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Abstract	and	Executive	Summary	
In	this	paper,	we	test	the	effect	of	preprocessed	and	iterative	linear	cuts	on	the	convex	constraints	
maximum	voltage	and	maximum	current 	in	iterative	linear	approximation	of	the	current	voltage	
IV 	formulation	of	the	ACOPF	 ILIV‐ACOPF 	problem.	The	nonconvex	constraints	are	linearized	
using	iterative	first	order	Taylor	series	approximation.	The	ILIV‐ACOPF	is	solved	as	a	single	linear	
program	or	a	sequence	of	linear	programs.	The	ILIV‐ACOPF	model	is	tested	on	the	14‐bus,	30‐bus,	
57‐bus	and	118‐bus	IEEE	test	systems.	The	execution	time	and	the	quality	of	the	solution	obtained	
from	the	ILIV‐ACOPF	are	compared	for	different	test	systems	and	benchmarked	against	the	
equivalent	nonlinear	ACOPF	formulation.	The	results	show	execution	time	up	to	8	times	faster	and	
solutions	close	to	the	nonlinear	solver.	The	performance	of	different	algorithmic	parameters	varies	
depending	on	the	test	problem.	As	the	number	of	preprocessed	cuts	for	each	bus	and	line	increases,	
the	relative	error	decreases.	The	results	indicate	that	16	to	32	constraints	are	the	best	number	of	
preprocessed	constraints	in	a	tradeoff	between	accuracy	and	solution	time.	The	marginal	value	of	
more	than	32	and	maybe	16	preprocessed	constraints	in	this	setting	is	negative.	Nevertheless,	the	
number	of	preprocessed	constraints	can	be	set	based	on	the	performance	and	requirements	of	the	
specific	problem	being	solved.	Using	iterative	cuts	often	results	in	faster	convergence	to	a	feasible	
solution.	When	solving	without	using	iterative	cuts,	the	solution	is	within	18%	of	the	best‐known	
nonlinear	feasible	solution;	with	iterative	cuts,	the	solution	is	within	2.5%	of	the	best‐known	
nonlinear	solution.	At	16	or	32	preprocessed	constraints,	solution	time	is	up	to	about	8	times	faster	
than	the	nonlinear	solver	 IPOPT .	
	
Disclaimer:	The	views	presented	are	the	personal	views	of	the	authors	and	not	the	Federal	Energy	
Regulatory	Commission	or	any	of	its	Commissioners.	 	
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1.	Introduction	

Since	Carpentier	 1962 	introduced	AC	optimal	power	flow	 ACOPF 	problem,	the	ACOPF	
has	received	considerable	attention.		It	is	at	the	heart	of	power	system	efficiency.		The	ACOPF	
optimizes	the	steady	state	performance	of	an	AC	power	system	by	minimizing	an	objective	function	
such	as	generation	cost	or	maximizing	market	surplus	while	satisfying	system	constraints	including	
nodal	real	power	balance,	nodal	reactive	power	balance,	bounds	on	bus	voltages,	bounds	on	
transmission	lines	flow,	bounds	on	real	and	reactive	power	injections,	and	system	contingencies.	
Since	the	ACOPF’s	introduction,	different	objective	functions	and	formulations	have	been	tried	 see	
Cain	et	al .		The	canonical	ACOPF	problem	uses	real	and	reactive	power	injections	and	the	polar	
representation	of	voltage	for	the	network	equations.		ACOPF	problems	have	nonconvex	continuous	
functions	and	can	be	large.	More	difficult	variations	include	binary	variables	for	topology	control	
and	unit	commitment	 see,	for	example,	Potluri	and	Hedman .	

Solving	an	ACOPF	problem	that	meets	power	system’s	physical	criteria	has	continued	to	be	
a	challenge	in	power	system	operations.	While	most	NLP	solvers	find	local	optimal	solutions	most	
of	the	time,	their	lengthy	solution	times	and	poor	convergence	 especially	with	the	introduction	of	
binary	variables 	have	focused	attention	on	linear	approximations.		Linear	programming	 LP 	
methods	play	a	significant	role	in	solving	these	problems	with	more	robust	solutions	and	better	
execution	times.	One	common	linear	program	approach	is	the	distribution	factor	model.	In	another	
linear	program	approach,	the	real	part	of	the	admittance	matrix	is	considered	negligible,	reactive	
power	and	voltage	magnitude	are	dropped	from	the	formulation,	and	bus	voltage	angles	are	
assumed	to	be	near‐zero	 Stott,	et	al.,	2009 .		

