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Abstract

The purpose of this paper is to explain some aspects of including a marginal line loss ap-
proximation in the DC optimal power flow (DCOPF). The DCOPF optimizes electric generator
dispatch using simplified power flow physics. Since the standard assumptions in the DCOPF
include a lossless network, a number of modifications have to be added to the model. Calculating
marginal losses allows the DCOPF to optimize power generation, so that generators that are
closer to demand centers are relatively cheaper than generators that are far away. The problem
formulations discussed in this paper will simplify many aspects of practical electric dispatch
implementations in use today, but will include sufficient detail to demonstrate a few points with
regard to the handling of losses.

First, we examine marginal line loss approximations in the DCOPF and how different methods
effect LMP pricing. The methodology explained in this paper begins with a feasible AC power
flow solution, called the base point or operating point. This base point includes information
about network power flows and bus voltages that affect the calculation for marginal line losses.
We show that when these aspects are ignored, prices no longer reflect the network’s physics.

Various DCOPF model formulations also affect the accuracy of the optimal solution’s physics.
Selecting a reference bus simplifies calculations in the DCOPF. We compare a few common
formulations of the DCOPF and show that one of these formulations can distort flows and
results in a Kirchoff’s Current Law violation at the reference bus. Correcting this formulation
results in a model with optimal solutions that are independent of the reference bus.

Additionally, we propose a novel method for updating the loss approximation without solving
for a new base point. If the update procedure converges, then it gives a solution to a nonlinear
problem. Results show rapid convergence properties on all networks tested.
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1 Introduction

All independent system operators (ISOs) in the US implement locational marginal cost pricing
[1, 2, 3, 4, 5, 6, 7] in which market participants pay or receive the cost of delivering the next
unit of power at their node in the network. The marginal cost pricing approach is economically
efficient in a competitive market because the price signal to each node reflects the increase in
system cost required to serve the next unit of demand. Marginal loss prices are a component of
marginal pricing and reflect the portion of the change in cost that is due to a change in system
line losses. The locational marginal price (LMP) is the primary economic signal in ISO markets
and decomposes into the marginal loss component, marginal congestion component, and marginal
energy component.

However, approximations within the market dispatch model differ from the network physics. The
approximations result in prices that do not reflect physical measurements, and this causes problems
in the market since prices do not reflect actual marginal costs [8, 9, 10, 11]. This paper focuses
on making the modeling approximation as close as possible to the actual physics because this will
ensure that prices accurately reflect the marginal cost of electricity.

The magnitude of loss payments also justifies a closer look at current practices. In PJM in 2014,
total marginal loss costs were $1.5 billion, compared to $1.9 billion in total congestion costs [12].
It is important that this money is charged accurately since prices that accurately reflect locational
prices are a cornerstone of ISO market design.

Since losses are approximately quadratic, marginal losses are about twice the average losses. As a
result, ISOs will collect more revenue for line losses than what is paid to generators, and this money
is returned to demand based on load ratios in both the DAM and RTM. The over-collection must be
repaid with a rebate to market participants [8, 9]. The methodolgy to determine the rebate can have
significant effects. For example, a 2010 CAISO study showed that two alternative loss allocation
methodologies would change regional allocations by $18.8 million and $13.8 million compared to
the filed methodology [13]. Similarly, marginal loss rebate policies can also be exploited by market
participants [10, 14]. In addition to accurate prices, allocation methodologies are also potentially
important but will not be discussed further in this paper.

It is important to precisely study the loss approximation so that the market optimization will
model the actual network physics as closely as possible. For example, poor loss modeling can be
exploited by financial market participants who will place bids to correct for a poor loss approxima-
tion. Poor loss estimation can be caused from load forecast bias or can be inherent to the power
flow and loss estimate methodology, and a consistent over or under-estimation between day ahead
and real time marginal loss components is all that is needed for financial market participants to
place bids based on the mis-estimation. These bids can correct the mis-estimation by aiding price
convergence, but this would be unnecessary if the market cleared using a better loss approxima-
tion. A better solution may be for the market software to have a good loss approximation from the
outset. MISO changed its loss modeling to limit such behavior, as prompted by its market monitor
[11].

The general name for the dispatch problem that ISOs solve is the optimal power flow (OPF). The
AC Optimal Power Flow (ACOPF) accounts for alternating current’s mathematical complexities.
However, the ACOPF is a large scale, nonlinear, non-convex optimization problem and requires
more time to solve using existing methods than current practice allows [15]. Dispatch models must
solve quickly in order to be practical in day-ahead and real-time markets (DAM and RTM), which
is why today’s ISOs solve linear programming models. The DCOPF is named a bit awkwardly
because it is not modeling “direct current” power, but is really a linearization of the ACOPF [16].
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1.1 Current Practices

ISOs typically implement the DCOPF with linear power transfer or generation shift factors which
relate power generation and demand to power transfers across transmission lines in the network.
We call this implementation the distribution factor model. The sensitivities in the model can be
linearized inputs from a feasible AC power flow solution. A loss approximation is also incorporated
into the market software’s economic dispatch. Typically, the approximation is based on historical
ratios or an AC power flow solution that predict load flow in the time period being dispatched.

The distribution factor model requires the selection of a reference bus which is assumed to be
the marginal source (or sink) of any changes in power consumed (or produced). Power flows to and
from the reference bus are “summed” using the superposition principle, and therefore the effect of
the reference bus gets canceled out in a lossless model. Although the reference bus simplifies the
mathematics, its inclusion in the model can distort power flows when line losses are considered.

A common alternative to the distribution model approach is called the “BΘ” model and also
results in a linear model. However, the BΘ model takes a few orders of magnitude longer to solve
and therefore is not used to clear markets. Therefore, this paper will focus on the distribution
factor model implementation of the DCOPF.

Marginal loss calculations in the DCOPF are sensitive to many things, including the input data,
the approximation approach, and the selection of a reference bus or slack bus. We use the terms
reference bus and slack bus interchangeably. Input data may include physical properties of the
transmission network and perhaps voltage angles and magnitudes. For example, a feasible AC
power flow can be used to supply the input data that defines the base point from which the
dispatch model optimizes.

Loss factors define the sensitivity of system losses to power injections or withdrawals at a specified
bus on the network. They can be positive or negative. When the loss factor at a bus is positive,
a small injection at that node will result in a small increase in system losses. Loads pay a lower
price because system losses are decreased by a small increase in demand. Generators receive a
lower price because system losses are increased by a small increase in production. On the other
hand, when the loss factor at a bus is negative, a small injection will result in a small decrease in
system losses. Loads pay a higher price because system losses are increased by a small increase in
demand. Generators receive a higher price because system losses are decreased by a small increase
in production. The change in system losses is relative to delivering power to the reference bus. By
definition, the loss factor at the reference bus is zero.

Typical dispatch models assume that losses are linearized around a base point solution. This base
point may be taken from the state estimator, AC power flow analysis, or the results of a dispatch
optimization. Each ISO’s processes for estimating losses are described below, and a summary is
located in Table 1.1.

California ISO (CAISO) determines marginal loss factors by linearizing around an AC power
flow solution base point [17]. The AC power flow is calculated throughout iterations of the Security
Constrained Unit Commitment (SCUC) process. System losses are calculated at after each AC
power flow. In addition, loss sensitivities and shift factors are calculated from linearizing around
the AC power flow solution then fed into the SCUC and SCED optimization models. In the
Integrated Forward Market (IFM) piece of CAISO’s DAM, SCUC uses generation and demand
bids to determine power flows. The IFM is followed by Reliability Unit Commitment (RUC) which
uses generation bids and a load forecast.

