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Abstract:	
We	present	a	background	on	approaches	historically	applied	to	solve	the	ACOPF,	
many	which	are	used	in	our	following	companion	study	on	testing	solution	
techniques	 Castillo,	2013 .	In	this	paper	we	present	an	introduction	on	the	
associated	theory	in	nonlinear	optimization,	and	then	discuss	the	solvers	and	
published	algorithms	that	have	been	applied	to	the	ACOPF,	dating	initially	from	
Carpentier	in	1962	to	current	day	approaches.	We	provide	insight	into	the	major	
contributions	in	solution	methods	applied	to	the	ACOPF	to	date.			
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1.		Introduction	
	
	 Recently,	mathematical	optimization	has	become	a	powerful	tool	in	many	
real‐life	applications	along	with	the	more	traditional	uses	in	engineering	and	
science.	The	history	is	driven,	and	will	continue	to	be	driven,	by	the	demand	to	solve	
increasingly	larger	nonlinear	optimization	problems	under	the	limitations	of	
storage	and	computing	time.	
	 Here,	we	present	background	on	approaches	that	are	used	in	a	companion	
study	and	are	often	applied	to	solve	the	ACOPF.	We	are	focused	on	understanding	
the	reliability	of	such	approaches	and	whether	there	is	good	reason	to	believe	that	
convergence	of	the	ACOPF	would	be	guaranteed	at	a	reasonable	rate.	Therefore,	we	
introduce	and	discuss	some	of	the	associated	theory.	
	 In	section	2,	we	present	definitions.	In	section	3,	we	review	unconstrained	
optimization	for	nonlinear	programming	followed	by	a	review	of	constrained	
optimization	for	nonlinear	programming	in	section	4;	there	are	numerous	nonlinear	
programming	resources	and,	for	example,	the	reader	can	refer	to	 Nocedal,	1999 ,	
Panos,	2006 	for	a	more	detailed	discussion.	In	section	5,	we	review	problem	
decomposition	techniques	and	popular	approximations	to	the	ACOPF.	In	section	6,	
we	review	the	nonlinear	commercial	solvers	applied	to	the	ACOPF	in	our	companion	
computational	study	 Castillo,	2013 .	Then	in	section	7,	we	review	the	literature	on	
solving	the	ACOPF	followed	by	a	brief	discussion	in	section	8.	
	
2.		Definitions	
	

Definition	1.	If	x	є	X		Rn,	x	is	called	a	feasible	solution.		

Definition	2.	The	function	f x 	with	domain	Rn	and	codomain	R	is	denoted	by		

f x :	Rn	→R.	

Definition	3.	If	f x* 	 	f x 	for	all	x	є	X,	x*	is	called	an	optimal	solution.		

Definition	4.	If	f x* 	 	f x 	for	all	x	є	X’		X,	x*	is	called	a	local	optimal	solution.		

Definition	5.	The	set	TR		X	is	called	a	trust	region	where	an	approximation	of	f x 	is	
‘trusted.’	

Definition	6.	The	set	X	is	convex,	if	and	only	if	αx1	 	 1	‐	α x2	є	X	for	all	α	є	 0,1 	and	
all	x1,	x2	є	X.	

Definition	7.	The	function	f x 	is	convex	in	domain	X	if	and	only	if	f αx1	 	 1	‐	α x2 	
	αf x1 	 	 1	‐	α f x2 	for	any	α	є	 0,1 	and	all	x1,	x2	є	X.	

Definition	8.	If	d	є	Rn	and	x	 	sd	є	X	for	some	s	 	0,	d	is	called	a	feasible	direction.	
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Definition	9.	The	function	F xk 	 	xk 1	is	the	result	of	iteration	k	and	the	approach	is	
a	descent	algorithm	if	f xk 1 	 	f xk 	 the	reduction	condition .	

Defintion	10.	The	L2‐norm	is	|	|.	

Definition	11.	If	f x 	is	once	differentiable,	the	vector	of	first	derivatives	of	f x 	with	
respect	to	x	is	f x ;	f x 	is	also	called	the	Jacobian	or	gradient	vector.	

Definition	12.	If	f x 	is	twice	differentiable,	the	matrix	of	second	derivatives	of	f x 	
with	respect	to	x	is	H x 	 	2f x ;	H x 	is	called	the	Hessian.	

Definition	13.	If	Q	is	a	symmetric	matrix	and	d1TQd2	 	0,	d1	and	d2	are	Q‐orthogonal,	
also	known	as	conjugate	directions.		

Definition	14.	If	 A	‐	eI v	 	0,	e	is	an	eigenvalue	and	v	is	an	eigenvector	of	A.	

Definition	15.	For	unconstrained	optimization	we	solve	inf	 f x |	x	є	X 	where	the	
objective	function	f x :	Rn	→	R	

Definition	16.	For	equality	constrained	optimization	we	solve	inf	 f x |	g x 	 	0,	x	є	
X 	where	the	constraints	g x :	Rn	→	Rm m	 	n .	

Definition	17.	For	inequality	constrained	optimization	we	solve	inf	 f x |	g x 	 	0,	x	
є	X 	where	the	constraints	g x :	Rn	→	Rm	 m	may	be	larger	than	n .	

Definition	18.	The	index	set	AS	is	the	active	set	of	constraints	where	AS x 	 	 j	|	
gj x 	 	0 .	

Definition	19.	The	Lagrangian	function	is	L x,	λ 	 	f x 	 	λTg x .				

Definition	20.	The	Lagrange	multiplier	λ	exists	such	that	 x*,	λ* 	is	a	stationary	point	
of	the	Lagrangian	function	where	λL x*,	λ* 	 	0,	which	implies	g x* 	 	0.			

	

3.	Unconstrained	Nonlinear	Optimization		
	
We	start	with	the	‘unconstrained’	nonlinear	optimization	problem.	We	want	to	
minimize	the	nonlinear	function	f x :		

	 f* 	inf	 f x |	x	є	X 	 	 	

where	x*	is	a	solution	to	the	above	problem	 P .	Methods	for	solving	this	problem	
date	back	to	Newton	and	Gauss.	In	unconstrained	optimization,	the	set	X	is	Rn.	If	X	is	
a	subset	of	Rn,	X	could	be	the	set	of	integers	Zn	or	denote	a	constraint	set	of	
equations.	If	P	is	infeasible,	we	define	f*	 	∞;	if	P	is	unbounded,	we	define	f*	 	‐∞.	
The	function	f	is	typically	called	the	objective	function.	Equivalently,	the	problem	
can	be	stated	as	a	maximization	of	‐f x .	We	present	the	following	theorems	without	
proof.	For	more	details	see	Mangasarian	 1969 	and	Luenberger	 1984 .		
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Theorem	1.	If	f x 	is	differentiable,	x*	is	a	relative	or	local	minimum	if	for	any	
feasible	direction	d,	f x* d	 	0.	

Theorem	2.	If	f x 	is	twice	differentiable,	x*	is	a	relative	or	local	minimum	if	for	any	
direction	feasible	d,	f x* d	 	0;	and	if	f x* d	 	0,	dTH x* d	 	0.	

Theorem	3.	If	X	is	a	convex	set	and	f x 	is	convex	function	on	X,	a	relative	or	local	
minimum	is	a	global	minimum.		

Theorem	4.	If	X	is	a	convex	set	and	f x 	is	convex	function	on	X	and	twice	
differentiable,	H x* 	is	positive	semidefinite	on	X.		

Theorem	5.	If	A	is	symmetric,	all	eigenvalues	are	real.		

Theorem	6.	If	all	eigenvalues	are	positive	 negative ,	A	is	positive	 negative 	
definite.	

Theorem	7.	If	one	or	more	eigenvalues	are	0,	A	is	singular.	

Theorem	8.	If	A	is	symmetric,	V	is	the	eigenvector	matrix	and	E	is	diag e 	where	AV	
	VE	and	V	can	be	chosen	orthonormal	 V‐1	 	VT ,	thus	A	 	VEVT.	

	
Iterative	Methods.	The	nonlinear	function	f x 	cannot	be	solved	directly	through	
factorization	methods.	The	algorithms	for	solving	unconstrained	nonlinear	
optimization	problems	can	be	broadly	defined	as	derivative‐free	methods,	methods	
using	first	derivatives	and	methods	using	second‐order	derivatives.	Since	the	
standard	ACOPF	is	continuous	and	differentiable,	we	focus	on	derivative‐based	
methods.		
	 Most	of	the	methods	described	are	iterative	methods	which	generate	a	
sequence	of	XK	 	 x1,	x2,	…	xk,	…	xK	 	for	K	iterations.	We	call	any	specific	process	a	
solver	or	an	algorithm.	Generally,	all	iterative	search	methods	have	a	five	step	
process:	
	
Step	1.	Choose	a	function	to	optimize;	set	k	 	0.	Choose	an	initial	point:	x0.	

Step	2.	Choose	a	search	direction:	dk.	

Step	3.	Choose	step	size	sk		where	sk		is	a	positive	scalar	and	calculate	a	new	point:	
xk 1	 	xk	 	sk	dk.	

Step	4.	Test	for	stopping:	If	xk 1	satisfies	the	convergence	criteria	or	exceeds	the	
time	allotted,	then	set	K	 	k 1	and	stop.		Otherwise,	if	xk 1	does	not	satisfy	the	
convergence	criteria,	then	set	k	 	k	 	1	and	go	to	Step	2.	