A	vast	body	of	literature	proposes	different	optimization	methods	to	solve	the	ACOPF	
including	Lagrangian	approaches,	sequential	quadratic	programming,	sequential	linear	
programming,	interior	point	methods,	and	heuristics.	Literature	reviews	appear	periodically	 see,	
for	example,	Dommel	and	Tinney,	Huneault	and	Galiana,	Momoh,	et	al,	Frank	and	Steponavice	and	
Castillo	and	O’Neill,	2013a).	The	literature	reviews	present	an	evolution	of	approaches	to	solve	the	
ACOPF.		Capitanescu	et	al	(2011)	reviews	the	state	of	the	art	and	challenges	to	the	optimal	power	
flow	computations	including	corrective	post‐contingency	actions,	voltage	and	transient	stability	
constraints,	problem	size	reduction,	discrete	variables	and	uncertainty.	

O’Neill	el	al	(2012a)	formulate	the	ACOPF	in	several	ways,	compare	each	formulation’s	
properties,	and	argue	that	the	rectangular	current‐voltage	or	“IV”	formulation	and	its	linear	
approximations	may	be	easier	to	solve	than	the	traditional	quadratic	power	flow	“PQV”	
formulation.		O’Neill	et	al	(2012b)	compare	solving	the	IV	linear	approximation	of	the	ACOPF	to	
solving	the	ACOPF	with	several	nonlinear	solvers.	In	general,	the	linear	approximation	approach	is	
more	robust	and	faster	than	several	of	the	commercial	nonlinear	solvers.	On	several	starting	points,	
the	nonlinear	solvers	failed	to	converge	or	contained	positive	relaxation	variables	above	the	
threshold.	The	iterative	linear	program	approach	finds	a	near‐feasible	near‐optimal	in	almost	all	
problems	and	starting	points.		Castillo	and	O’Neill	(2013b)	present	an	experimental	framework,	
statistical	methods	and	numerical	results	from	testing	commercial	nonlinear	solvers	with	several	
ACOPF	formulations	and	initializations.	The	experiments	indicate	a	clear	advantage	to	employing	a	
rectangular	formulation	over	a	polar	formulation	and	using	multiple	solvers.	
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In	spite	of	all	the	work	that	has	been	done,	the	ACOPF	remains	‘very	much	a	work	in	
progress’	 Stott	and	Alsaç,	2012 .	Further,	they	state	that	solutions	to	the	problems	encountered	in	
‘real‐life’	are	‘not	easy	to	obtain’	and	still	require	significant	individual	intervention	and	tuning.	

In	this	paper,	we	test	the	iterative	linearization	 IL 	approach	to	the	IV	ACOPF	formulation,	
proposed	in		 O'Neill,	et	al.,	2012 	on	four	IEEE	standard	test	problems	 14‐bus,	30‐bus,	57‐bus	and	
118‐bus	test	systems 	with	line	current	constraints	added.	We	vary	the	number	of	preprocessed	
linear	cuts,	to	approximate	the	convex	quadratic	voltage	and	current	constraints	with	and	without	
iterative	constraints.	We	report	the	solution	time	and	accuracy.	

The	rest	of	the	paper	is	organized	as	follows.	Section	2	presents	the	notation	to	be	used	in	
following	sections.	Section	3	presents	a	brief	review	of	the	IV‐ACOPF	and	ILIV‐ACOPF	formulations.	
Section	4	presents	and	discusses	the	linear	approximation	techniques,	such	as	pre‐processed	cuts,	
iterative	cuts	and	non‐convex	constraint	linearizations,	which	are	used	to	approximate	the	IV‐
ACOPF	formulation.		Section	5	presents	numerical	results	for	the	test	systems	showing	the	
performance	of	this	method	compared	to	the	nonlinear	OPF	problem.	Finally,	Section	6	highlights	
the	main	conclusions	and	contributions	of	the	paper.	The	appendix	contains	the	numerical	results.	
	
2.	Notation	
Indices	and	Sets	
n,	m	 are	bus	 node 	indices;	n,	m	ϵ	 1,	…,	N 	where N	is	the	number	of	buses.	
k	 is	a	transmission	element.		k	ϵ	 1,	…,	K 	where K	is	the	number	of	transmission	elements.	Each

k	has	a	pair	of	terminal	buses	n	and	m.
r	 real	part	of	the	complex	number	or	variable	 superscript
j	 imaginary	part	of	the	complex	number	or	variable	 superscript
j	 is	 ‐1 1/2	
s	 is	the	index	of	the	preprocessed	constraints	where s	ϵ S	 	 0,	1,	…,	S‐1 .	
h	 indexes	a	major	iteration	 solving	a	linear	program of	the	algorithm
	