Although Electric Reliability Council of Texas (ERCOT) uses LMPs, the LMPs only include
components for energy and congestion [18]. In the absence of transmission congestion, LMPs are
uniform. Losses are added during the settlement process and are based on linear interpolation or
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extrapolation of forecasted on-peak and off-peak transmission loss factors [19].
ISO-New England (ISO-NE) uses loss factors to calculate LMPs every hour in the DAM and every

five minutes in the RTM. The state estimator provides information regarding transmission losses
for both Day-Ahead and Real-Time LMPs. ISO-NE bases its DAM on the expected transmission
configuration and the bids and offers from market participants. The RTM clears off information
from the state estimator [20].

In Midcontinent ISO (MISO), the Energy Management System (EMS) state estimator calculates
the total system losses using a combination of an AC power flow and a statistical model based
on system measurements [21]. In real time, loss factors can be calculated directly from the state
estimator, and MISO monitors the calculated real-time loss factors to make sure these are adequate
for settlement purposes. For day ahead, MISO uses recent solutions from the state estimator with
similar load and wind characteristics as day ahead interval.

The New York ISO (NYISO) uses marginal loss factors that reflect expected scheduled and
unscheduled power flows on the network [22]. In the DAM, expected unscheduled power flows are
generally determined using a 30-day moving average of on and off-peak flows. Unscheduled power
flows in the RTM are based on current power flows. NYISO calculates LMPs multiple times for
each time period. The first set of LMPs settle the DAM and are taken from unit commitment and
dispatch optimization. The final LMPs settle the RTM and are taken from a dispatch optimization.

Prior to implementing marginal loss pricing, PJM used generic on-peak and off-peak loss factors,
adding 3% and 2.5% to on and off peak demands, respectively. Because loss factors were not part
of the economic dispatch, the result was less than optimal [23]. PJM now calculates loss factors
in the DAM and RTM based on transmission characteristics, generation levels and load levels, and
state estimator data [6].

The Southwest Power Pool (SPP) operates its DAM and RTM with marginal loss pricing. In
the RTM, losses are estimated using the current state estimator solution. SPP estimates future
operating conditions and performs a power flow study to calculate marginal losses for the DAM [7].

Table 1.1 provides a brief summary of the processes used by each ISO.

1.2 Literature Review

The DCOPF has long been of interest to academic research, and the following section will review a
small sample of academic work on the subject. DCOPF is a subset of the more generic optimal power
flow (OPF) problem, which is a large-scale, nonlinear, non-convex problem that is exceptionally
difficult to solve. This problem was first formalized as an optimization problem by Carpentier in
1962 [24]. This sparked interest in formulations for electricity markets [25].

Many surveys give a more comprehensive review of the various methods for solving OPF problems
than we provide here [26, 27, 28, 29, 30, 31]. The surveys serve a dual purpose to anyone inter-
ested in mathematical optimization because of their close tracking of mathematical programming
developments. In particular, linear programming, quadratic programming, generalized reduced gra-
dient, Newton’s method, and conjugate gradient were all common approaches through the 1980s
and 1990s. More recently, semidefinite programming [32, 33, 34, 35] and second order conic pro-
gramming [36] have shown promising results. Many of the recent advances focus on solving the
ACOPF problem [15, 37], but the linear DCOPF problem remains the standard problem for electric
dispatch applications [38, 39].

Computational performance has always been the main advantage of using linear OPF models, as
well as its easy integration with standard economic theory [25]. It was first formulated and solved
by Wells in 1968 [40], which reports solution times of a few minutes on power networks consisting
of 100 nodes. This work led to interest in more efficient DCOPF formulations and loss sensitivity
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Table 1.1: ISO Loss Factor Methodologies.

ISO Used in
Dispatch

Base Point (DAM) Base Point (RTM) Update Frequency

CAISO Yes SCUC AC power flow with
generation and demand
bids or load forecast

Same as DAM Every hour in DAM
and every fifteen min-
utes in RTM

ERCOT No Interpolation during settle-
ment process

Same as DAM N/A

ISO-NE Yes State estimator solution
with estimated future oper-
ating conditions

Current state esti-
mator solution

Every hour in DAM
and every five minutes
in RTM

MISO Yes Recent state estimator so-
lutions with similar de-
mand and wind character-
istics

Current state esti-
mator solution

Monitored in real time,
with updates possible
up to every minute

NYISO Yes SCUC AC power flow using
a 30-day moving average of
on and off peak power flows

SCUC AC power
flow

During intermediate
dispatch runs between
DAM clearing and
RTM clearing

PJM Yes State estimator solution
with estimated future oper-
ating conditions

Current state esti-
mator solution

Every hour in DAM
and every five minutes
in RTM

SPP Yes AC power flow after RUC
with estimated future oper-
ating conditions

Current state esti-
mator solution

Every hour in DAM
and every five minutes
in RTM

calculations [16, 41, 42, 43, 44]. In addition to computational advantages, the current formulations
of the DCOPF show impressive–but not perfect–accuracy relative to AC power flows [38].

Various new approaches to the DCOPF remain an active area of research. Iterative approaches
to the DCOPF in [39, 45, 46, 47] have shown some success at improving the physical accuracy of
the model. LMP pricing is one of the most important DCOPF applications [47, 48, 49, 50, 51, 52],
but the DCOPF is certainly not restricted to real time dispatch. It is also an important aspect in
transmission expansion planning [53, 54], renewable energy and storage integration [55], and other
applications that are not enumerated here.

However, many previously proposed methodologies either require nonlinear or piecewise linear
constraints [45, 54, 56] or additional solutions to an AC power flow [47]. Some use dispatch for-
mulations that are not scalable for large networks, such as the BΘ power flow approximation [49]
or current-based models [50]. Some use a modeling construct called fictitious nodal demand which
embeds line losses in demand [39, 45, 46, 51] or exclude losses all together [52].

The key advantage of the proposed methodology is that it is based on the same DCOPF formu-
lation used in current market software and can be easily integrated into ISO operations.

The rest of the paper is organized as follows. Section 2 derives power flow and line loss sen-
sitivities. Section 3 formulates the distribution factor model. Section 4 compares LMPs from
three different loss approximations. Section 5 describes an iterative method to improve the loss
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approximation. Section 6 concludes the paper and is followed by references.

1.3 Notational Conventions

The following sections will present various equations and optimization problems concerning optimal
power flow. To make this as readable as possible, we will make an honest effort to adhere to the
following conventions. Unfortunately there are some places where historical precedent supersedes
our best efforts.

Scalars, vectors, and matrices will all follow a general convention. Scalars will be lowercase (x),
vectors will be uppercase (X), and matrices will be bolded uppercase (X). Elements of vectors
will be noted with a subscript (xn), and we may also superscript some scalars to denote separate
values (xpn, x

g
n). Vectors are generally column vectors, and may be differentiated using subscripts

in some cases (Xp, Xg), as will matrices (Xd). [X]ij denotes the element of X in the ith row and
jth column. Matrix transpose is denoted by the symbol >.

Parameters and variables are more difficult to separate by a convention. Instead, this difference
will be noted immediately after the parameter or variable is introduced. They are also listed as
parameters or variables in the nomenclature list at the end of this section for easy reference. Fixed
variables are denoted by an overline (x) and optimal solutions are denoted by an asterisk (x∗).
Dual variables will use the Greek alphabet, although one exception to this rule is θ and φ, which
are used for voltage angles in common practice.