There	are	numerous	approaches	for	each	step.	Whereas	line	search	methods	
compute	a	search	direction	dk	and	then	a	step	size	sk	,	trust	region	methods	define	a	
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region	TR		X,	typically	an	elipse	around	the	current	iterate	xk,		to	choose	a	step	size	
sk		є	TR	and	direction	dk	simultaneously.	The	choice	of	the	step	size	and	then	
direction	in	line	search	methods,	or	in	the	case	of	trust	region	methods	the	choice	of	
the	trust	region	and	then	determining	sk	dk,	is	important	in	promoting	convergence	
from	remote	starting	points.	

	 In	Step	1,	the	user	can	supply	the	starting	point.	If	the	initial	point	is	
infeasible,	finding	a	feasible	solution	can	be	an	optimization	problem	in	itself.		For	
parallel	algorithms,	the	process	may	start	with	many	initial	points.	The	simplest	
parallel	algorithm	is	the	horse	race	where	the	approaches	are	started	in	parallel	and	
the	first	to	converge	terminates	the	algorithm.	More	complex	parallel	algorithms	
interact.	
	 Steps	2	and	3	are	often	defined	as	a	single	step	xk 1	 	F xk 	where	F	is	the	
descent	algorithm.	Whether	a	linear	search	or	trust	region	method	is	applied,	the	
result	is	where		

f xk	 	skdk 	 	f xk 		
and	hopefully		

f xk	 	skdk 	 	f xk .		
Typically	dk	is	a	descent	direction	where	
	 dk	Tf xk 	 	0.	
For	instance	we	can	determine	the	search	direction	dk	by	Newton‐Raphson’s	
method:	
	 2f xk dk	 	‐f xk .	
We	will	discuss	Netwon‐Raphson	in	further	detail	below.	Note	that	we	may	replace	
the	above	Hessian	H xk 	 	2f xk 	with	any	symmetric	and	nonsingular	matrix	Bk.	If	
Bk	 	I,	the	descent	algorithm	is	called	steepest	descent.	If	Bk	 	H xk ,	the	method	is	
called	quasi‐Newton.	For	example,	the	restricted	step	varies	from	a	Newton	step	to	a	
small	steepest	decent	step.	The	Newton	step	approach	has	quadratic	convergence,	
but	can	fail	to	converge.	The	steepest	decent	approach	has	slower	linear	
convergence,	but	fails	less	frequently.	

Step	4	tests	for	convergence.	Numerous	strategies	assume	Lipschitz	
continuity	of	the	gradient	 Nocedal,	1999 .	In	theory,	to	prove	convergence	an	
infinite	sequence	is	shown	to	converge	to	a	stationary	point.	A	subsequence	has	a	
limiting	property	that	satisfies	first‐order	necessary	or	second‐order	necessary	
conditions.	In	practice,	a	solver	stops	in	a	finite	number	of	iterations	when	the	
solution	is	‘close	enough’	to	the	optimal	solution.	For	example,	for	some	user	
defined	convergence	criteria	δ	 	0,	stop	if	

| xk	–	xk 1 |/|xk|	 	δ	or	fk	–	fk 1	 	δ	or	|f xk |	 	δ.	
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Furthermore,	the	globally	convergent	algorithms	are	those	which	converge	from	
any	starting	point	to	a	local	optima,	and	therefore	have	the	property	that	the	
gradient	norms	converge	to	zero:	
	 limk∞	||fk||	 	0	
	
Rate	of	Convergence.	The	error	term	is	defined	as		

εk	 	xk	–	x*		

If	0	 	β	 	lim	sup	k	є	∞	|εk 1|/|εk|p	 	∞,	β	is	called	the	convergence	ratio	and	p	is	the	
order	of	convergence.	If	p	 	1	and	β	 	0,	the	convergence	rate	is	called	linear.	If	p	 	
1	and	β	 	0,	the	convergence	rate	is	called	superlinear.	If	p	 	2	and	β	 	0,	the	
convergence	rate	is	called	quadratic.		
	
Feasible	Direction	Methods.	Feasible	direction	methods	require	that	for	a	given	
iterate	xk	є	X,	we	can	find	a	descent	direction	dk	which	is	also	a	feasible	direction	at	
xk.	Therefore	at	each	iteration	there	must	exist	a	new	feasible	point	of	the	form	xk	 	
skdk	that	meets	the	reduction	condition.		
	 Feasible	direction	methods	include	both	derivative	free	and	derivative	based	
methods.	Line	search	without	derivatives,	such	as	the	Fibonacci	search,	only	
requires	function	evaluations.	The	Fibonacci	sequence	is	the	basis	for	this	approach	
in	which	sequential	points	are	chosen	such	that	the	discrepancy	f xk 1 	 	f xk 	is	
minimized.	However	if	f	is	differentiable,	we	solve	sf xk	 	sdk 	 	0.	This	is	a	
standard	algorithm	in	the	initial	stage	of	a	line	search.	
	 First‐derivative	gradient	approaches	use	the	first	derivative	as	the	feasible	
direction,	dk	 	‐f xk .	This	is	the	direction	at	which	f	decreases	most	quickly.	Below	
we	summarize	the	first‐derivative	methods	Gauss‐Seidel,	steepest	descent,	
conjugate	gradient,	and	Quasi‐Newton,	and	then	also	the	second‐derivative	based	
Newton’s	method.		
	
Gauss‐Seidel	Method.	The	Gauss‐Seidel	approach	chooses	the	unit	vector	as	a	
coordinate	direction	dk	 	 0,…	1k,	…0 	and	a	line	search	in	one	variable	is	performed	
for	some	s	 	0:	

	 mins	f xk	 	sdk 		

This	problem	is	sequentially	solved	in	each	coordinate	direction	and	repeated	until	
the	convergence	criteria	is	met.	This	approach	has	linear	convergence	rate.	

	

Steepest	Descent	Method.	The	steepest	descent	method,	which	is	fundamentally	

xk 1	 	F xk 	 	xk	–f xk 	
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for	unit	step	size	and	more	specifically,		

xk 1	 	F xk 	 	xk	 	skdk	

for	sk,	dk	 	0	suffers	from	slow	convergence	due	to	zigzagging,	as	shown	in	
Figure	1.	Numerous	methods	have	been	proposed	to	avoid	zigzagging.		

Ideally	in	choosing	the	step	size	s,	we	find	the	local	minimizer	to	the	above	
objective	function	in	order	to	obtain	a	substantial	reduction	in	f.	However	this	may	
require	too	many	evaluations	of	f,	and	in	the	case	if	f		is	differentiable,	then	sf.	
Therefore	strategies	that	perform	inexact	line	search	identify	an	adequate	reduction	
in	f	by	trying	candidate	values	for	s.	As	we	shall	see,	exact	line	searches	are	not	
needed	and	may	not	be	the	best	approach	because	algorithms	that	achieve	rapid	
convergence	can	sometimes	conflict	with	the	global	convergence	requirements,	and	
vice	versa.	
	

Figure	1.	Zigzagging	with	steepest	descent	and	lack	of	zigzag	with	conjugate	
directions.	

	
Conjugate	Gradient	Method.	The	introduction	of	the	conjugate	gradient	method	by	
Fletcher	and	Reeves	in	1964	was	the	inception	of	large‐scale	nonlinear	optimization.	
The	conjugate	gradient	method	determines	conjugate	directions	to	the	Hessian	

(x0, y0) 

Steepest Descent 
Conjugate Gradient 
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through	evaluating	f	and	f,	but	without	directly	evaluating	the	Hessian	2f.	The	
procedure	is	as	follows:	

Step	1.	Let	g0	 	f x0 	and	d0	 	‐g0;	set	k	 	0.	

Step	2.	Solve	for	xk 1	 	xk	 	skdk	where	sk	 	argmins	f xk	 	sdk .	

Step	3.	Determine	direction	dk 1	 	gk 1	 	rkdk	where		
	 rk 	gk 1Tgk 1/gkTgk,,	and	
	 gk 1	 	f xk 1 .	

Step	4.	Go	to	Step	2	and	repeat	for	k	 	1	…,	n 1.	

	
Quasi‐Newton	Method.	
	 In	the	late	1950’s,	Davidon	introduced	quasi‐Newton	methods,	based	on	
Newton’s	method	and	also	known	as	secant	methods,	which	use	a	sequence	of	
positive	definite	matrices	to	approximate	the	Hessian	 or	inverse	Hessian .	These	
methods	are	inexact	line	search	methods	and	have	a	superlinear	convergence	rate.	
Fletcher	and	Powell	demonstrated	that	Davidon’s	approach	is	equivalent	to	
conjugate	gradient	method	when	applied	with	exact	line	searches	to	convex	
quadratic	functions.	Quasi‐Newton	methods	only	require	first	derivatives,	
approximate	the	Hessian	and	adhere	to	the	descent	property	due	to	the	positive	
definiteness.	
	 For	example,	if	f x 	is	twice	differentiable,	the	second‐order	Taylor’s	series	
expansion	of	f x 	at	xk	is:	

	 f x 	 	f xk 	 	f xk T x	 	xk 	 	 x	 	xk TH xk x	 	xk /2	 	O |x	 	xk |2 		

Dropping	O |x	 	xk |2 ,	f x 	is	a	quadratic	approximation	of	f x 	

f x 	 	f xk 	 	f xk T x	 	xk 	 	 x	 	xk TH xk x	 	xk /2		

If	f x 	is	quadratic,	then	

	 f x 	 	bTx	 	xTQx/2,		
	 f x 	 	bT	 	xTQ,		
	 H x 	 	Q,	and		
	 O |x	 	xk |2 	 	0.		