Variables	
pn		 is	the	real	power	injection	 positive or	withdrawal	 negative at	bus n		
qn		 is	the	reactive	power	injection	or	withdrawal	at	bus n
vrn		 real	part	of	the	voltage	at	bus	n
vjn	 imaginary	part	of	the	voltage	at	bus	n
vn	 is	the	voltage	magnitude	at	bus	n.	vn 	 vrn 2 vjn 2 1/2

irn		 real	part	of	the	current	at	bus	n
ijn		 imaginary	part	of	the	current	at	bus	n
in	 is	the	current	magnitude	at	bus n	where		in 	 irn 2 ijn 2 1/2

irnmk		 real	part	of	the	current	from	bus	n to	bus	m on	line	k
ijnmk	 imaginary	part	of	the	current	from	bus	n to	bus	m on	line	k
inmk	 is	the	current	magnitude	into	k	at	bus n	 to	bus	m ;	inmk 	 irnmk 2 ijnmk 2 1/2	
	 the	complex	vector	of	bus	voltages;	
	 the	complex	vector	of	bus	current	injections,	
	 the	vector	of	real	power	injections
	 the	vector	of	reactive	power	injections
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Parameters	and	Functions	
cpn pn 			cost	function	of	real	power	pn at	bus	n
cqn qn 	 cost	function	of	reactive	power	qn at	bus	n
cpln pn 			linear	cost	function	of	real	power	pn at	bus	n
cqln qn 	 linear	cost	function	of	reactive	power	qn at	bus	n
bnmk		 imaginary	part	of	the	admittance	matrix	for	k between	bus	n	and	m	
gnmk		 real	part	of	the	admittance	matrix	for	k between	bus	n	and	m
pminn		 minimum	required	real	power	at	bus	n
pmaxn		 maximum	allowed	real	power	at	bus	n
qminn		 minimum	required	reactive	power	at	bus	n
qmaxn		 maximum	allowed	reactive	power	at	bus	n
vminn		 minimum	required	voltage	magnitude	at	bus	n
vmaxn		 maximum	allowed	voltage	magnitude	at	bus	n
vrnh		 Coefficeint	for	real	component	of	bus	voltage	cut	at	n	from	iteration	h	
vjnh		 Coefficeint	for	imaginary	component	of	bus	voltage	cut	at	n	from	iteration	h	
irnh		 real	part	of	the	current	at	bus	n at	the	previous	linear		program	solution	
ijnh		 imaginary	part	of	the	current	at	bus	n at	the	previous	linear		program	solution	
imaxnmk		 maximum	allowed	current	magnitude	on	line	k	connecting	bus	n to	bus	m	
irnmkh		 coefficient	of	the	real	component	of	the	line	flow constraint on	line	k	and	iteration h
ijnmkh	 coefficient	of	the	imaginary	component	of	the	line	flow constraint on	line	k	and	iteration h
	
3.	Formulations	

In	2012,	O’Neill	et	al	 2012 	introduced	a	linearization	approach	to	the	IV	formulation.	In	
the	IV‐ACOPF	formulation,	the	network‐wide	nodal‐balance	constraints	are	linear	in	the	current	
and	voltage	 I	 YV ,	rather	than	the	nonconvex	power	flow	equations	based	on	power	and	voltage	
S	 	VI* .	The	objective	function	is	linearized	using	a	step	function	approximation.	

IV‐ACOPF	Formulation.		The	rectangular	form	of	the	nonlinear	IV‐ACOPF	is	shown	below.		

Min	 ∑n	 cpln pn 		 	cqln qn 1 	

	 irn	 	∑mkirnmk	 for	all	n 2 	

	 ijn	 	∑mk	ijnmk	 for	all	n 3 	

	 irnmk	 	gnmk vrn	‐	vrm 	‐ bnmk vjn ‐ vjm for	all	k 4 	

	 ijnmk	 	bnmk vrn	‐	vrm 	 gnmk vjn ‐ vjm for	all	k 5 	

	 pn	 	vrnirn	 	vjnijn			 for	all	n 6 	

	 pn	 	pmaxn		 	 	 for	all	n 7 	

	 pminn	 	pn		 for	all	n 8 	

	 qn	 	vjnirn	‐	vrnijn	 for	all	n 9 	

	 qn	 	qmaxn	 	 for	all	n 10 	

	 qminn	 	qn	 	 for	all	n 11 	
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	 vrn 2	 vjn 2	 	 vmaxn 2 for	all	n 12 	