Sets names are in calligraphic font (N ). We have simplified the notation a bit by making no
distinction between generator and node indices, i.e., the power injection at each node is equal to
the sum of injections from all generators at that node. Therefore, the formulations in this paper
may require some additional bookkeeping to be implemented in an actual optimization program.

Nomenclature

Dual Variables

αmin, αmax Dual variables to the minimum and maximum generation output constraints.

λ Dual variable to the power balance constraint.

µ Dual variable to the transmission constraint.

σ Dual variable to the loss function constraint.

Λ Vector of locational marginal prices (LMPs).

Functions

◦ Hadamard product.

> Matrix or vector transpose.

c(·) Linear or convex cost function.

Indices

h Iteration index.

i, j, n Nodes or bus indices, i, j, n ∈ N .
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k Transmission line index, k ∈ K.

Parameters

aijk Transformer tap turns ratio from node i to j on branch k.

bijk Branch susceptance from node i to j on branch k.

gijk Branch conductance from node i to j on branch k.

`0 Line loss function constant.

rk Resistance on branch k.

ui(n) Unit injection equal to 1 if i = n or zero otherwise.

xk Reactance on branch k.

γk Loss approximation second-order coefficient.

ηk Loss approximation range translation.

ξk Loss approximation domain translation.

ω Damping parameter.

1 Vector of ones.

LF Loss factor vector with elements `fi.

Pd Power demand vector with elements pdi .

Pmin, Pmax Minimum and maximum generator output vectors.

Tmax Transmission branch power flow limit vector.

W Weighting vector with elements wi.

Φ Transformer phase angle change vector with elements φijk for branch k from node i to
j.

A Network incidence matrix.

Bd Diagonal branch susceptance matrix with elements bijk for branch k from node i to j.

B Nodal susceptance matrix.

Gs Diagonal shunt conductance matrix with elements gshi for bus i.

I Identity matrix.

L Marginal loss matrix.

S Marginal branch flow matrix.

T Transmission sensitivity matrix with elements t(ijk,n) (PTDFs).

Sets
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K Set of transmission lines, {1, . . . ,K}.

N Set of nodes or buses, {1, . . . , N}.

Variables

` Total network real power losses.

`k Line losses on branch k.

y Slack variable for a reference bus withdrawal.

P Net real power injection vector with elements pi for node i.

Pg Power generation injection vector with elements pgi for generators for node i.

Pt Power flow vector with elements pijk for branch k from node i to j.

V Voltage magnitude vector with elements vi for node i.

Θ Voltage angle vector with elements θi for node i.

∆P Marginal real power injection vector.

∆V Vector of marginal change in voltage magnitude.

∆L Marginal line loss vector.

∆Θ Marginal voltage angle vector.

∆Θ Voltage angle sensitivity matrix.

2 Power Flow Derivations

The purpose of this section is to derive the linear DC power flow equations that are used by ISOs.
Three standard assumptions are made to derive the DC power flow approximation from nonlinear
AC power flow equations. These assumptions result in no losses, so line loss approximations are
calculated based on an AC-feasible operating point or base point. Two approximations are presented
for line losses, one which uses voltage information from the base point solution and one which uses
some assumptions to make losses a quadratic function of real power flows.

We begin with the AC real power flow equations for a single branch and network balancing
constraints for each node. Notationally, a branch k ∈ K connects nodes i and j ∈ N , and power
flows pijk from i to j and pjik from j to i are given by,

pijk = gijk
v2
i

a2
ijk

− vivj
aijk

(gijk cos(θi − θj − φijk) + bijk sin(θi − θj − φijk)) , (1)

pjik = gijkv
2
j −

vivj
aijk

(gijk cos(θj − θi + φijk) + bijk sin(θj − θi + φijk)) , (2)

where the parameters are the branch conductance gijk, branch susceptance bijk, tap transformer
turns ratio aijk, transformer phase angle change φijk, and the variables are the voltage magnitude
vi and voltage angle θi.
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According to Kirchoff’s Current Law (KCL), power flows balance at each node or bus. The
amount of power generated minus the amount consumed at a node must be equal to the amount
flowing in or out. Losses in the shunt conductance, gshi , are also accounted for in the nodal balance.
For now, we simplify power generation (an injection) and consumption (a withdrawal) for now
using the net injection pi at node i ∈ N , which by convention is positive for a net injection and
negative for a net withdrawal. For real power, the network balance equations are:

pi =
∑
k

pijk + v2
i g
sh
i , ∀i ∈ N . (3)

Or, in matrix form:

P = APt + Gs(V ◦ V ), (4)

where A is an (N ×K) network incidence equal to 1 for branch a k assumed to flow into node i,
−1 if the branch is assumed to flow out of node i, and 0 if branch k is not connected to node i, Pt
is a vector of transmission flows, Gs is an N × N diagonal matrix of shunt conductances, V is a
vector of nodal voltage magnitudes, and ◦ is the element-by-element (or Hadamard) product.

2.1 DC Power Flow

Many industry applications rely on DC power flow approximations. DC power flow equations are
preferable in many instances because they are linear and can be solved quickly. Conversely, AC
power flow equations model the system more accurately, but are non-convex. It can even be difficult
to find a feasible solution to AC power flow equations in a large scale system such as one of the
main US power grids. Therefore, the common DC power flow approximation makes three main
assumptions:

• Voltage is close to one per unit (p.u.) at all buses,

• Voltage angle differences are small, i.e., sin θ ≈ 0 and cos θ ≈ 1,

• Line resistance is negligible compared to reactance, i.e., rk � xk and therefore gijk � bijk.

Line conductance and susceptance are physical properties of the lines, and are respectively gijk =
rk

r2k+x2k
and bijk = −xk

r2k+x2k
. Under the assumptions above (and also assuming that the tap turns ratio

aijk = 1), (1) and (2) reduce to

pijk = gijk
v2
i

a2
ijk

− vivj
aijk

(gijk cos(θi − θj − φijk) + bijk sin(θi − θj − φijk))

≈ gijk − (gijk cos(θi − θj − φijk) + bijk sin(θi − θj − φijk))
≈ gijk − (gijk + bijk(θi − θj − φijk))

≈ −1

xijk
(θi − θj − φijk).

Or, in matrix form:

Pt = Bd

(
A>Θ + Φ

)
, (5)

where Bd is a (K ×K) diagonal matrix with values −1
xijk

, A is the network incidence matrix, Θ is

an (N × 1) vector of nodal voltage angles, and Φ is a K × 1 of transformer phase angle changes.
Similar derivations can be followed in reference [57].
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To reduce solution time in practice, the transmission constraint (5) can be simplified using power
transfer distribution factors (PTDFs), also called shift factors. The PTDF is the sensitivity of real
power flow to the change in power injected at a particular bus. The injection (or withdrawal) is
assumed to be withdrawn (or injected) at the reference bus. The PTDFs form a K ×N sensitivity
matrix T with elements t(ijk,n).

t(ijk,n) =
dpijk
dpi

≈ d

dpi
(
−1

xijk
(θi − θj − φijk))

=
−1

xijk

(
dθi
dpi
− dθj
dpi

)
.

It is common to define an N ×N nodal susceptance matrix, B.