The	above	expansion	is	exact	and	x*	is	a	solution	to		

Qx*	 	 b.		

If	Q	is	positive	semidefinite	at	x*,	we	have	that	

f x 	 	0,		
x*TQx*	 	0,	and		
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f x 	 	f x* .		

Therefore	in	quasi‐Newton	methods	the	Hessian	approximation	Hk	is	chosen	to	
satisfy	

	 f xk	 	Δx 	 	f xk 	 	HkΔx	

which	is	called	the	secant	equation	and	is	the	Taylor	series	of	the	gradient	itself.	
	
	
Steps	in	the	Quasi‐Newton	Method:	

Step	1.	An	approximate	initial	value	of	H0	 	I	is	frequently	sufficient	for	
convergence.	Set	k	 	0.	

Step	2.	Hk	is	positive	definite.	Let	dk	 	 	Hk‐1f xk 	and	compute	sk	 	argmins	f xk	 	
sdk .	Set	xk 1	 	xk	 	skdk,	where	sk	satisfies	Wolfe	conditions:	

	 f xk	 	skdk 	 	f xk 	 	α1sk	dk	Tf xk 	

	 dk	Tf xk	 	skdk 	α2skdk	Tf xk 	

where	0	 	α2	 	α2	 	1.	The	above	first	inequality	is	sometimes	referred	to	as	the	
Armijo	rule,	which	ensures	that	the	step	length	sk	results	in	a	sufficient	decrease	in	f,	
and	the	second	is	the	curvature	condition,	which	ensures	that	the	slope	has	been	
reduced	sufficiently	 Nocedal,	1999 .	Another	way	of	stating	the	curvature	
condition	is	as	follows:		

vk	T f xk	 	skdk 	f xk 		 	vk	THkvk	 	0	

where	vk	 	skdk.	The	Wolfe	conditions	can	be	applied	in	most	line	search	methods	
and	are	important	in	implementing	quasi‐Newton	approaches.	

Step	3.	Compute	Hk 1	by	a	rank‐two‐update,	where	the	inverse	of	the	Hessian	Bk	 	
Hk‐1	is	updated	by	the	sum	of	two	symmetric	rank	1	matrices:			

Bk 1	 	Bk	 	βkvkvkT	 	γk	HkykykTHk	

where	vk	 	skdk,	yk	 	f xk	 	skdk 	f xk ,	βk	 	1/vkTyk,	and	γk	 	1/ykTHkyk.	The	
Hessian	approximation	is	chosen	to	satisfy	the	quasi‐Newton	condition:	
	 Hk 1 f xk 1 	f xk 	 	xk 1	 	xk.	
Set	k	 	k	 	1;	go	to	Step	2.	
The	above	algorithm	is	known	as	the	Davidon‐Fletcher‐Powell	 DFP ;	the	Broyden‐
Fletcher‐Goldfarb‐Shanno	 BFGS 	method	is	the	dual	of	DFP	because	whereas	the	
DFP	converges	to	the	inverse	of	the	Hessian,	the	BFGS	method	converges	to	the	
Hessian	in	itself	and	therefore	is	a	more	direct	approach.	 	
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	 In	1970,		Broyden,	Fletcher,	Goldfarb,	and	Shanno	independently	introduced	
a	secant	approach	now	known	as	the	Broyden‐Fletcher‐Goldfarb‐Shanno	 BFGS 	
method.		In	this	direct	approach,	

Hk 1	 	Hk	 	βkykykT	 	γk	HkvkvkTHk	

where	instead	γk	 	1/vkTHkvk.	
	 The	Levenberg‐Marquardt	method	uses	a	trust‐region	to	solve	a	system.	The	
method	determines	a	value	ν	 	0	such	that	H xk 	 	νI	is	positive	definite	and	then	
solves	

sk∆xk	 	 	 H xk 	 	νI ‐1f xk .	

An	iteration	radius	rk	may	impose	a	limit	on	the	step	size	sk,	or	alternatively	ν	
controls	the	length.	However	by	not	controlling	the	length	rk,	degeneracy	 i.e.	non‐
invertible	 H xk 	 	νI 	and	ill‐conditioning	issues	can	result	in	a	step	size	and	
direction	that	are	badly	determined	by	ν.	
	
Newton’s	Method.	Newton’s	method	has	been	applied	with	both	line	search	and	
trust	region	approaches.	Non‐monotone	methods	in	which	the	function	values	are	
allowed	to	increase	at	some	iterations	have	been	useful	in	solving	highly	nonconvex	
problems.		
	
The	basic	Newton’s	algorithm	is:		

Step	1.	Guess	x0,	and	set	k	 	0.	

Step	2.	At	xk,	evaluate	f xk .	

Step	3.	Evaluate	Bk	 	H xk 	or	an	approximation	Bk	 	H xk .	For	example,	when	
H xk 	is	not	positive	definite,	then	modifications	could	be	applied	to	determine	
H xk 	and	guarantee	a	decrease	in	f xk .	Such	methods	may	modify	H xk 	so	that		
	 f xk TBkf xk 	 	0,		
or	such	methods	may	compute	a	negative	search	direction	which	satisfies	

		 ∆xkTBk	∆xk	 	0	and		

	 xf xk T∆xk	 	0.		

Step	4.	Solve:	Bkdk	 	 f xk .	

Step	5.	If	the	convergence	error	is	less	than	the	tolerance,	 e.g.,	||f xk 	||	 	ε	and	
||dk||	 	ε 	then	stop;	else	continue.	

Step	6.	Find	sk	so	that	0	 	sk	 	1	and	f xk	 	skdk 	 	f xk .		

Step	7.	xk 1	 	xk	 	skdk.	Set	k	 	k	 	1	and	go	to	Step	2.	
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Note	that	recalculating	f xk ,	Bk,	and	skdk	 	xk 1	 	xk	at	each	iteration	may	be	very	
costly	in	terms	of	computational	time.	Let	dk	 	f xk ,	xk 1	 	xk	 sdk.	If	H xk 	is	
positive	semidefinite,		

	 u	 	dkTH xk dk	 	0	and	v	 	dkTdk	 	0	

	 f xk 1 	 	f xk 	 	dkTsdk	 	sdkTH xk sdk	 	vs	 	us2	

for	some	s	 	0,	where	we	have	f xk 1 	 	f xk .		
	
For	globally	convergent	Newton	and	quasi‐Newton	methods,	Bk	must	be	positive	
definite	and	also	have	a	bounded	condition	number	because	a	high	condition	
number	can	result	in	ill‐conditioned	problems	 Nocedal,	1999 .	Intuitively,	the	
search	direction	dk	is	not	near	orthogonal	to	the	gradient	in	order	to	promote	
convergence.	However	for	problems	that	are	ill‐conditioned,	it	may	be	necessary	to	
search	along	directions	that	are	nearly	orthogonal	to	the	gradient.	
	
Numerical	Efficiency	and	Stability.	Applying	the	appropriate	techniques	results	in	
computationally	efficient	and	numerically	stable	procedures.	For	example	the	core	
of	solving	a	system	of	linear	algebraic	equations,	Ax	 	b,	is	decomposing	or	factoring	
the	coefficient	matrix.	Through	this	process,	the	solution	can	be	obtained	with	much	
less	computational	effort,	and	better	methods	are	solved	faster	with	less	numerical	
error.	Matrix	inversion	is	usually	unstable	and	results	in	dense	matrices	and	
unnecessary	floating‐point	calculations.	Sometimes	for	simplicity	and	sometimes	
out	of	ignorance,	an	algorithm	is	presented	as	inverting	a	matrix	at	each	iteration:	x	
	A‐1b.	This	approach	is	not	only	computationally	expensive,	but	also	numerically	

unstable.			
	 For	large	problems,	A	is	usually	sparse,	but	the	inverse	is	usually	dense.	
Sparse	matrices	are	stored	efficiently	by	storing	only	nonzeroes	and	their	row	and	
column	index.	When	one	of	the	operands	in	a	floating‐point	operation	is	zero,	it	can	
be	skipped,	saving	time.	Problems	are	referred	to	as	ill‐conditioned	when	small	
perturbations	to	the	coefficients	result	in	an	unpredictably	large	change	of	the	
solution.	Certain	conditions	such	as	positive	definiteness	can	be	checked,	and	
corrections	to	an	indefinite	matrix	can	be	applied.			
	 Accumulating	floating	point	round‐off	and	also	cancellation	errors	cause	
search	vectors	to	lose	orthogonality	in	conjugate	search	methods.	Similarly,	steepest	
descent	methods	can	accumulate	floating	point	round‐off,	which	may	cause	xk	to	
converge	to	some	point	near	x.	This	effect	can	be	deterred	by	occasionally	
recomputing	the	correct	residual.	
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Scaling.	Numerical	stability	starts	with	scaling	the	problem.	Scaling	is	part	theory	
and	part	art	form.	Proper	consistent	scaling	means	primal,	dual	solution	values,	
constants	and	derivatives	of	nonlinear	terms	 Jacobian	elements 	in	absolute	value	
be	around	1,	e.g.	from	0.01	to	100.	Most	solvers	have	automatic	scaling	options.		
	