	 vminn 2	 	 vrn 2	 vjn 2 for	all	n 13 	

	 irnmk 2	 ijnmk 2	 	 imaxnmk 2 for	all	k 14 	

The	above	IV‐ACOPF	formulation	has	6N	variables	as		 P,	Q,	Vr,	Vj,	Ir,	Ij .	As	shown	in	 2 	‐	 5 ,	the	
current	flow	equations	are	linear.	These	equations	replace	the	quadratic	or	trigonometric	forms	of	
the	power	flow	equations	 rectangular	and	polar	forms 	in	traditional	ACOPF	models.	In	this	
formulation,	real	power	equation	 6 	and	reactive	power	equation	 9 	are	quadratic	nonconvex	
functions	of	current	and	voltage	with	bounds	 7 ,	 8 ,	 10 ,	and	 11 .	Maximum	bus	voltage	
magnitude	and	current	flow	limits	 12 	and	 14 	are	quadratic	convex	constraints.	The	minimum	
voltage	magnitude	constraint	is	a	nonconvex	quadratic	constraint	 13 .		

4.	Linear	Approximations		
Iterative	Linear	Current	Voltage	 ILIV ‐ACOPF.		To	form	the	ILIV‐ACOPF	from	the	above	ACOPF	
problem,	we	replace	the	convex	constraints	with	strong	linear	cuts.	Strong	cuts	are	hyperplanes	
that	are	tangent	to	the	constraint	sets	and	contain	the	constraints.	These	linear	constraints	form	a	
linear	relaxation	 outer	approximation 	of	nonlinear	convex	constraints.	The	nonconvex	
constraints	are	approximated	by	first	order	Taylor’s	series	approximations.		
Pre‐processed	cuts.	Preprocessed	cuts	on	the	current	and	voltage	maximum	magnitude	
constraints	are	put	into	the	model	at	the	first	step.	The	strong	iterative	cuts	at	each	major	
iteration	are	added	when	a	linear	program	solution	violates	a	nonlinear	convex	
constraint.	These	cuts	are	added	and	kept	until	the	convergence	criteria	is	satisfied.	
The	maximum	voltage	and	current	magnitude	constraints	 12 	and	 14 	form	a	circle	with	
its	interior,	generically,	x2	 	y2	 	r2.	We	add	strong	linear	cuts	to	create	a	circumscribing	
polygon,	as	shown	in	Figure	1.	For	any	angle	θ,	let	x	 	rcosθ	and	y	 	rsinθ.	Since	 rcosθ 2	
	 rsinθ 2	 	r2,	 x,	y 	is	a	point	on	the	circle	and	xx	 	yy	 	r2	is	a	strong	cut	for	any	θ.	

	
Figure 1: Polygon circumscribing a circle 

Now,	let	θs	 	2π/s,	xs	 	rcos θs 	and	ys	 		rsin θs 	where	s	ϵ	 1,	…,	S 	 S.	The	constraint	set	defined	
by	S	is	a	regular	polygon,	the	maximum	constraint	violation	of	the	circle	is	the	distance	from	a	
vertex	of	the	polygon,	x,	to	the	radius	r,	where	x	 	r/cos 2π/S .	The	maximum	relative	error	of	the	
polygon	is	x/r	 	1/cos 2π/S 	as	s	increases	cos 2π/S 	approaches	1.	Table	1	shows	x/r	when	S	 	4,	
8,	16,	32	and	64	are	used	to	approximate	the	circle.		For	example,	increasing	the	cuts	from	4	to	16	
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cuts	increases	the	ratio	x/r	from	1.41	to	1.02.	Adding	32	cuts	provides	a	close	approximation	to	the	
actual	feasible	area	of	the	convex	constraints.		

Table	1:Maximum	relative	error	
Number of 
linear cuts 

Angle in radians 
(π/n) 

Cos (angle) 1/ Cos (angle) 

4 0.785 0.707 1.414 
8 0.393 0.924 1.082 
16 0.196 0.981 1.020 
32 0.098 0.995 1.005 
64 0.049 0.999 1.001 