B = ABdA>

Now we introduce an N ×N matrix [I−W1>], whose nth column pairs a unit injection at node
n with a reference bus withdrawal. I is the identity matrix. Reference bus withdrawals are defined
by a weighting vector W that sums to one. The nth column of matrix ∆Θ represents the marginal
change in bus voltage angles corresponding to the injections and withdrawals in the nth column of
[I−W1>].

[I−W1>] = B∆Θ.

Then we can construct the PTDF matrix:

T = −BdA>∆Θ = −BdA>B−1[I−W1>]

The matrix B is singular, so the row and column corresponding to the reference bus are removed
to make the matrix invertible. The PTDF at the reference bus is zero by definition.

This is equivalent to solving the following set of N equations N times:

ui(n)− wi =
∑
k

−1

xijk
(θi − θj), ∀i ∈ N , (6)

with n = {1, . . . , N}, where ui(n) is equal to 1 if i = n or zero otherwise, and wi is the ith element
of the weight vector W .

2.2 Marginal Line Losses

Line losses `k across branch k are equal to the difference between the amount leaving node i and
flowing into node j. Since real power flow pijk is assumed to be the power flowing out of node i
from line k, and similarly −pjik is the amount flowing into node j from line k, losses are simply the
summation of (1) and (2):

`k = pijk + pjik = gijk

(
v2
i

a2
ijk

+ v2
j − 2

vivj
aijk

cos(θi − θj − φijk)

)
(7)
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To linearize (7), let `k = `k(x), where x = [θi, θj , vi, vj ]. Assuming a small distance ∆x from some
base point x, the first order Taylor series of `(x) at x = x+∆x = [θi, θj , vi, vj ]+[∆θi,∆θj ,∆vi,∆vj ]
is:

`k(x+ ∆x) = `k(x) +∇`k(x)∆x

= `k(x) +
∂`k
∂θi

∆θi +
∂`k
∂θj

∆θj +
∂`k
∂vi

∆vi +
∂`k
∂vj

∆vj . (8)

Instead of vi and θi, it would be helpful to have `k as a function of the control variables pn. A
physical intuition of AC power systems is that voltage angles are tightly coupled with real power
and voltage magnitudes with reactive power, and therefore we will assume that voltages do not
change as a function of pn. Accordingly, we have ∆θi = dθi

dpn
∆pn and ∆vi = dvi

dpn
∆pn = 0. Then,

`k(P + ∆P ) = `k(P ) +
∑
n

((
∂`k
∂θi

dθi
dpn

+
∂`k
∂θj

dθj
dpn

)
∆pn +

(
∂`k
∂vi

dvi
dpn

+
∂`k
∂vj

dvj
dpn

)
∆pn

)
= `k(P ) +

∑
n

∂`k
∂pn

∆pn. (9)

The partial derivatives introduced in (8) can be calculated directly from (7):

∂`k
∂θi

= 2gijk
vivj
aijk

sin(θi − θj − φijk) (10a)

∂`k
∂θj

= −2gijk
vivj
aijk

sin(θi − θj − φijk) (10b)

This creates a K ×N matrix L of the sensitivity of line losses with respect to voltage angles:

[L]kn =


2gijk

vivj
aijk

sin(θi − θj − φijk), if n = i,

−2gijk
vivj
aijk

sin(θi − θj − φijk), if n = j,

0, otherwise.

(11)

Calculating the total derivatives dθi
dpn

and
dθj
dpn

will require solutions to network equations. By
linearizing (1) and (2), we can use the network equations (3) with a real power injection ∆pn at
some node n ∈ N and solve for marginal changes in θi, and θj at each branch. The relevant partial
derivatives for changes in θ are:

∂pijk
∂θi

=
−vivj
aijk

(
bijk cos(θi − θj − φijk)− gijk sin(θi − θj − φijk)

)
, (12a)

∂pijk
∂θj

=
−vivj
aijk

(
−bijk cos(θi − θj − φijk) + gijk sin(θi − θj − φijk)

)
. (12b)

We construct a K×N matrix S of the sensitivity of the branch power flows to changes in voltage
angles:

[S]kn =


−vivj
aijk

(
bijk cos(θi − θj − φijk)− gijk sin(θi − θj − φijk)

)
, if n = i,

−vivj
aijk

(
− bijk cos(θi − θj − φijk) + gijk sin(θi − θj − φijk)

)
, if n = j,

0, otherwise.

(13)
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Since the network equations are already satisfied at the base point, only the marginal changes
need to be balanced. The injection ∆pn is paired with a withdrawal w = (w1, ..., wi, ..., wN ) at
an arbitrarily chosen reference bus to keep the equations feasible. The reference bus is defined by
assigning weights wi to each bus i ∈ N such that

∑
iwi = 1. The weights are often assigned by

the proportion of total load at each bus. The network equations (3) can be used to simultaneously
solve for the marginal changes to voltage angle at each node given a marginal injection at node n
and withdrawal at the reference bus. The marginal network equations are:

∆pi − wiy =
∑
k

−vivj
aijk

(
bijk cos(θi − θj − φijk)− gijk sin(θi − θj − φijk)

)
(∆θi −∆θj), ∀i ∈ N .

(14)

The marginal injection ∆pi is fixed to 1 at bus n and 0 otherwise. The same amount as the
injection may not be feasible to withdraw from the reference bus due to network losses, so we add
a slack variable y for the amount withdrawn. Assuming it exists, the solution to this system of

equations is {∆θ∗i : i ∈ N}, and the derivative relating θi and pn is dθi
dpn

=
∆θ∗i
∆pn

.
Then we define the loss factor `fn as follows:

`fn :=
∑
k

(
∂`k
∂θi

dθi
dpn

+
∂`k
∂θj

dθj
dpn

)
=
∑
k

2gijk
vivj
aijk

(
sin(θi − θj − φijk)

)(∆θ∗i
∆pn

−
∆θ∗j
∆pn

)
(15)

The result is that each loss factor is calculated using an AC power flow solution, {vi, θi : i ∈ N}
and solving a square N ×N system of equations. Calculating all loss factors amounts to inverting
the matrix (A>S), which can be done using direct methods in O(N4). Iterative methods such as
Jacobi or Gauss-Seidel or descent methods like conjugate gradient will likely be much faster.

This derivation can be succinctly described in vector and matrix form:

∆L = L∆Θ,

∆P = A>S∆Θ,

1>∆L = 1>L
(
A>S

)−1
∆P,

where L is a K×N marginal loss matrix defined by (11), A is a K×N network-incidence matrix, S
is a K×N marginal branch flow matrix defined by (13), and 1 is a vector of K ones. ∆L, ∆P and
∆Θ are respectively vectors of marginal changes in line losses (K × 1), nodal real power injections
(N × 1), and marginal changes in voltage angle (N × 1).

The loss factors can then be calculated as follows:

LF> = 1>L
(
A>S

)−1
[I −W1>]. (16)

Then, we can calculate a constant `0 to compensate the marginal term such that the following
equation gives a linear approximation of line losses ` that is exact at the base point solution,

` = `0 + LF> (Pg − Pd) , (17)

where ` is the total real power losses in the network, `0 is a constant, LF is the vector of loss factors
`fi, and Pg is the vector of net real power generation, and Pd is the vector of real power demands.

Because (17) is a linear equation, it can be easily integrated into electricity market optimization
software.
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2.3 Alternative Line Loss Derivation

Alternatively, a set of loss factors can be derived using a common method ([44, 45, 46, 51, 53, 54, 58])
which assumes that all voltages are equal to 1 and approximates,

cos(θi − θj) ≈ 1− (θi − θj)2

2
. (18)

After some substitution will yield a losses as a quadratic function of pijk times line resistance rk,

` =
∑
k

rkp
2
ijk. (19)

This approximation is in fact the second order Taylor series expansion of the cosine function at
θi − θj = 0. Section 5 expands on this by generalizing the base point to values other than zero.