Factoring	Linear	Equations.	In	practice,	at	each	iteration	dk	 	 	Bkf xk 	
is	solved	by	sparse	matrix	factorization	techniques	often	a	matrix	is	represented	as	
the	product	or	sum	of	matrices;	such	a	representation	is	termed	as	a	decomposition	
or	factorization	of	the	original	matrix.	The	Gaussian	elimination	product	form	of	the	
inverse	of	A	stores	the	inverse	as	a	product	of	elementary	column	matrices,	where	

A 1	 	Ek	Ek 1	 	 	 	E2E1.		

and	E	is	an	elementary	column	operation	where	all	but	one	column	is	the	identity	
matrix.	Therefore	we	have	that			

x	 	A 1	b	 	Ek	Ek 1	 	 	 	E2E1b.	

For	iterative	procedures,	as	k	become	large,	numerical	errors	build‐up	and	
excessive	floating‐point	operations	occur.	Therefore	the	matrix	needs	to	be	
refactored	into	k	 	n	factors.	

Another	technique	is	LU	factorization,	where	L	is	a	lower	triangular	matrix	
and	U	is	an	upper	triangular	matrix.	For	any	matrix	A,		

Ax	 	LUx	 	L Ux 	 	b		

We	can	solve	Ly	 	b	by	substitution	and	then	Ux	 	y	by	substitution.	For	additional	
details,	see	Markowitz	LU	decomposition	 Reid,	1976;	1982 	and	Bartels‐Golub	
update	 Bartels	and	Golub,	1969;	1971 .	
	
Factoring	Linear	Equations	with	Symmetric	Matrices.	Symmetric	matrices	have	more	
efficient	factorizations.	The	Cholesky	decomposition	of	a	Hermitian,	positive‐
definite	matrix,	A,	is	the	product	of	a	lower	triangular	matrix	and	its	conjugate	
transpose.	A	 	LL*	where	L*	is	the	conjugate	transpose.	Cholesky	decomposition	is	
roughly	twice	as	efficient	as	the	LU	decomposition	for	solving	systems	of	linear	
equations.	With	QR	factorization,	A	results	in	an	orthogonal	matrix	Q	that	is	a	basis	
for	the	column	space	of	A	and	an	upper	triangular	matrix	R	where	A QR.	These	
approaches	lose	certain	invariance	properties	associated	with	Newton’s	method	and	
Newton’s	method	with	line	search,	and	therefore	may	not	transform	correctly,	when	
the	Hessian	is	ill‐conditioned.		
	
4.	Constrained	Nonlinear	Optimization	
	
The	constrained	nonlinear	problem	or	program	in	canonical	primal	 P 	form	is:	
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	 f* 	inf	 f x 	|	g x 	 	0,	h x 	 0,	xX 			 P 	

This	formulation	explicitly	introduces	an	additional	set	of	inequality,	g x 	 	0,	and	
equality	constraints,	h x 	 	0,	that	are	linear	or	nonlinear.	If	xX,	h x 	 	0	and	g x 	
	0,	x	is	said	to	be	a	feasible	solution.	Nonlinear	equality	constraints	can	be	

represented	as	g x 	 	0	and	‐g x 	 	0.	We	define	c x 	 	0	as	 g x s 0,	h x 0 .	
	
Lagrangian	Function.	The	algorithms	for	solving	constrained	nonlinear	optimization	
problems	typically	start	with	a	transformation	of	the	Lagrangian.	The	Lagrangian	
dual	 D 	formulation	is		

	 L*	 	supλ	 	0 inf	L x,	λ |	x	X,	h x 	 	0 	

where	L x,	λ 	 	f x 	 	λTg x 	is	the	Lagrangian	function	and	λ	is	the	Lagrangian	
multiplier	vector.	The	variable	λ	is	sometimes	called	the	dual	or	slack	variable.	Let	
x*,	λ* 	be	the	solution	to	 D .		If	L x,	λ 	is	unbounded	for	x	X,	then	L*	 	∞.	
Furthermore,	if	the	feasible	region	to	 D 	is	an	empty	set,	then	L*	 	‐∞.	
	 Iterative	methods	such	as	penalty	and	augmented	Lagrangian	methods,	
barrier	or	interior	point	methods,	variable	metric	methods,	sequential	linear	
programming	methods	and	sequential	quadratic	programming	methods	often	solve	
a	sequence	of	generalized	Lagrangian	functions.	The	generalized	Lagrangian	
function	is:	

	 L x,	λ 	 	f x 	 	Λ g x ,	λ,	μ 	

that	includes	a	positive	penalty	parameter	μ	 	0	with	a	penalty	function	Λ.	
	
Karush‐Kuhn‐Tucker	 KKT 	Conditions.	If	f x 	and	g x 	are	differentiable	the	KKT	
necessary	 first‐order 	conditions	are						

f x 	 	λTg x 	 	0,				
	 	λ	 	0,				
	 λTg x 	 	0,		and	
	 h x 	 	0.	

Under	certain	constraint	qualifications,	for	example,	if	there	is	g x 	 	0	and	h x 	 	
0,	or	 g	 x ,	h x 	has	full	rank	where	the	active	set	AS	denotes	an	active	
constraint,	the	KKT	are	necessary	for	a	local	optimum.	If	x	is	a	local	optimal	solution	
to	P	and	also	satisfies	the	KKT	sufficiency	conditions	with	strict	complementarity	to	
λ,	then	 x,	λ 		X	 	Rm 	is	a	saddle	point	of	the	Lagrangian:	

	 L x,	λ 	 	L x,	λ 	 	L x,	λ 	

for	all	 x,	λ 		X	 	Rm .	Therefore,	the	x	and	λ	are	optimal	solutions	to	the	primal	
and	dual	problems,	respectively	and	
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inf f x 	|	g x 	 	0,	h x 	 	0,	xX 	 	supλ	 	0	inf	 L x,	λ 	|	h x 	 	0,	xX .				

This	property	is	known	as	weak	duality	when	x	is	feasible	in	P	and	λ	is	feasible	in	D.	
f*	‐	L*	 	0	is	called	the	duality	 complementarity 	gap.	Strong	duality	results	in	a	
zero	duality	gap:		

	 f*	‐	L*	 	0.	

	 Furthermore,	if	x	is	feasible	and	there	exists	λ	such	that	strong	duality	holds	
under	certain	constraint	qualifications	where	x	is	a	local	optima.	Certain	stability	
properties	lead	to	necessary	and	sufficient	conditions	which	hold	with	equality	for	
the	existence	of	a	global	saddle	point	of	the	Lagrangian	function	with	respect	to	X	 	
Rm .	If	g x 	and	f x 	are	convex	functions,	then	the	KKT	are	sufficient	for	global	
optimality.	If	f x 	and	g x 	are	twice	differentiable,	and	the	Hessian	

	 H x,	λ 	 	2L x,	λ 	 	2f x 	 		λT2g x 			

is	positive	definite,		then	we	have	a	local	minima,	or	if	H x,λ 	is	negative	definite,	
then	we	have	a	local	maxima.	The	result	is	analogous	to	strong	duality.		
	 Often	the	KKT	may	not	hold	at	the	optimal	solution	if	the	problem	is	
nonconvex,	and	therefore	such	KKT	necessary	conditions	are	not	sufficient	to	prove	
global	optimality.	When	the	primal	problem	is	nonconvex,	there	may	be	local	optima	
that	are	not	globally	optimal.		
	 The	following	subsections	detail	the	dominant	approaches,	which	are	based	
directly	on	solving	the	KKT	conditions	for	constrained	optimization.	
	
Augmented	Lagrangian	and	Penalty	Methods.	In	1969	in	separate	papers,	Hestenes	
and	Powell	introduced	the	augmented	Lagrangian.	In	the	1970s,	it	gained	a	strong	
following	and	is	still	applied	today.	The	augmented	Lagrangian	is	the	Lagrangian	
function	with	a	quadratic	penalty	term:		

	 Λ g x ,	λ,	μ 	 	λTg x 	 	μTg x 2					

The	basic	algorithm	for	the	augmented	Lagrangian	and	general	penalty	function	
methods:		

Step	1.	Choose	λ0,	μ0	in	iteration	k	 	0.	

Step	2.	Find	xk 1	 	argminx	 f xk 	 	λkTg xk 	 	μkTg xk .	

Step	3.	Update	μk 1	 	μk		and	λk 1	 	λk	 	μkTg xk .	

Step	4.	If	convergence	criteria	is	met,	then	stop;	else	go	to	Step	2.	

	
Barrier/Interior‐Point	Methods.	Barrier	methods	require	an	interior	point	x0,	where	
g x0 	 	0,	and	construct	a	sequence	of	unconstrained	problems	with	μ	 	0	
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controlling	the	weight	of	the	barriers.	Barrier	terms	cannot	be	defined	for	equality	
constraints	because	μ	increases	tends	to	zero	as	the	algorithm	approaches	the	
boundary	to	the	feasible	region.	For	example,	the	most	popular	barrier	functions	are	
of	the	form		

	 Λ g x ,	λ,	μ 	 	μTlog g x 	and	Λ g x ,	λ,	μ 	 	 1/μTg x .	