Iterative	cuts.	Let	xh,	yh	be	a	solution	at	the	major	iteration	h.	If	xh,	yh	violates	a	maximum	
magnitude	constraint,	that	is,	zh2	 	xh2 	yh2	 	r2.	Let	a	 	r/zh,	x	 	axh	and	y	 	ayh	,	then		

	 x2 	y2	 	 axh 	2	 	 ayh 2	 	a2 xh2	 	yh2 	 	a2 zh2 	 	r2	

For	voltage	constraints,	x,	y	and	r	are	replaced	with	vrnh,	vjnh		and	vmaxn.	For	the	current	
constraints	x,	y	and	r	are	replaced	with	irnmh,	irnmh		and	imaxnmk	.	These	new	iterative	constraints	
reduce	the	feasible	area	and	make	the	current	optimal	solution	infeasible.	At	each	iteration,	the	
iterative	constraints	are	added:	

	 	 vrnh	vrn	 	vjnh	vjn	 	 vmaxn 2	

	 	 irnmkh	irnmk	 	ijnmkh	ijnmk	 	 imaxnmk 2	

The	minimum	voltage	constraint	is	addressed	by	an	active	set	approach,	that	is,	it	is	only	activated	
when	the	constraint	is	violated.			
Nonconvex	constraint	linearization.	The	nonconvex	constraint	approximation	is	a	first	order	Taylor	
series	approximation	and	is	updated	at	each	major	iteration.	The	minimum	voltage	constraint	is	
addressed	by	an	active	set	approach.		

Using	the	pre‐processed	iterative	cuts	and	first	order	Taylor	series	approximation	the	linear	
problem	at	major	iteration	h	is:	 

LPh	 	Min	∑n	 cpln pn 		 	cqln qn 15

	 irn	 	∑mkirnmk	 for	all	n	 16

	 ijn	 	∑mk	ijnmk	 for	all	n	 17

	 irnmk	 	gnmk vrn	‐	vrm 	‐	bnmk vjn ‐ vjm for	all	k	 18

	 ijnmk	 	bnmk vrn	‐	vrm 	 	gnmk vjn ‐ vjm for	all	k	 19

	 pn	 	vrnhirn vjnhijn vrnirnh vjnijnh‐vrnhirnh‐vjnhijnh for	all	n	 20

	 pn	 	pmaxn		 	 	 for	all	n	 21

	 pminn	 	pn		 for	all	n	 22

	 qn	 	vjnhirn	‐	vrnhijn	 	vjnirnh ‐ vrnijnh ‐ vjnhirnh vrnhijnh for h	and	all	n	 23

	 qn	 	qmaxn	 	 for	all	n	 24

	 qminn	 	qn	 	 for	all	n	 25

	 cosθsvrn	 	sinθsvjn	 	vmaxn for	all	n,	s	 26
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	 vrnh	vrn	 	vjnh	vjn	 	 vmaxn 2 for	all	n,	h	 27

	 cosθsirnmk	 sinθsijnmk	 	imaxnmk for	all	k,	s	 28

	 irnmkh	irnmk	 	ijnmkh	ijnmk	 	 imaxnmk 2 for	all	k,	h	 29

Equations	 15 ‐ 19 ,	 21 ,	 22 ,	 24 	and	 25 	are	the	same	in	both	formulations.	Equations	 26 	
and	 28 	are	the	preprocessed	cuts.	The	minimum	and	maximum	limits	for	real	and	reactive	power	
are	linearized	at	each	iteration	using	first	order	Taylor	series	approximation	in	 20 	and	 23 .	
Finally	a	new	voltage	and	current	cut	for	each	infeasibility	in	 27 	and	 29 	are	added	in	each	
iteration.		

The	linearized	procedure	to	solve	the	above	ACOPF	problem	is:	

1. Initialization:	set	h	 	0	and	vrn0	 	1,	vjn0	 	0	for	all	buses	n.	Compute	the	starting	values	
of	 irnmk	 and	 ijnmk	 	 using	 equations	 2 	 and	 3 .	 Calculate	 and	 add	 the	 preprocessed	
constraints.	

2. Set	h	 	h 1.	Solve	the	above	LPh	model.	
3. Compute	the	real	and	reactive	power	magnitude	using	the	nonlinear	equations.	Compute	

the	 voltage	 magnitude	 vnh	 	 vrnh 2	 vjnh 2 1/2.	 Calculate	 the	 average	 and	 maximum	
percent	violation	of	the	voltage,	real	power,	and	reactive	power	from	their	minimum	and	
maximum	limits.	If	the	sum	of	the	average	percent	violations	of	the	voltage,	real	power,	
and	 reactive	 power	 is	 under	 a	 certain	 threshold,	 and	 the	 maximum	 violations	 of	 the	
nodal	voltage,	real	power,	and	reactive	power	 is	also	under	a	 threshold,	 the	solution	 is	
declared	to	be	AC	feasible.	The	solution	process	 is	stopped	and	the	answer	is	returned.	
Otherwise	continue.	

4. The	 optimal	 values	 from	 this	 iteration	 are	 used	 to	 calculate	 the	 iterative	 cuts	 and	 the	
Taylor’s	series	approximation	as	described	above.	Go	to	step	2.	