In the DC approximation, line flows pijk are determined using shift factors t(ijk,n) that relate
nodal injections to real power flow. This equation takes the form

pijk =
∑
n

t(ijk,n)pn (20)

Let pn be the net injections at the base point solution, and pijk be calculated by substituting pn
into (20). First, we take a first order Taylor series of (19) at pijk:

` =
∑
k

(
2rkpijkpijk − rijkp2

ijk

)
. (21)

Then substitute (20):

` =
∑
k

(
2rkpijk

∑
n

t(ijk,n)pn − rijkp2
ijk

)
=
∑
n

∑
k

(
2rkpijkt(ijk,n)

)
pn −

∑
k

rijkp
2
ijk (22)

This gives the loss function in the same form as (17), so the loss factors can now be defined as:

`fn :=
∑
k

(
2rkpijkt(ijk,n)

)
(23)

The constant `0 can also be defined as the second term in (22) would imply, but a more accurate
method is to equate (17) to the actual losses at the base point, if known.

This approximation loses some fidelity compared to (16) due to the assumption on voltages and
the cosine approximation (18).

3 Model Formulation

To formulate the model, we start from the model from Litvinov [48], used by ISO-NE. Dual variables
are indicated by [·].

min c(Pg) (24a)

s.t. 1>(Pg − Pd) = ` [λ] (24b)

` = `0 + LF>(Pg − Pd) [σ] (24c)

T(Pg − Pd −D`) ≤ Tmax [µ] (24d)

Pmin ≤ Pg ≤ Pmax [αmin, αmax] (24e)
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where c(·) is a linear or convex cost function; the decision variables are a vector of power generation
injections Pg and total system losses `; parameters are a vector of power demand withdrawals Pd,
loss function constant `0, loss factor vector LF , loss distribution factor vector D, PTDF matrix
T, transmission limit vector Tmax, generation output limit vectors Pmin and Pmax, and the dual
variables are for the power balance constraint λ, the loss function constraint σ, the transmission
constraint µ, and the generation output limit constraints αmin and αmax.

The only part of the model that has not been discussed at this point is the loss distribution factor
D, an (N × 1) vector that allocates line losses into nodal withdrawals. D is normalized to one, i.e.,
1>D = 1. In later sections, we choose to set the elements of D for each bus to be proportional to
the line losses in the branches connected to that bus.

Excluding the term D` from (24d) causes the optimal solution to (24) to be dependent on an
arbitrarily chosen reference bus. PTDFs require the selection of a reference bus which is assumed to
be the source (or sink) of all power consumed (or produced). Power flows to and from the reference
bus are “summed” in constraint (24d), and the effect of the reference bus gets canceled out in a
lossless model. When losses are included, total injections are greater than total withdrawals, so
there will be more power flowing into the reference bus than out. Loss distribution factors fix this by
adding additional power withdrawals in the approximate location of the line losses. Consequently,
total injections will equal total withdrawals, so the solution becomes independent of the reference
bus. See reference [48] for more detail.

Excluding the term D` also causes a violation of Kirchoff’s Current Law. An example demon-
strating this is in the next section.

LMPs are obtained by considering the dual problem of (24), which is given below.

max λ1>Pd + σ
(
`0 − LF>Pd

)
+ µ> (Tmax + TPd) + αmin

>Pmin − αmax
>Pmax (25a)

s.t. λ1 + σLF + µ>T + αmin − αmax = c [Pg] (25b)

λ+ σ − µ>TD = 0 [`] (25c)

µ, αmin, αmax ≥ 0 (25d)

Constraint (25b) forms the basis for LMPs, with its terms commonly decomposed into three
components:

λE := λ1, (26a)

λL := σLF, (26b)

λC := µ>T, (26c)

Λ := λE + λL + λC . (26d)

where λE is the marginal cost of energy at the reference bus, λL is the marginal cost of losses, and
λC is the marginal cost of congestion. Each component is calculated with respect to the reference
bus. Many formulations assume that λ = −σ, but in fact the economic interpretation of (25c)
shows that losses become more expensive in a congested network.

If the vector Λ gives the LMPs used to remunerate generators, then αmin and αmax are vectors
of each generator’s losses and profits, respectively.

3.1 Loss Distribution Factors and Kirchoff’s Current Law

As stated in the above, loss distribution factors are an important aspect of the DCOPF with
losses. This brief section provides an example which shows that the solution will change based on
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which reference bus is selected when loss distribution factors are removed from the formulation.
Additionally, excluding the loss factors causes the solution to violate KCL at the reference bus.

A detailed look at how losses can be modeled in the DCOPF framework can be found in [16]. In
this example, we will use relatively intuitive values for D, setting each element proportional to the
losses on adjacent lines. The notation

∑
k(i) is used to indicate a sum over the subset of branches

k ∈ K that are connected to node i.

di =
1

2
×
∑

k(i) `k∑
k `k

New model parameters need to be calculated to perform this analysis. As mentioned previously,
the reference bus can be defined by a weighting vector W which sums to one. For example, to
select bus 1 as the reference bus, then the first element of W is one and the rest are zero. To select
a “load-weighted” reference bus, let each element of W be proportional to the load at each bus.
Reference [48] provides a simple way to update parameter values from one reference bus defined by

W to another defined by Ŵ .

T̂ = T−TŴ1>

L̂F =
(
LF − Ŵ>LF1

)
/
(

1− Ŵ>LF
)

̂̀0 = `0/
(

1− Ŵ>LF
)

We will compare results of the model formulation (24) with results from a traditional formulation
(27), below. The later formulation is equivalent to the former with D set to zero. We solve both
formulations on the the 6-bus network from Wood and Wollenberg, available in MATPOWER [59].
The analysis was implemented in GAMS based on code available from [60]. We selecting in sequence
each of the 6 buses to be the reference bus and then finally selecting a load-weighted reference bus
(denoted ‘LW’).

min c(Pg) (27a)

s.t. 1>(Pg − Pd) = ` [λ] (27b)

` = `0 + LF>(Pg − Pd) [σ] (27c)

T(Pg − Pd) ≤ Tmax [µ] (27d)

Pmin ≤ Pg ≤ Pmax [αmin, αmax] (27e)

First, we look at the resulting power flow values from the transmission constraints (24d) and
(27d). As shown in Tables 3.1 and 3.2, the traditional model without loss distribution factors
distorts power flow on the network. For example, the line with the highest power flow can range
from 48.3 MW to 53.1 MW, which represents around 10% of its value. In contrast, the formulation
with loss distribution factors results in consistent power flow, i.e., the transmission constraint is
unaffected by changing the reference bus.