	 Originally	proposed	by	Frisch	 1955 	and	later	developed	by	Fiacco	and	
McCormick	 1968 ,	the	logarithmic	barrier	method	was	applied	extensively	in	the	
1960s	and	1970s	and	has	become	foundational	for	nonlinear	interior‐point	
methods.	In	1984,	interior	point	methods	gained	momentum	with	Karmarkar’s	
polynomial‐time	LP.	in	the	log‐barrier	approach,	steps	are	generated	by	iteratively	
solving	an	unconstrained	optimization	problem	similar	to	the	form:	

	 min		 f x 	 	μkTlog g x 				

where		

	 μk	 	0,	and	

	 ∂ μkTlog gi xk 	 /∂xk	 	μkTgi xk /gi xk .	

As	k	→	∞,		we	have	μk	→	0	and	μk/gi xk 	→	λi		for	all	i.	
	 Since	the	logarithm	of	a	small	number	is	negative,	the	 μklog gi xk 	term	
is	positive	for	any	variable	near	the	bound;	this	effectively	creates	barriers	pushing	
the	variables	into	the	interior	of	the	feasible	region.	Barrier	methods	suffer	from	ill‐
conditioning	in	the	Hessian	as	the	optimum	is	approached.	More	generally,	interior	
point	methods	are	often	sensitive	to	the	initialization	and	reduction	of	the	barrier	
or	centering 	parameter	μ.	Such	barrier	methods	are	also	sensitive	to	the	step	size	
when	a	global	convergence	strategy	is	employed.	However	applying	factorization	
and	global	convergence	strategies	specifically	designed	for	the	given	barrier	
function	can	address	some	of	the	above	complications.		

In	1992,	Polyak	introduced	a	modified	barrier	method	that	scales	the	barrier	
function	so	that	initial	infeasibility	is	not	a	problem.	Also	in	1992,	Mehrorta	
introduced	a	predictor‐corrector	mechanism	to	promote	convergence	by	reducing	
the	number	of	matrix	factorizations	when	determining	search	directions.	The	
method	uses	the	Cholesky	decomposition	to	find	two	different	directions:	a	
predictor	and	a	corrector.		The	predictor	computes	an	optimizing	search	direction	
based	on	a	first	order	term.	The	corrector	step	uses	the	same	Cholesky	
decomposition	found	during	the	predictor	step.	The	search	direction	is	the	sum	of	
the	predictor	direction	and	the	corrector	direction.		By	determining	the	centering	
parameter	adaptively	 rather	than	prior	to	the	affine‐scaling	direction 	and	enabling	
corrections	in	the	predicted	direction,	Mehrotra’s	approach	introduces	extra	
computation	per	iteration	but	significantly	reduces	the	number	of	iterations	
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required.	In	1996,	Gondzio	introduced	multiple	centrality	corrections	strategy	that	
maximizes	the	possible	step	size	increase	in	Mehrotra’s	approach	by	computing	up	
to	several	corrections,	which	leads	to	an	even	larger	decrease	in	the	residuals.	Most	
interior	point	approaches	have	leveraged	the	predictor‐corrector	method.	Although	
there	is	no	theoretical	complexity	bound,	the	method	is	widely	used	in	practice.	It	
appears	to	be	computationally	efficient	and	to	converge	very	fast	when	close	to	the	
optimum.		

	
Primal‐Dual	Methods.	Primal‐dual	approaches	apply	 quasi‐ Newton’s	method,	and	
similar	to	other	iterative	methods	we’ve	covered	thus	far,	includes	a	search	step	and	
direction,	and	a	convergence	criteria.		
Consider	the	primal	program	

	 minx,y	f x 		
	 subject	to		
	 g x 	 	y	 	0	
	 y	 	0		

with	the	Lagrangian		

	 L x,	s,	λ,	μ 	 	f x 	 	λT g x 	 	y 	 	μTy.		

The	first	order	conditions	are	

	 f x 	 	λTg x 	 	0	,	

	 μ	 	ν		 	0,	

	 g x 	 	y		 	0	,	

	 y	 	0	,		

	 μ	 	0,	

	 νiyi		–	1/t	 	0,	and		

	 νy	 	0		

where		is	element‐by‐element	multiplication	and	t	→	0.		
The	optimization	problem	is	

	 min	νy		
	 subject	to		
	 f x 	 	λTg x 	 	0		
	 μ	 	ν	 	0		
	 g x 	 	y	 	0		
	 y	 	0			
	 μ	 	0.		
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Therefore,	x,	s,	λ,	μ	and	t	are	updated	after	each	Newton	step.	Primal‐dual	interior	
point	methods	allow	for	primal	and	dual	iterates	to	be	infeasible,	e.g.	g x 	 	s	 	0.	
	
Sequential	Linear	Programming	 SLP 	Methods.	The	SLP	method	determines	the	
solution	to	a	nonlinear	problem	through	solving	a	sequence	of	linear	
approximations,	mostly	using	first‐order	Taylor	series	expansions.	For	each	
iteration	k,	we	solve	the	linear	program	

	 xk 1	 	argmin	 f xk Td	|	g xk Td	 	g xk 	 	0,	dl	 	d	 	du 	

where	f xk 	can	be	replaced	with	linearized	generalized	Lagrangians.	Since	the	
linearizations	are	not	necessarily	bounded,	trust	regions	where	xk 1	є	TRk	can	be	
used	to	ensure	convergence.	Furthermore,	this	approach	may	be	used	in	
conjunction	with	a	penalty	or	merit	function	and	step	restrictions.	If	the	problem	is	
convex,	the	linear	constraints	are	always	outside	the	feasible	region	to	the	nonlinear	
problem,	but	are	guaranteed	to	achieve	convergence	as	k	→	0.	
	 The	SLP	can	handle	very	large	problems,	benefits	from	using	LP	solvers,	but	
may	converge	slowly	and	may	violate	nonlinear	constraints.	SLP	methods	are	
suitable	for	solving	large‐scale	nonlinear	programming	problems,	since	large	linear	
programs	can	be	solved	efficiently.	Because	of	the	linearity	of	the	approximation,	
special	scarcity	patterns	of	the	Jacobian	matrix	g xk 	are	passed	to	the	constraint	
matrix	of	the	linear	program	directly.	A	particular	advantage	of	sequential	linear	
programming	methods	is	that	although	second	order	information	is	not	used,	
convergence	is	linear	even	in	the	case	of	highly	nonconvex	problems.	
	
Sequential	Quadratic	Programming	 SQP 	Methods.This	method	is	also	referred	to	as	
a	projected	Lagrangian	or	Lagrange‐Newton	approach	because	the	accompanying	
subproblem	minimizes	a	quadratic	approximation	to	the	Lagrange	function	subject	
to	a	linearized	constraint	set.	
	 SQP	methods	solve	a	sequence	of	quadratic	subproblems	to	determine	the	
active‐set	and	a	search	direction	d	as	the	solution	for	each	iteration.	The	key	idea	is	
to	approximate	second	order	information	to	get	a	fast	final	convergence	speed.	Thus,	
we	define	a	quadratic	approximation	of	the	generalized	Lagrangian	function	L x,	λ,	
μ 	and	an	approximation	of	the	Hessian	matrix	by	a	quasi‐Newton	Newton	where	Bk		
	2xL xk,	λk,	μk .	Then	we	obtain	the	subproblem:	

	 min	dkTBkdk/2	 	f xk Tdk	
	 subject	to	
	 g xk Tdk	 	g xk 	 	0			
	 dk	TRk	
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	 The	KKT	conditions	are	applied	to	the	objective	of	the	subproblem	to	solve	
for	dk.	A	merit	function	is	typically	the	sum	of	the	objective	function	and	the	amount	
of	infeasibility	of	the	constraints.		
	 A	SQP	usually	requires	fewer	functions	and	gradient	evaluations	than	a	SLP,	
but	may	violate	nonlinear	constraints	and	is	harder	to	solve	than	a	SLP.	Another	SQP	
based	approach,	the	sequential	linear‐quadratic	program	 SLQP ,	decouples	the	
active‐set	identification	and	the	step	computation	in	the	QP	subproblem.	SLQP	omits	
the	quadratic	term	in	the	objective	function	and	solves	the	subproblem	for	a	trust	
region.	With	only	the	active‐set	of	constraints,	a	subsequent	linear	program	is	
solved	to	determine	dk.	
	
Generalized	Reduced	Gradient	Methods.	In	1961,	Rosen	introduced	a	gradient	
projection	method.	In	1969,	Abadie	and	Carpentier	introduced	the	generalized	
reduced	gradient	 GRG 	for	nonlinear	constraints	combining	quasi‐Newton	methods	
and	Wolfe’s	reduced	gradient	method.	The	actual	implementation	has	many	
modifications	to	make	it	efficient	for	large	models	see	in	Drud	 1985	and	1992 .	
There	are	several	GRG	variations	including	choices	of	Lagrangians	and	line	searches.	
We	start	with	the	problem:	

min	f x 	
subject	to	
g x 	 	0	
0	 	x	 	xu		

At	major	iteration	k,	we	solve	the	following	nonlinear	program:	

GRGk:	min	F x,	λk,	μk 		 	 	
subject	to	
gk	 	g xk 	 	g xk T x	‐	xk 	 	0		 	 dual	variable	λk 1 	 	

where		

	 F x,	λk,	μk 	 	f x 	–	λkT g x 	–	gk 	 	μk g x 	–	gk T g x 	–	gk ,	and		

	 μk	is	a	scalar	penalty	parameter.		

