%)

• 100% customer 
outage in PR
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Why Focus on Transmission?

• Power outage in the 
areas, not in the 
hurricane track, is due to 
transmission-level 
damage.

• Such outages may be 
manageable, through 
weather-aware 
preventive operation.

• Transmission line outages 
in the past:
– Harvey: 97 lines (>139 kV)
– Sandy: 218 lines (>115 kV)
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Preventive Operation
• Systematic integration of weather forecast data in power system 

operation
– Conversion of weather data into useful information for operation:  

component damage probability

Preventive Power 
System Operation

Weather Forecast 
Module

Power Component 
Failure Estimation

Uncertainty Propagation
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Weather Forecasting
(Atmospheric Sciences)

• High-resolution wind field modeling
– 1 Km horizontal

• Hurricane track and movement speed estimation
• Ensemble forecasting
– Multiple tracks with different probabilities

• Forecast at different time scales
– 5-day ahead, 48-hr ahead, day-ahead, hour-ahead
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Transmission Failure Estimation

Top drift

Structural Drawings Finite Element 
Modeling

Stability under 
Dynamic Wind Loading

Tower drift
1.5%, 2%, 2.5%, 3%
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Transmission Failure Estimation cnt’d

Transmission line outage is estimated based on tower failure likelihood.
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Preventive Stochastic Unit 
Commitment

• Principles:
– The estimated line outages are explicitly modeled, 

through scenarios
– The objective function minimizes the expected cost, 

including penalty for power outage
• Solution: reduced power outages
• Challenges:
– Multiple line outage modeling
– Uncertainty management
– Computational tractability



Multiple Outage Handling

• Shift factors are used in UC for flow modeling
• Shift factors change as the topology of the 

network changes
• Single line outages can be modeled by Line 

Outage Distribution Factors (LODF)
• LODFs are not valid for multiple line outages
• We use flow canceling transactions or 

generalized LODFs
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Uncertainty Management: 
Scenario Selection
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Large uncertainty set:
With only 36 lines affected, for a 24-
hour UC, the number of scenarios 
can be larger than the number of 
atoms in earth!

F. Mohammadi and M. Sahraei-Ardakani, “Multidimensional Scenario Selection for Power
Systems with Stochastic Failures,” IEEE Transactions on Power Systems, early access, 2020.



Simulation Results: Hurricane 

Harvey–Texas 2000 Bus System
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Can machine learning be used to 
improve the solver?

• Improvement:
– Solution quality (more scenarios)
– Solution time (faster solve)

• Training data:
– Earlier forecasts
• Larger uncertainty range
• More time to solve
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What to learn?

• Candidates:
– Solution: commitment variables
– Congested lines (model parameter)

• Consistent with industry practices in normal operation
• Analysis:
– The model is very sensitive to commitment estimation 

errors
– Although commitment variables can be learned rather 

accurately, the computational time does not improve 
significantly

– Learning congested lines has a significant impact, and 
the model is not sensitive to errors
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Sensitivity Results
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• Learning  to identify the congested lines seems to be very effective
• This is consistent with industry practices



Results on South Carolina 
500—Bus System

• Machine learning can be used effectively to identify congested lines, using early 
hurricane forecasts.

• The model is not too sensitive to estimation errors.
• False negatives can be removed to improve the model: overestimate congestion.
• The solution time is significantly reduced with the help of machine learning.
• This would allow for quality improvements such as modeling more scenarios.
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Conclusions

• Predictable weather-related natural hazards are the cause 
of about half of the blackouts in the US. 

• Weather forecast data can be used to estimate component 
damage likelihood.

• Component damage estimations can be used to guide 
preventive operation.

• Appropriate integration of weather forecast data within 
power system operation can enhance system reliability.

• Machine learning can be effectively used to enhance 
computational tractability and model quality.

• Estimating the congested lines seems to be an appropriate 
way of using machine learning.

• Early hurricane forecasts can be used for model training.
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