Secondly, we look at the solution’s adherence to KCL. KCL simply states that the current flowing
into a node is equal to the flow out. Since voltage is assumed constant in the DC power flow, here
KCL can be applied to power instead of current. KCL at each node can be checked the following
way. First, the power on each branch k is calculated.

pijk =
∑
n

t(ijk,n)(p
g
n − pdn − dn`)
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Table 3.1: Distorted Power Flow without Loss Distribution Factor

Branch power flow (MW), Model (27)

Branch Reference Bus
(to.from) 1 2 3 4 5 6 LW Range

1.2 -0.2 2.9 2.5 1.9 1.9 2.5 2.1 3.2
1.4 24.0 26.2 26.0 27.4 25.9 26.0 26.4 3.4
1.5 19.5 20.9 21.5 20.7 22.2 21.5 21.4 2.7
2.3 -1.7 -2.1 0.6 -1.8 -1.0 -0.4 -1.1 2.7
2.4 48.5 46.4 47.1 51.1 47.8 47.0 48.7 4.6
2.5 19.6 18.9 19.8 19.4 20.9 19.8 20.0 2.0
2.6 23.3 22.9 24.9 23.2 24.1 26.0 24.4 3.2
3.5 24.3 23.8 22.3 24.1 25.1 23.2 24.1 2.7
3.6 50.8 50.9 48.3 50.8 50.7 53.1 51.5 4.8
4.5 2.6 2.6 3.1 1.8 3.7 3.1 2.9 1.9
5.6 -4.1 -3.7 -3.2 -4.0 -4.8 -2.4 -3.7 2.4

Table 3.2: Consistent Power Flow with Loss Distribution Factor

Branch power flow (MW), Model (24)

Branch Reference Bus
(to.from) 1 2 3 4 5 6 LW Range

1.2 2.1 2.1 2.1 2.1 2.1 2.1 2.1 0.0
1.4 26.1 26.1 26.1 26.1 26.1 26.1 26.1 0.0
1.5 21.1 21.1 21.1 21.1 21.1 21.1 21.1 0.0
2.3 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 0.0
2.4 48.0 48.0 48.0 48.0 48.0 48.0 48.0 0.0
2.5 19.7 19.7 19.7 19.7 19.7 19.7 19.7 0.0
2.6 23.9 23.9 23.9 23.9 23.9 23.9 23.9 0.0
3.5 23.8 23.8 23.8 23.8 23.8 23.8 23.8 0.0
3.6 50.6 50.6 50.6 50.6 50.6 50.6 50.6 0.0
4.5 2.8 2.8 2.8 2.8 2.8 2.8 2.8 0.0
5.6 -3.8 -3.8 -3.8 -3.8 -3.8 -3.8 -3.8 0.0

Then we calculate the “mismatch” between power flow into and out of each bus n.

KCLn = pgn − pdn −
∑
k(n)

(pnjk − pink)− dn`

Since dn = 0 for all n in the traditional model, this calculation is general for both models. In the
preferred model, 24, KCL is satisfied at all nodes. In the traditional model without loss distribution
factors, 27, there is a mismatch at the reference bus which is equal to the losses approximated by
the model. The mismatch resulting from each reference bus selection (including the load-weighted
reference bus, denoted LW) is shown in Table 3.3.

In conclusion, the DCOPF with losses can give a solution that significantly distorts physical laws
if it is not formulated properly. One of these distortions is a large amount of uncertainty in the
accuracy of power flow on the transmission lines. The other related distortion is that the solution
does not satisfy KCL. When such inaccuracies are present in the dispatch model, operators are
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Table 3.3: KCL Violations without Loss Distribution Factor.

Reference Bus
Bus 1 2 3 4 5 6 LW

1 6.7 0
2 6.7 0
3 6.7 0
4 6.7 2.2
5 6.7 2.2
6 6.7 2.2

Total 6.7 6.7 6.7 6.7 6.7 6.7 6.7

forced to operate the grid more conservatively. We believe that more accurate dispatch models will
allow operators to operate the grid closer to its physical limits and therefore more efficiently.

4 Model Comparison

This section will demonstrate the importance of initializing the OPF model with a good base point
solution when clearing an electricity market. We test three initializations of (24c) in particular:
ignoring losses, using (23), or using (16) to calculate marginal losses. Each initialization uses
progressively more information from the base point solution, a locally optimal solution to the
ACOPF. We demonstrate this on the IEEE 300-bus network from the University of Washington
test case archive [61], available in MATPOWER [59]. The analysis was implemented in GAMS
based on code available from [60].

First, we look at the canonical version of the DCOPF without an approximation for line losses.
With the distribution factor formulation, this is the same as parameterizing the model with LF =
`0 = 0. The model therefore reduces to being “lossless”, so we compensate this inherent inaccuracy
by proportionally increasing demand to account for line losses. That is, if there are `∗ losses in
the base point solution, then we create a new parameter for demand, P̃d := Pd

(
1 + `∗/1>Pd

)
.

This initialization will be labeled simply ‘DCOPF’ because it has been reduced to the form of the
standard ‘lossless’ DCOPF model.

Second, we initialize (24c) using the quadratic approximation (23). In this method, the dispatch
at the base point solution is used to calculate line flows, and then a quadratic approximation for
line losses is used to calculate marginal line losses. Total line losses are calculated to be equal to
actual line losses at the base point solution’s dispatch levels. This initialization will be labeled
‘DCOPF-Q’ for its use of the quadratic approximation.

Lastly, we initialize (24c) using the AC linearization (16). This parameterization uses the voltage
angles and magnitudes in the base point solution to accurately calculate marginal losses as a function
of nodal injections and withdrawals. In brief, it uses the most information from the base point
solution of the three initializations presented here. This initialization will be labeled ‘DCOPF-L’
for DCOPF with losses.

Each of the three model initializations uses the same PTDFs. Since the goal is to analyze the
model initializations effect on line loss estimation accuracy, we prefer to hold all other aspects of
the model constant. The network is not congested since we wish to discern aspects of the loss
approximation independent of network congestion.

The LP model solutions are compared to an ACOPF solution to the problem. The ACOPF uses
an exact representation of power flow in the OPF problem, and therefore is generally considered a
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Figure 4.1: LMP Comparison of Linear Models

better solution. However, the ACOPF problem is non-convex and therefore is too difficult to solve
in practice and may not always find the globally optimal solution. Nonetheless, it is used here as
a benchmark for our DCOPF results.

Similar prices in the two models suggests that the linear model is a good approximation of
marginal losses, while similar objective function values suggests that the linear model gives an
efficient dispatch solution. ACOPF LMPs are the dual variable of the real power balance constraint
in an ACOPF solution [52], while DCOPF LMPs are calculated from (26).

4.1 LMP Results

Figure 4.1 shows that locational information can be an important factor in pricing. In the IEEE
300-bus example problem, we see first that prices from the ACOPF range from $37.19/MWh to
$46.76/MWh. Considering that transmission losses are only 1.2% of total demand in this example,
the total price spread may be surprising.

The most simplistic model, ‘DCOPF’, produces only a single price for each node in the system, at
$41.19/MWh. This can create inefficiencies because some generators with costs under $41.19/MWh
but a large effect on system losses will be selected to produce ahead of generators that are apparently
more expensive, but are located such that their marginal effect on losses is very low or negative.

The ‘DCOPF-Q’ model does a better job of differentiating locations based on their marginal
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Table 4.1: IEEE 300-bus Test Case Solution Statistics

Model LMP MAPE Cost Deviation Time* (s)

DCOPF 3.77% -0.172% 0.061
DCOPF-Q 1.54% -0.114% 0.085
DCOPF-L 0.24% 0.005% 0.070
ACOPF - - 0.772

*average of ten trials

affect on losses, but it also mis-estimates the marginal affect by a large amount at some buses.
For example, the largest overestimate is at bus 7049, where the ACOPF LMP is $41.45 but the
DCOPF-Q LMP is $45.96, or about 10% higher.