For	the	set	of	basic	 dependent 	variables	B,	the	set	of	superbasic	 independent 	
variables	S,	and	the	set	of	nonbasic		 dependent,	fixed	at	a	bound 	variables	N	we	
can	partition	g xk 	as		

g xk 	 	 B,	S,	N 	

where	B	and	S	are	nonsingular,	and	we	can	partition	xk	as		

	 xB	 	 xk B,	
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	 xS	 	 xk S,	and	

		 xN	 	 xk N	

where		

	 BTxB	 	STxS	 	NTxN	 	0.	

At	a	solution,	the	basic	and	superbasic	variables	are	between	their	bounds,	0	 	xB	 	
xuB	and	0	 	xS	 	xuS	while	nonbasic	variables	will	normally	be	equal	to	their	lower	or	
upper	bound.	At	a	solution,	S	will	be	no	more	than	the	number	of	nonlinear	
variables	and	xs	is	regarded	as	a	set	of	independent	variables	that	are	allowed	to	
move	in	a	direction	that	will	decrease	the	objective	function	value.	The	basic	
variables	are	easily	adjusted	to	satisfy	the	linear	constraints.	

If	no	improvement	can	be	made	with	the	current	definition	of	B,	S	and	N,	
some	of	the	nonbasic	variables	are	selected	to	be	added	to	S,	and	the	process	is	
repeated	with	an	increased	value	of	S.	If	a	basic	or	superbasic	variable	encounters	
one	of	its	bounds,	the	variable	is	made	nonbasic	and	the	value	of	S	is	reduced	by	one.	
A	step	of	the	reduced‐gradient	method	is	called	a	minor	iteration.	For	linear	
problems,	simplex	method	is	the	reduced‐gradient	method	with	the	number	of	
superbasic	variable	oscillating	between	0	and	1.	
The	steps	in	a	GRG	algorithm	are:	

Step	1.	Set	k	 	0	and	start	with	a	feasible	solution,	x0.	

Step	2.	Compute	g xk 	 	J	 	 B,	S,	N ,	f xk ,	and	the	reduced	gradient,	gr.	Select	
the	set	of	superbasic	variables,	xs,	as	a	subset	of	the	nonbasic	variables	that	can	be	
gainfully	changed.	For	the	superbasic	variables		

	 gr xS 	 	f xk T J	Tλk		

and	for	the	basic	variables		

	 gr xB 	 	0	 BTλ	 	∂f/∂xb	 .	

Step	3.	Find	a	search	direction,	ds,	for	the	superbasic	variables	that	is	based	on	gr	
and	possibly	some	second	order	information.	The	reduced	Hessian	of	f x 	may	be	
approximated	by	solving	a	system	of	the	form		

	 RTRq	 	Zf x 	 	0		

where		

	 Z	 	 ‐B‐1S,	I,	0 ,			

	 Zf x 	is	the	reduced	gradient,	and		

	 RTR	 	ZTHZ.	
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The	dense	upper	triangular	matrix	R	is	updated	in	various	approaches	in	order	to	

approximate	2f x .	Therefore,	ds	 	Zq	where	gr	is	applied	to	solve	the	line	search	
min0 α β	F x	 αds,	λk,	μk .	

Step	4.	Solve	the	subproblem	GRGk;	let	 xk 1,	λk 1	μk 1 	 	argmin	 GRGk .		

Step	5.	If	gr	projected	on	the	bounds	is	smaller	than	the	convergence	criteria,	then	
stop;	if	not,	increment	k	 	k	 1	go	to	Step	2.	

	 Generalized	reduced	gradient	methods	can	be	extended	easily	to	very	large	
problems	and	problems	with	special	structure.	GRG	is	probably	more	robust	than	
SLP	and	SQP	methods,	and	once	a	feasible	solution	is	found	in	GRG	methods,	it	
remains	feasible.	Moreover,	GRG	approaches	are	related	to	SQP	methods	and	
therefore	there	exists	combinations	of	both	approaches.	
	
Conic	and	Semidefinite	Programming	Methods.	These	methods	are	forms	of	
quadratic	programming,	and	are	similar	to	linear	programming	because	they	are	
convex	programs.	For	linear	program	

minx	cTx	
subject	to		

												 Ax	=	b	
	 x	≥	0	

the	equivalent	conic	program	is	

minx	cTx	
subject	to		

												 ||Aix	+	bi||2	≤	ciTx	+	di,	i	 	1,	…,	m	

and	the	equivalent	semidefinite	program	is	of	the	form	

minx	cTx	
subject	to		

	 	

Geometrically,	linear,	conic,	and	semidefinite	programs	are	of	the	form	

minx	cTx	
subject	to		

												 Ax	+	b	K	

	 ciTx	 	di I		 Aix	 	bi
≻	 0,				i 	1,	…, m	

	 Aix	 	bi T		 ciTx	 	di I
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where	K	is	a	pointed1	convex	cone	with	a	nonempty	interior.	Typically	these	
methods	are	applied	to	avoid	local	minima	by	relaxing	the	objective	function	and	
domain	to	be	convex.	
	
5.		Decomposition	Techniques	
	
	 Decomposition	methods	are	applied	for	two	purposes,	to	fit	the	decomposed	
problem	into	high‐speed	memory	and	to	decompose	the	problem	into	easier	to	
solve	subproblems.	Decomposition	methods	usually	employ	either	column	
generation	or	cutting	planes,	where	one	approach	is	the	dual	of	the	other.	
	 Bender’s	decomposition	is	a	cutting	plane	method	where	the	primal	
nonlinear	problem	is	

f*	 	minx,y		f x 	 	cTy		
subject	to	 	 	 	 	 dual	variable	
g x 	 	Ay	 	b		 	 	 	 	 λ		

and	its	dual		

L*	 	maxλ	minx,y		f x 	 	cTy	 	λ g x 	 	Ay	 	b .	 	 	

The	problem	can	be	partitioned	where,	given	x,	we	can	solve	for	variable	y	using	the	
following	inner	minimization	of	the	primal	

miny	cTy			
subject	to		
Ay	 	b	 	g x 		

and	maximization	of	the	dual	

maxλ	 b‐	g x Tλ	
subject	to	
λA	 	cT.		

The	above	inner	minimization	is	a	linear	program	such	that		

	 λk	 	argmaxλ	 b	‐	g xk Tλ	|	λA	 	b,	λ	 	0 ,	
f*	 	minimize	x		f x 	 	y0,	and	
y0		 	 b	‐	g x Tλk		k	 	0,	1,	…	

for	k	 	0,	1,	…	K.	
	
Bender’s	Algorithm:		

Step	1.	Set	k	 0;	choose	a	feasible	solution	x0.	
																																																								

1 K is pointed if it does not contain any subspace except the origin. 
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Step	2.	Solve	λk 1		 	argminλ	 b‐	g xk Tλ	|	λA	 	cT .	

Step	3.	Solve	xk 1	 	argminx f xk 	 	y0	|		y0	 	 b	‐	g xk Tλk 	where	the	inner	
minimization	solves	for	y0.	

Step	4.	If	xk 1	satisfies	the	convergence	criteria,	stop;	otherwise,	set	k	 	k	 	1	and	go	
to	Step	2.	

Dantzig‐Wolfe	solves	a	simpler	or	smaller	subproblem	that	generates	a	column	for	
the	master	problem:			

min	x,y		f x 	 	cTy	

subject	to	 	 	 	 	 dual	variable	

g x 	 	Ay	 	b	.	 	 	 	 	 λ	

y	є	Y	

Therefore	the	Dantzig‐Wolfe	algorithm	is	as	follows:	

Step	1.	Set	k	 	0;	choose	a	feasible	solution	 x0,	y0 	where	g x0 	 	Ay0	 	b.	

Step	2.	Generate	a	column	and	solve	the	modified	master	problem	for	y	and	uk:	

minuk,y		∑k	f xk uk		 	cTy	 	

subject	to	 	 	 	 	 dual	variable	

∑k	g xk uk	 	Ay		 	λk		

∑k	uk	 	1		 	 	 	 	 	 βk	 		

uk		 	0	

y	є	Y	

Step	3.	Solve	the	subproblem	xk 1	 	argminx	 f x 	 	λkg x .		

Step	4.	If	xk		 	∑k	xkuk	satisfies	the	convergence	criteria,	stop;	else	k	 	k	 	1	and	go	
to	Step	2.		

	 Equivalent	to	both	steps	2	and	3,	the	dual	can	be	solved	by	generating	a	
cutting	plane:	

	 max	λk,y		λkb	 	βk		
	 subject	to	
	 λkA	 	cT		
	 λkg xk 	 	βk		 		f xk 		
	 λk	 	0.	
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	 Then	in	Step	4,	If	f x 	and	g x 	are	convex,	∑k	f xk uk	 	∑k	f xk 	and	∑k	
g xk uk	 	∑k	g xk .	Furthermore,	if	u0*	,…	uk*	and	yk*		is	a	feasible	solution	then	xk	is	
a	feasible	solution	and	as	k	→	∞,	we	have	that	xk	and	yk*	is	an	optimal	to	the	NLP.	
	