	
Steps	2,	3	and	4	are	called	a	major	iteration.	

5.	Computational	Results	
We	examine	the	performance	of	the	ILIV‐ACOPF	problem	with	the	preprocessed	cuts	and	

with	iterative	cuts	 LP‐IterIVCut 	and	without	iterative	cuts	 LP‐NoIterIVCut .	The	IEEE	14‐bus,	30‐
bus,	57‐bus	and	118‐bus	test	systems	with	tight	and	loose	line	current	limits	are	used	to	test	the	
performance	of	each	procedure.		Since	the	IEEE	test	problems	have	no	generic	line	current	limits,	
we	used	the	approach	in	 Lipka,	O’Neill	and	Oren,	2013 	to	establish	the	line	current	limits	shown	
in	Table	2.		The	results	are	then	benchmarked	against	a	nonlinear	IV‐ACOPF	problem	 NLP LP	
Objective 	with	the	same	linear	objective	function	as	the	linearized	problem.	For	the	14‐bus,	30‐bus	
and	57‐bus	test	systems,	the	convergence	criteria	for	the	sum	of	the	average	relative	 to	the	bound 	
violations	of	the	voltage,	real	power,	and	reactive	power	is	under	0.005	and	the	sum	of	the	
maximum	violations	of	the	voltage,	real	power,	and	reactive	power	is	under	0.001.	However,	
because	these	tolerance	levels	cause	convergence	difficulty	for	the	118‐bus	system,	they	are	
changed	to	0.05	and	0.01	respectively.		 	
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Table	2:	Ratios	used	to	calculate	current	limits	and	NLP	objective	value	and	Execution	time	
	 14	Bus 30	Bus 57	Bus	 118	Bus
Tight	Constraint	 	
%	of	Maximum	Optimal	Current 18.5 93.3 76.2 24.3	
Max	Current	Level	 0.2264 0.3092 1.4027	 0.9294	
objective	function	value	 107.4 6.092 432.2	 1388.4	
Execution	time	 sec 	 1.12 5.23 20.28	 87.59	
Loose	Constraint	 	
%	of	Maximum	Optimal	Current 51.1 95.4 77.0 71.9	
Max	Current	Level	 0.6246 0.3162 1.4168	 2.7536	
objective	function	value	 86.51 5.973 425.5	 1315.5	
Execution	time	 sec 	 0.89 5.81 30.92	 70.72	

The	problems	were	solved	on	an	Intel	Xeon	E7458	server	with	8	64‐bit	2.4GHz	processors	
and	64	GB	memory.	The	problems	were	formulated	in	GAMS	 Rosenthal,	et	al.,	2007 .	The	
nonlinear	solver	used	was	IPOPT	version	3.8	 Waechter,	2007 .	The	linear	solver	was	GUROBI	5.0	
Rothberg,	et	al.,	2010 .	

In	the	following	sections,	all	results	are	normalized	by	the	results	from	the	IPOPT	nonlinear	
solver	to	demonstrate	a	better	comparison	among	the	models	and	test	problems.	The	actual	values	
are	in	the	appendix.	
	
Effect	of	preprocessed	cuts.		As	shown	in	figures	2‐5,	for	both	loose	and	tight	current	constraints,	as	
the	number	of	preprocessed	cuts	increases,	the	objective	function	value	in	most	cases	gets	closer	to	
the	nonlinear	objective	function	with	iterative	and	without	iterative	cuts.		However,	as	the	number	
of	preprocessed	cuts	increases	beyond	32,	the	execution	time	increases	and	there	is	little,	if	any,	
improvement	in	the	objective	function	value.	The	best	performance	measures	for	the	execution	
time	and	the	objective	function	value	are	obtained	with	16	or	32	preprocessed	cuts.		For	the	16	and	
32	preprocessed	cuts,	in	all	but	one	case	 14‐bus	test	system	with	loose	current	limits	and	iterative	
cuts 	the	ILIV	solves	faster	than	the	IPOPT.	In	most	cases,	the	ILIV	takes	less	than	half	the	CPU	time.		
Effect	of	iterative	cuts.		Iterative	cuts	are	important	in	improving	the	accuracy	of	the	objective	
function	value.	In	all	cases,	when	the	iterative	cuts	are	implemented,	the	objective	function	value	is	
significantly	improved	and	is	very	close	to	the	NLP	objective	function	value.	In	addition,	they	can	
reduce	the	execution	time,	as	the	linear	model	converges	much	faster.	For	all	the	test	systems	the	
solution	converged	in	less	than	5	major	iterations.	
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Figure	2.	Objective	Function	Percent	Difference	and	CPU	Time	Relative	to	the	Nonlinear	Solver	for	
Loose	Current	Limit	and	No	Iterative	Cuts	
	