The ’DCOPF-L’ model performs the best of all three linear models, producing prices that are
very similar to the ACOPF LMPs. It’s worst mis-estimation is at bus 250, where it overestimates
the price by only 3.8%.

Summary comparisons of the three models are given in Table 4.1. Solution time was measured
on a laptop computer with a 2.30 GHz processor and 8GB of RAM. Results are summarized with
two statistics defined by,

LMP MAPE =
1

N

∑
i

|λ∗i − λACi |
λACI

× 100%,

Cost Deviation =
c(P ∗g )− c(PACg )

c(PACg )
× 100%.

The relative performance of the three models will obviously vary depending on the network being
studied, but our general belief is that in most cases, the three models will either perform similarly
or the DCOPF-L will perform significantly better because it can be tuned to the current operating
conditions of the network.

It should be emphasized that loss function accuracy leads to better prices and dispatch without
any additional computational cost. On the IEEE 300-bus test case, the improved methodology
decreases LMP MAPE more than sixfold compared to the quadratic approximation and more than
fifteen-fold compared to the lossless model. A similar comparison can be made with regard to
how closely the model arrives at the actual cost of dispatch. In summary, the DCOPF-Q model
performed similarly to the lossless DCOPF while the DCOPF-L model generated results more
similar to the ACOPF solution.

5 Quadratic Update Procedure

5.1 Motivating Example

The base point in the previous section was the ACOPF solution, which is optimistic to say the least.
In practice, such a good base point is not possible. The following motivating example changes the
problem so that the base point is not the optimal solution in order to show the importance of the
DCOPF’s marginal loss approximation.

Consider the two node problem described in Table 5.1. There are three generators the initially
have identical costs, and the line connecting the nodes has a specified resistance. For simplicity we
assume the voltage at both nodes is 1, so line losses are equal to p2

12rk.
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Table 5.1: Two Node Example

Generators
Bus Initial Bid ($) Final Bid ($) Capacity (MW)

A 1 30.00 29.50 10
B 1 30.00 29.75 100
C 2 30.00 30.00 100

Transmission Load
From To rk (Ω) Bus Amount (MW)

1 2 0.0005 2 90

Table 5.2: Solutions for Initial and Final Bids

Solution
Dispatch 1 2 3

Gen A 10 MW 10 MW 0 MW
Gen B 84.46 MW 0 MW 0 MW
Gen C 0 MW 80.05 MW 90 MW

Flow 94.46 MW 10 MW 0 MW
Losses 4.46 MW 0.05 MW 0 MW

Initial Cost $2,833.84 $2,701.50 $2,700.00
Final Cost $2,807.73 $2,696.50 $2,700.00

A few potential solutions are given in Table 5.2. Solution 3 is clearly optimal for the initial bids,
and the dispatch cost is given on the ‘Initial Cost’ line. Suppose that in the next time period,
generators A and B reduce their bids after purchasing new gas contracts on the spot market.
Instead of $30, the new bids are $29.50 for generator A and $29.75 for generator B. The new costs
are shown on the ‘Final Cost’ line of Table 5.2, and Solution 2 is optimal.

However, there is a key point that current practices miss in this scenario! Suppose that Solution
3 is used as a base point to calculate loss factors. There are no losses in the network since p12 = 0,
so loss factors at both nodes are zero. Therefore the dispatch model would select the cheapest
generators, A and B, corresponding to Solution 1. If the model were given an accurate set of loss
factors then it would have selected Solution 2. Otherwise, the actual cost of dispatch will cost
almost 4% more than the optimal solution.

5.2 Algorithm Description

We propose a sequential linear programming (SLP) method to update loss factors in such a case.
This results in a more accurate representation of marginal losses, which results in more accurate
prices and more efficient dispatch.

The core idea in the SLP methodology comes from Section 2.3 and the fact that ` =
∑

k rkp
2
ijk

gives a decent approximation for line losses. When linearized, this function splits into linear terms
(2rkpijkt(ijk,n)pn) analogous to `fn and some constant terms (rijkp

2
ijk) analogous to `0. Therefore,

line losses can be updated with new values p∗ijk each time the model is solved. If p∗ijk = pijk, then
the optimal solution is the same as the base point solution and the model has a good representation
of marginal line losses.

However, we have also seen that by itself, a linearization of the quadratic approximation can
result in significant pricing errors (described in Section 4). We therefore wish to combine the
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quadratic approach with the more accurate loss factor parameterization in Section 2.2. We will
start with the more accurate parameterization and then update it as if the `fn and `0 terms were
functions of pijk.

An update procedure assuming (22) is given in Algorithm 1. However this is just the same
quadratic loss approximation as before, which was shown to be less accurate than our proposed
method. Because it is based on a second order Taylor series expansion of the cosine terms with a
“zero” base point, this algorithm will be called the “Zero-Centered” Quadratic Update.

To find the a better quadratic approximation than this zero-centered approach, we find a second
order Taylor series expansion around the current operating point. After solving the LP, the second
order Taylor series expansion is used to update parameters in the linear loss function approximation.

The nth order Taylor series approximation of a function f : Rn → R at a base point x ∈ Rn can
be written,

f(x) =
n∑
k=0

∇kf(x)

k!
(x− x)k.

Applying this to line losses as a function of power flows, `(Pt), we have the first order approximation,

`(Pt) ≈ `(P t) +∇`(P t)(Pt − P t)
= `0 +∇`(P t)T(Pg − Pd).

This is a rephrasing of the methodology in Section 2.2, and clearly we have LF = ∇`(P t)T. The
following would need to be calculated to extend this to a second order approximation,

`(Pt) ≈ `(P t) +∇`(P t)(Pt − P t) +
1

2
(Pt − P t)>∇2`(P t)(Pt − P t).

The losses on a particular branch do not depend on the power flow across other branches, so∇2`(Pt)
is a diagonal matrix. For each branch, we only need to compute `′′k(pijk).

Next, we will assume that the function takes a quadratic form. It should be similar to (19), so
we try the following,

`k = γk(pijk + ξk)
2 + ηk. (28)

Algorithm 1 Zero-Centered Quadratic Update

Require: t(ijk,n), dn, rk, p
g
n, pdn, `

1: pijk ←
∑

n t(ijk,n)(p
g
n − pdn − dn`) . ∀k ∈ K

2: `←
∑

k rijkp
2
ijk

3: `fn ←
∑

k 2rkpijkt(ijk,n) . ∀n ∈ N
4: `0 ← `−

∑
n `fn(pgn − pdn)

5: solve (24), h = 1
6: while

∑
i(p

g∗
n − pgn)2 ≤ tol and h ≤ hmax do

7: pgn ← pg∗n , pijk ← p∗ijk . ∀n ∈ N , ∀k ∈ K
8: `←

∑
k rijk(pijk)

2

9: `fn ←
∑

k 2rkpijkt(ijk,n) . ∀n ∈ N
10: `0 ← `−

∑
n `fn(pgn − pdn)

11: solve (24), h← h+ 1
12: end while
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Any quadratic function can be defined by changing the values of γ, ξk and ηk, so this form can be
assumed without loss of generality. Unfortunately, the initial loss function does not provide enough
information to calculate all three of these coefficients. Instead, the following is derived from (7),

d`k
dpn

=
d`k
dθ

dθ

dpn

= 2gijk
vivj
aijk

sin(θi − θj − φijk)
dθ

dpn

= 2rk
vivj
aijk

1

xk
pijk

dθ

dpn

= 2rk
vivj
aijk

pijkt(ijk,n).