Approximations	of	the	ACOPF.	The	ACOPF	can	be	formulated	in	several	ways	 see	
Cain	et	al.	2012 .	The	canonical	ACOPF	in	polar	coordinates	is:		

min	∑n	cn pn 	 	cn qn 	
subject	to	
pn	 	pdn	 	∑m	vnvm gnmcosθnm	 	bnmsinθnm 	
qn	 	qdn	 	∑m	vnvm gnmsinθnm	 	bnmcosθnm 		
pnmin	 	pn	 	pnmax		 	
qnmin	 	qn	 	qnmax	 	
vnmin	 	vn	 	vnmax	
θminnm	 	θnm	 	θn	 	θm	 	θmaxnm	 	

Please	refer	to	Cain	et	al.	 2012 	for	notation	definitions	and	the	equivalent	ACOPF	
formulation	in	rectangular	coordinates.	For	the	real	and	reactive	power	flow	
equations,	the	first	partial	derivatives	on	the	power	injections	pn	and	qn	are:	

				∂pn/∂vm 	vn gnmcosθnm	 	bnmsinθnm 	 		n	 	m	

			∂pn/∂θm 	vnvm gnmsinθnm	 	bnmcosθnm 			n	 	m	

			∂pn/∂vn 	∑m n 	vm gnmcosθnm	 	bnmsinθnm 	 	2vngnn	

			∂pn/∂θn 	∑m n 	vnvm gnmsinθnm	 	bnmcosθnm 	 	vn2bnn	

			∂qn/∂vm	 	vn gnmsinθnm	 	bnmcosθnm 			n	 	m	

			∂qn/∂θm		 	 vnvm gnmcosθnm	 	bnmsinθnm 			n	 	m	

			∂qn/∂vn	 	∑m n 	vm gnmsinθnm	 	bnmcosθnm 	 	2vnbnn	

			∂qn/∂θn		 	∑m n 	vnvm gnmcosθnm	 	bnmsinθnm 	 	vn2gnn	

The	first	partial	derivatives	are	used	in	approximation	methods.	Note	that	in	these	
derivatives	the	magnitude	of	the	cosine	and	sine	terms	are	generally	scaled	by	the	
multiple	of	the	conductance	or	susceptance.	Since	reactance	of	a	transmission	line	is	
much	larger	than	resistance,	the	conductance	 real	part	of	admittance	matrix,	B 	is	
much	smaller	than	the	susceptance	 imaginary	part	of	admittance	matrix,	G .	In	
most	cases	the	sine	terms	tend	to	be	small	whereas	the	cosine	term	is	near	unity.	
Upon	inspection,	the	result	of	these	physical	properties	results	in	real	power	that	is	
highly	sensitive	to	changes	in	voltage	angle	and	reactive	power	that	is	highly	
sensitive	to	changes	in	voltage	magnitude.	
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Decoupled	Power	Flow	Model.	Initially	proposed	by	Stott	and	Alsac	in	1974,	the	
Decoupled	Power	Flow	 DPF 	is	based	on	the	principle	that	when	the	Jacobian	of	the	
power	flow	equations	

	 ∂p/∂θ	 ∂p/∂v	 	

	 ∂q/∂θ	 ∂q/∂v	 	

is	evaluated	numerically,	the	off‐diagonal	submatrices	are	much	smaller	in	
magnitude	than	the	diagonal	submatrices:	

	 ∂p/∂θ		 	∂q/∂θ		and	
	 ∂q/∂v		 	∂p/∂v.	

We	therefore	set	the	off‐diagonal	entries	of	the	Jacobian	to	zero	

	 ∂q/∂θ	 	0		and	
	 ∂p/∂v	 	0,	

and	then	decompose	the	problem	into	a	pair	of	subproblems	where	the	p‐θ	real	
power	model	minimizes	the	system	costs	and	the	q‐v	reactive	power	model	
minimizes	the	real	power	transmission	losses.	In	this	approach	we	assume	that	θnm	
	0,	sinθnm	 	θnm,	cosθnm	 	1,	and	gnm	 	bnm.	Let	

	 b’nm	 	 ∂pn	/∂θm	 	 	 vnvmbnm					n	 	m,	
	 b’nn	 	0,	
	 b”nm	 	 ∂qn	/∂vm	 	 	 	vnbnm						n	 	m,	and		
	 b”nn	 	 	2vnbnn		

where	b’	is	an	approximation	of	the	matrix	of	partial	derivatives	of	the	real	power	
flow	equations	with	respect	to	the	bus	voltage	phase	angles	and	b’’	is	an	
approximation	of	the	matrix	of	partial	derivatives	of	the	reactive	power	flow	
equations	with	respect	to	the	bus	voltage	magnitudes.		
	
The	Decoupled	Power	Flow	model	is:	

	 min	∑n	cn pn 	 	cn qn 	
	 subject	to	 	 	 	 	 	
	 pn	‐	pdn	 ∑m	pnm	 	spn	 	 	 	
	 qn	‐	qdn	 	∑m	qnm 	sqn	 	 	 	 		
	 pminnm	 	pnm	 	b’nmθmn	 	pmaxnm	
	 qminnm	 	qnm	 	b”nmvm	 	qmaxnm	
	 pminn	 	pn	 	pmaxn		 	
	 qminn	 	qn	 	qmaxn		 	
	 vminn	 	vn	 	vmaxn	
	 θminnm	 	θnm	 	θn	‐	θm	 	θmaxnm	
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where	

	 pn	 	∑m	vnvmbnmθnm		
	 qn	 	∑m	‐vnvmbnm.	

The	Decoupled	Power	Flow	algorithm:	

Step	1.	Set	k	 	0,	and	initialize	vnk	 	1.		

Step	2.	Solve	DPF	for	pnk,	θnk	,	qnk,	and	vnk.	

Step	3.	If	pnk,	θnk	,	qnk,	and	vnk	satisfy	the	convergence	criteria,	e.g.,	ac	feasibility,	then	
stop.	If	not,	set	b’nm	 	vnkvmkbnm	and	b”nm	 	vnkbnm	and	k	 	k	 1,	and	go	to	Step	2.	

Since	the	underlying	problem	is	nonconvex,	there	is	no	guarantee	of	convergence	in		
the	original	ACOPF	problem.	
	
Bθ	Model.	A	further	simplification	drops	reactive	power	completely.	If	gij	 	0,	sinθ	 	
θ,	cosθ	 	1,	and	vm	 	1,	the	Btheta	models	solves:	

min	∑n	cn pn 		
subject	to	 	 	 	 	 	
pn	 	pdn	 	∑mpnm											 	 	 	 	
pminnm	 	pnm	 	bnmθmn	 	pmaxnm	
pminn	 	pn	 	pmaxn		 	
θminnm	 	θnm	 	θn	 	θm	 	θmaxnm	

	

Distribution	Factor	Model.	A	further	simplification	is	the	distribution	factor	 DF 	
model	where	all	transactions	are	decomposed	into	a	‘sale’	to	a	reference	node	and	
‘purchase’	from	a	reference	node.		
	 min	∑n	cnpn	 	 	 	
	 subject	to	 	 	 	 	 	
	 ∑n	pn	 		∑npdn	 	0	 	 	 	 	 	
	 pminn	 	pn	 	pmaxn	 	 	 	 	 	
	 	pnmk	 	∑n	dfkn pn pdn 		 	pmaxnmk	 	 	 	

Since	we	have	assumed	losses	are	zero,	superpositioning	makes	DF	roughly	
equivalent	to	the	Bθ	formulation	if	θmaxnm	is	equivalent	to	pmaxnmk.	The	difference	is	
the	size	of	the	problem;	whereas	Bθ	has	N	 	2K	constraints,	the	distribution	factor	
model	has	1	 	KM	constraints	where	M	is	the	subset	of	lines	monitored	for	binding	
thermal	limits.	
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6.	Commercial	Solvers	
	

Commercial	optimization	solvers	for	nonlinear	problems	vary	in	algorithmic	
techniques	and	implementation.	We	survey	five	well‐known	nonlinear	solvers:	
MINOS,	IPOPT,	SNOPT,	KNITRO,	and	CONOPT.	Please	refer	to	 Castillo,	2013 	for	a	
computational	study	on	the	performance	of	these	solvers	applied	to	the	ACOPF.	
MINOS.	MINOS	is	a	GRG	method	and	is	designed	to	solve	large‐scale	optimization	
problems	 Murtagh	and	Saunders,	1982	and	2003 .	MINOS	partitions	variables	into	
linear	and	nonlinear	elements	and	then	iteratively	solves	the	subproblems	with	
linearized	constraints	and	an	augmented	Lagrangian	objective	function	 Robinson,	
1972 .	Instead	of	a	nonlinear	conjugate‐gradient	approach,	a	quasi‐Newton	
approach	is	applied	to	certain	subspaces.	Sparse	LU	basis	factors	are	maintained	by	
LUSOL	 Gill	et	at,	1987 .	The	nonlinear	constraints	may	be	satisfied	only	in	the	limit,	
so	that	feasibility	and	optimality	may	occur	simultaneously.	An	important	feature	is	
a	stable	implementation	of	a	quasi‐Newton	algorithm	for	optimizing	the	superbasic	
variables.		
	