	 	
Figure	3.	Objective	Function	Percent	Difference	and	Execution	Time	Relative	to	the	Nonlinear	Solver	
for	Loose	Current	Limit	and	Iterative	Cuts

	

	
Figure	4.	Objective	Function	Percent	Difference	and	Execution	Time	Relative	to	the	Nonlinear	Solver	
for	Tight	Current	Limit	and	No	Iterative	Cuts	

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4 16 32 128 360

P
er

ce
n

t 
d

if
fe

re
n

ce

Number of Cuts

14-bus
30-bus
57-bus
118-bus



		
Page	
12		

	 	
Figure	5.	Objective	Function	Percent	Difference	and	Execution	Time	Relative	to	the	Nonlinear	
Solver	for	Tight	Current	Limit	and	Iterative	Cuts	
	
6.	Conclusion	
As	the	number	of	preprocessed	constraints	for	each	bus	and	line	increases,	the	relative	
error	decreases.	For	the	problems	tested,	the	results	indicate	that	16	to	32	constraints	are	
the	best	number	of	preprocessed	constraints	in	a	tradeoff	between	accuracy	and	solution	
time.	The	marginal	value	of	more	than	32	and	maybe	16	preprocessed	constraints	in	this	
setting	is	negative.	Nevertheless,	the	number	of	preprocessed	constraints	can	be	set	based	
on	the	performance	and	requirements	of	the	specific	problem	being	solved.	Using	iterative	
cuts	often	results	in	faster	convergence	to	a	feasible	solution.	When	solving	without	using	
iterative	cuts,	the	solution	is	within	18%	of	the	best‐known	nonlinear	feasible	solution;	with	
iterative	cuts,	the	solution	is	within	2.5%	of	the	best‐known	nonlinear	solution.	At	16	or	32	
preprocessed	constraints,	solution	time	is	up	to	about	8	times	faster	than	the	nonlinear	
solver	 IPOPT .	This	approach	may	be	useful	in	solving	optimal	transmission	topology	and	
unit	commitment	problems	because	mixed‐integer	linear	solvers	are	much	faster	than	
mixed‐linear	nonlinear	solvers.	 	
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APPENDIX:		NUMERICAL	RESULTS	

14‐BUS	SYSTEM	
Table	A1:		Objective	Function	Values:	14‐bus	system,	tight	current	constraint	

	 Number of	cuts
	 4 16 32 128 360	

LP‐NoIterIVCut	 89.2100 99.9100 105.3400 106.6800 107.0600	
LP‐IterIVCut	 106.5500 105.6900 106.5300 106.9400 107.0700	
NLP LP	Obj	 107.3686 107.3686 107.3686 107.3686 107.3686	

	
Table	A2:	Execution	Time:		14‐bus	system,	tight	current	constraint	

Number of	cuts
4 16 32 128 360

LP‐NoIterIVCut 1.940 0.220 1.070 1.170 2.660
LP‐IterIVCut 0.140 0.300 0.310 1.280 2.580
NLP LP	Obj 1.125 1.125 1.125 1.125 1.125

	
Table	A3:		Objective	Function	Values:		14‐bus	system,	loose	current	constraint	

	 Number of	cuts
	 4 16 32 128 360	

LP‐NoIterIVCut	 79.7700 85.8100 86.0500 86.1600 86.1700	
LP‐IterIVCut	 86.0900 85.9600 85.9600 86.1600 86.1700	
NLP LP	Obj	 86.5062 86.5062 86.5062 86.5062 86.5062	

	
Table	A4:		Execution	Time:		14‐bus	system,	loose	current	constraint	

	 Number of	cuts
	 4 16 32 128 360	

LP‐NoIterIVCut	 1.690 0.170 0.230 0.830 2.420	
LP‐IterIVCut	 0.190 0.790 1.030 1.490 4.760	
NLP LP	Obj	 0.891 0.891 0.891 0.891 0.891	

	
	

30‐BUS	SYSTEM	
Table	A5:	Objective	Function	Values:	30‐bus	system,	tight	current	limit	

Number	of	cuts	 4 16 32 128 360	
LP‐NoIterIVCut	 5.8200 5.9600 6.0300 6.0900 6.1000	
LP‐IterIVCut	 6.0100 6.0600 6.0800 6.0900 6.1000	
NLP LP	Obj	 6.0920 6.0920 6.0920 6.0920 6.0920	