This gives good reason to believe that γk = rk
vivj
aijk

is a good guess, and it also happens to give

the same quadratic approximation as before if voltages are equal to their nominal values and the
turns ratio is 1. Now we proceed to find ξk and ηk. The first order linearization of (28) simplifies,

`k ≈ 2rk
vivj
aijk

(pijk + ξk)pijk + rk
vivj
aijk

(ξ2
k − p2

ijk) + ηk.

To put this in the same terms as (17), define `fkn, `0k, `fn and `0,

`fkn := 2rk
vivj
aijk

(pijk + ξk)t(ijk,n),

`0k := rk
vivj
aijk

(ξ2
k − p2

ijk) + ηk,

`fn :=
∑
k

`fkn,

`0 :=
∑
k

`0k.

The initial `fkn and `0k are known, so solve for ξk and ηk,

ξk =
`fknaijk

2rkvivjt(ijk,n)
− pijk,

ηk = `0k − rk
vivj
aijk

(ξ2
k − p2

ijk).

Algorithm 2 implements the basic SLP, with the following few numerical side notes.
The assignment of ξk requires an arbitrary selection for the index n for `fkn and t(ijk,n). This

can be a source of numerical errors, so we choose n = arg maxm(|t(ijk,m)| : m ∈ {i, j}) to minimize
these errors.

Another numerical issue can occur when calculating ξk if γk is very small or zero due to very low
resistance on the line. In this case, we set a tolerance value εγ and let ξk = γk = 0 if γk < εγ .

In Line 6 of the algorithm in Fig. 2, any convergence criterion can be set that fits operational
needs. We’ve shown a criteria with pgn, but there are many other options.

Lastly, we define a damping parameter ω that changes Line 7 of the algorithm to the following
base point update rule,

pg,h+1
n = ωpg,hn + (1− ω)p∗g (29)

ph+1
ijk = ωphijk + (1− ω)p∗ijk (30)
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Each iteration in this SLP solves an approximation of a nonlinear program (NLP). This NLP
is the same formulation as (24) except that the constraint (24c) is replaced with (28). Since this
constraint is an equality instead of a greater-than-or-equal-to constraint, the problem is non-convex,
so a locally optimal solution is not guaranteed to be the globally optimal solution. However, we
would like to know if the SLP is converging to the globally optimal solution, so we solve a problem
with the following relaxation of (28),

` ≥
∑
k

(
γk(pijk + ξk)

2 + ηk
)
. (31)

This relaxation makes the problem convex, and therefore any locally optimal solution is also a
globally optimal solution. Furthermore, if this constraint holds at equality in the optimal solution,
then it is also the solution to the unrelaxed problem, and this was true for all cases solved. We will
refer to this problem as the ‘DCOPF-QCP’.

5.3 Algorithm Results

We provide results for implementing Algorithm 2 on a selection of test cases from the University
of Washington test case archive [61] as well as few other that are available in MATPOWER [59].
The analysis was implemented in GAMS based on code available from [60].

Including the damping parameter ω improved the convergence speed of all test cases, and the
118- and 300-bus cases did not converge unless the damping parameter was used. After some trial
and error, ω = 0.25 for the smaller cases (<100 buses) and ω = 0.75 for the larger cases (118-
and 300-bus) showed good results. Generally, setting ω too large can slow down convergence, but
setting it too small may lead it to diverge.

The results in Fig. 5.1 were obtained by uniformly increasing demand parameters by 5% com-
pared to the base point solution and randomizing generator costs by multiplying by a normal
random variable, N(1, 0.02). The randomization step was necessary because many of the genera-
tors have identical cost functions in the original data sets.

Convergence was measured with the standard L2 norm, defined as the square root of the sum of
squared differences. We compared P hg , P

h
t and Λh with values from the previous iteration, where

the letter h denotes the hth iterative solution to (24). Results were similar for each of P hg , P
h
t and

Algorithm 2 Generic Quadratic Update

Require: t(ijk,n), dn, rk, aijk, `fi, `
0, pgn, pdn, `, vi

1: pijk ←
∑

n t(ijk,n)(p
g
n − pdn − dn`) . ∀k ∈ K

2: γk ← rkvivj/aijk . ∀k ∈ K
3: ξk ← `fkn/2γkt(ijk,n) − pijk . ∀k ∈ K , n = arg maxm(|t(ijk,m)| : m ∈ {i, j})
4: ηk ← `0k − γk(ξ2

k − p2
ijk) . ∀k ∈ K

5: solve (24), h = 1
6: while

∑
i(p

g∗
n − pgn)2 ≤ tol and h ≤ hmax do

7: pgn ← pg∗n , pijk ← p∗ijk . ∀n ∈ N , ∀k ∈ K
8: `←

∑
k γk(pijk + ξk)

2 + ηk
9: `fn ← 2

∑
k γk(pijk + ξk)t(ijk,n) . ∀n ∈ N

10: `0 ← `−
∑

n `fn(pgn − pdn)
11: solve (24), h← h+ 1
12: end while
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Figure 5.1: Convergence Results for Algorithm 2.

Λh, so only P hg is shown to save space. Fig. 5.1 also shows convergence with respect to the objective
function of the DCOPF-QCP.

In our selection of test cases, we see that all appear to converge within 0.01% of the DCOPF-QCP
solution after 20 iterations. Convergence is rapid as shown by the approximately linear results in
Figure 5.1. Comparisons between networks are difficult to interpret since the networks are different
sizes and this is not discounted in the L2 norm. However, all are converging to zero. Although
there is no guarantee for convergence, it was fairly easy to achieve the results using a very simple
damping method. Step size constraints may also be useful in larger or more complex networks, but
their use was unnecessary in our selection of test cases.

6 Conclusion

The DCOPF is at the core of many applications in today’s electricity markets. The fact that it
can be solved as an LP makes this problem formulation computationally advantageous, but this
comes at the expense of approximating the physics of power flow. Therefore, we believe that it
is important for DCOPF implementations to use the best approximations that the linear problem
formulation will allow.

Accuracy of the loss approximation should not be ignored. A feasible base point can provide
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information about voltage angles and voltage magnitudes that are omitted from traditional DCOPF
formulations, and this additional information about the current operating point can change the
calculation for marginal line losses. In turn, changes in the calculation for marginal line losses can
have a significant effect on prices.

In addition to an accurate calculation for marginal line losses, we have discussed two other
important aspects of model accuracy. First is the inclusion of loss distribution factors in the
transmission constraint of the model formulation. Excluding loss distribution factors from the
model distorts power flows and leads to a violation of KCL in the solution. Despite this problem,
loss distribution factors are ignored in many DCOPF formulations that include losses.

Lastly, we provided an algorithm that can be used to improve the accuracy of the loss function
when the solution to the DCOPF-L is significantly different than the base point solution. This
update procedure assumes a quadratic loss function that is exact at the base point solution. The
DCOPF-L’s loss function can then be continuously updated until it converges to a solution. This
may lead to significant differences in prices when the base point solution materially differs from
the optimal solution to DCOPF-L. If this were not a common occurrence, then there would be no
reason to optimize dispatch.

The analysis presented in this paper can be of use to many researchers and practitioners interested
in modeling electricity markets. Inaccuracy of the dispatch model’s marginal terms can have a
significant effect on how much each resource is dispatched and how much they are remunerated, so
it is important to limit this inaccuracy. However, even though some inaccuracy will be present in
any model that linearizes an inherently nonlinear process, the methods explained in this paper can
be used to lessen the effect of these inaccuracies.
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