	
Table	A6:	Execution	Time:		30‐bus	system,	tight	current	limit	

Number	of	cuts	 4 16 32 128 360	
LP‐NoIterIVCut	 4.540 0.950 0.990 3.870 10.520	
LP‐IterIVCut	 0.270 0.630 1.310 4.010 10.090	
NLP LP	Obj	 5.234 5.234 5.234 5.234 5.234	
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Table	A7:		Objective	Function	Values:	30‐bus	system,	loose	current	limit	
Number	of	cuts	 4 16 32 128 360	
LP‐NoIterIVCut	 5.8200 5.9300 5.9700 5.9700 5.9700	
LP‐IterIVCut	 5.9500 5.9800 5.9800 5.9700 5.9700	
NLP LP	Obj	 5.9738 5.9738 5.9738 5.9738 5.9738	

	
Table	3:		execution	Time:		30‐bus	system,	loose	current	limit	

Number	of	cuts		 4 16 32 128 360	
LP‐NoIterIVCut	 16.870 1.490 1.420 3.310 10.600	
LP‐IterIVCut	 0.480 1.630 2.400 5.340 15.330	
NLP LP	Obj	 5.812 5.812 5.812 5.812 5.812	

	
	

57‐BUS	SYSTEM	
Table	A9:		Objective	Function	Values:	57‐bus	system,	tight	current	limit	

Number	of	cuts	 4 16 32 128 360	
LP‐NoIterIVCut	 416.9117 422.9959 422.8063 422.4807 422.5419	
LP‐IterIVCut	 422.6372 423.4306 422.7098 422.4812 422.5419	
NLP LP	Obj	 432.1900 432.1900 432.1900 432.1900 432.1900	

	
Table	A10:		execution	Time:		57‐bus	system,	tight	current	limit	

Number	of	cuts	 4 16 32 128 360	
LP‐NoIterIVCut	 19.709 2.436 5.780 27.088 87.331	
LP‐IterIVCut	 1.127 2.041 4.832 21.268 59.018	
NLP LP	Obj	 20.281 20.281 20.281 20.281 20.281	

	
Table	A11:		Objective	Function	Values:	57‐bus	system,	loose	current	limit	

Number	of	cuts	 4 16 32 128 360	
LP‐NoIterIVCut	 416.7944 424.7595 422.4737 422.3770 422.4237	
LP‐IterIVCut	 422.0834 422.5992 422.4155 422.3798 422.4236	
NLP LP	Obj	 425.4805 425.4805 425.4805 425.4805 425.4805	

	

Table	A12:		Execution	Time:		57‐bus	system,	loose	current	limit	
Number	of	cuts	 4 16 32 128 360	
LP‐NoIterIVCut	 16.144 1.969 4.545 21.344 76.306	
LP‐IterIVCut	 0.989 2.874 6.614 24.608 60.344	
NLP LP	Obj	 30.922 30.922 30.922 30.922 30.922	
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118‐BUS	SYSTEM	
Table	A13:		Objective	Function	Values:	118‐bus	system,	tight	current	limit	

Number	of	cuts	 4 16 32 128 360	
LP‐ 1357.1281 1383.0689 1379.9237 1379.1194 1379.0062	

LP‐IterIVCut	 1382.1567 1381.0145 1380.2231 1379.1220 1379.0067	
NLP LP	Obj	 1388.4251 1388.4251 1388.4251 1388.4251 1388.4251	

	
Table	A14:		Execution	Time:	118‐bus	system,	tight	current	limit	

Number	of	cuts	 4 16 32 128 360	
LP‐NoIterIVCut	 93.134 14.373 18.289 73.726 124.514	
LP‐IterIVCut	 38.001 8.472 15.817 53.749 124.637	
NLP LP	Obj	 87.594 87.594 87.594 87.594 87.594	

	
Table	4:		Objective	Function	Values:	118‐bus	system,	loose	current	limit	

Number	of	cuts	 4 16 32 128 360	
LP‐ 1268.3334 1284.7513 1295.2132 1295.8839 1291.0350	

LP‐IterIVCut	 1287.1712 1287.5420 1298.0719 1291.0000 1296.2755	
NLP LP	Obj	 1315.4988 1315.4988 1315.4988 1315.4988 1315.4988	

	
Table	5:		Execution	Time:	118‐bus	system,	loose	current	limit	

Number	of	cuts		 4 16 32 128 360	
LP‐NoIterIVCut	 68.232 259.395 446.980 1885.862 3869.237	
LP‐IterIVCut	 130.440 256.572 438.003 1497.221 3983.677	
NLP LP	Obj	 70.719 70.719 70.719 70.719 70.719	

	