IPOPT	 Interior	Point	OPTimizer .	IPOPT	converts	the	problem	to	a	barrier	problem.	
Ideally	the	functions	f x 	and	g x 	are	twice	continuously	differentiable.	IPOPT	uses	
line	filtered	searches	and	includes	a	feasibility	restoration	phase.	Filter	methods	
promote	global	convergence	through	measuring	decreases	in	the	objective	function	
and	infeasibility	as	two	separate	criteria	that	are	controlled	simultaneously.	IPOPT	
has	options	in	line	search	strategies	for	globalization,	including	an	exact	penalty	
merit	function,	augmented	Lagrangian	merit	function,	filter	method	 R.	Fletcher,	S.	
Leyffer,	and	P.	Toint ,	Hessian	and	several	Hessian	approximation	methods.	
	
SNOPT	 Sparse	Nonlinear	OPTimizer .	SNOPT	implements	a	sparse	active‐set	
sequential	quadratic	programming	 SQP 	method	that	employs	quasi‐Newton	
approximations	to	determine	the	Hessian	in	the	quadratic	programming	
subproblem;	then	an	augmented	Lagrangian	merit	function	guides	the	line	search	
direction.	Sparse	basis	factors	are	maintained	by	LUSOL.	If	only	the	objective	is	
nonlinear,	the	problem	is	linearly	constrained	 LC 	and	tends	to	solve	more	easily	
than	the	general	case	with	nonlinear	constraints	 NC .	SNOPT	uses	limited‐memory	
quasi‐Newton	approximations	to	the	Hessian	of	the	Lagrangian.	The	merit	function	
for	step‐length	control	is	an	augmented	Lagrangian,	as	in	the	dense	SQP	solver	
NPSOL	 Gill	et	at,	1992 .	In	general,	SNOPT	requires	less	matrix	computation	than	
NPSOL	and	fewer	evaluations	of	the	functions	than	the	nonlinear	algorithms	in	
MINOS.	It	is	most	efficient	if	only	some	of	the	variables	enter	nonlinearly,	or	there	
are	relatively	few	degrees	of	freedom	at	a	solution	 i.e.,	many	constraints	are	active .	
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KNITRO.	KNITRO	implements	both	interior‐point	and	active‐set	methods	for	solving	
nonlinear	optimization	problems.	The	variables	can	be	continuous,	binary,	or	
integer.	In	the	barrier/interior	method,	KNITRO	solves	a	series	of	barrier	sub‐
problems	controlled	by	a	barrier	parameter.	The	algorithm	uses	trust	regions	and	a	
merit	function	to	promote	convergence.	The	algorithm	performs	one	or	more	
minimization	steps	on	each	barrier	problem,	then	decreases	the	barrier	parameter,	
and	repeats	the	process	until	the	original	problem	has	been	solved	to	the	desired	
accuracy.	KNITRO	provides	two	procedures	for	computing	the	steps.	One	version	
where	each	step	is	computed	using	a	projected	conjugate	gradient	iteration.	This	
approach	factors	a	projection	matrix	to	approximately	minimize	a	quadratic	model	
of	the	barrier	problem.	The	other	procedure	always	attempts	to	compute	a	new	
iterate	by	solving	the	primal‐dual	KKT	matrix	using	direct	linear	algebra,	but	if	the	
step	quality	cannot	be	guaranteed	or	if	negative	curvature	is	detected,	then	the	new	
iterate	is	computed	by	the	first	procedure.	KNITRO	also	implements	an	active‐set	
sequential	linear‐quadratic	programming	 SLQP 	algorithm	that	uses	linear	
programming	sub‐problems	to	estimate	the	active‐set	at	each	iteration.	KNITRO	
includes	an	active‐set	SLQP	with	trust	region	to	promote	convergence.	
	
CONOPT	 CONstrained	OPTimization .	CONOPT	is	a	generalized	reduced	gradient	
GRG 	method	that	searches	along	the	steepest	descent	direction	in	the	superbasic	
variables.	The	generalized	projection	method	projects	the	search	direction	into	the	
subspace	tangent	to	the	active‐set	of	constraints.	The	active‐set	is	the	subset	of	
equality	and	inequality	constraints	at	a	point	that	satisfy	with	equality;	for	example,	
equality	constraints	are	active	at	all	feasible	points.	Therefore,	the	search	direction	
is	projected	into	the	null	space	of	the	gradients	for	the	equality	and	binding	
inequality	constraints.	The	projected	gradient	could	be	infeasible,	which	then	
requires	a	correction	step.		
	
7.	History	of	ACOPF	Solution	Techniques	
	
	 In	1962,	Carpentier	introduced	the	alternating	current	optimal	power	flow	
ACOPF 	for	economic	dispatch	based	upon	Karush‐Kuhn‐Tucker	 KKT 	conditions.		
Carpentier	employed	the	Gauss‐Seidel	method	representing	the	load	flows	as	power	
injections	in	the	voltage	polar	form.	Carpentier	included	operational	constraints	on	
real	power	control,	generator	bus	voltage	magnitude	limits,	reactive	power	control	
of	switchable	VAR	sources,	and	transformer	tap	setting.	This	formulation	has	
nonconvex	equality	constraints	with	quadratic	and	trigonmetric	functions	 see	Cain	
et	al,	2012 .	The	complex	variables	can	be	expressed	in	polar	or	rectangular	
coordinates	and	results	in	different	types	of	nonconvex	constraints.		Since	the	
ACOPF	problem	is	a	nonconvex	mathematical	program,	the	KKT	conditions	yield	
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only	a	local	optimal	solution;	even	feasibility	cannot	be	guaranteed	by	most	
nonlinear	programming	 NLP 	algorithms.		
	 In	1969,	Carpentier	and	Abadie	published	the	generalized	reduced	gradient	
method,	which	is	a	generalization	of	Carpentier’s	‘differential	injections’	method	
that	was	originally	conceived	in	1964	to	solve	the	optimal	power	flow	problem	
Carpentier,	1979 .	Since	Carpentier’s	contributions,	there	has	been	a	wealth	of	
research	done	on	algorithmic	methods	to	solve	the	ACOPF.	In	1968,	Dommel	and	
Tinney	presented	an	approach	based	on	power	flow	solution	by	Newton’s	method	
with	a	gradient	adjustment	factor	for	the	penalty	function	to	account	for	dependent	
constraints.	In	1969,	Sasson	used	the	Fletcher‐Powell	method;	then	in	1973,	Sasson	
directly	computed	the	Hessian	and	utilized	its	sparsity.		In	1973,	Alsac	and	Stott	
incorporated	exact	outage‐contingency	constraints	and	used	an	augmented	
Lagrangian.		In	1977,	Biggs	and	Laughton	used	a	recursive	equality	quadratic	
program.		In	the	above	studies,	test	problems	with	less	than	30‐buses	were	used.	
During	this	time	the	advancements	of	gradient	techniques	with	Newton’s	method	
were	widely	adopted	in	the	early	ACOPF	algorithms,	see	Happ	 1977 .		In	1979,	Wu	
et	al.	used	a	modified	reduced	gradient	with	penalty	function	methods	and	included	
the	largest	test	case	published	to‐date,	a	1410‐bus	system.		
	 In	the	following	table	we	summarize	the	published	optimal	power	flow	
studies	by	the	test	problems,	convergence	criteria,	initialization,	and	performance	
metrics	reported.	The	studies	vary	in	all	the	metrics	listed	in	Table	1,	and	very	few	
of	the	studies	included	a	comparison	against	commercial	solvers	or	previously	
published	data.	For	example	out	of	the	studies	listed,	Burchett	et	al.	 1982 ,	Aoki	
and	Kanezashi	 1985 ,	Huneault	and	Galiana	 1990 ,	Ponrajah	and	Galiana	 1990 ,	
Momoh	and	Zhu	 1999 ,	and	Wang	et	al.	employed	MINOS	in	their	algorithmic	
implementation	or	compared	computational	results	to	that	of	MINOS.		
	 The	abbreviations	in	Table	1	are	as	follows:	N/A	 Not	Applicable ,	NR	 Not	
Reported ,	FS	 Flat	Start ,	LFS	 Load	Flow	Start ,	RS	 Random	Start ,	HS	 Hot	Start ,	
WS Warm	Start ,	US	 User	Specified	Start ,	C.G.	 Complementarity	Gap ,	Opt.	
Optimality	Tolerance ,	and	Feas.	 Feasibility	Tolerance .	Note	for	the	SDP	methods	
in	Bai	 2008 	and	Lavaei	 2012 ,	initialization	is	not	required.	
	 The	studies	with	US	 User	Specified 	listed	as	the	initialization	method	
employed	a	non‐random,	selective	approach.	Numerous	studies	reported	additional	
metrics	to	those	listed	in	Table	1.	However,	we	identify	this	handful	of	metrics	as	
basic	information	needed	for	fair	testing	and	comparison	of	proposed	algorithms	by	
other	researchers.	
	 The	following	Table	2	summarizes	the	test	problems	published	on	in	ACOPF	
studies	to‐date.	Numerous	of	the	test	problems	have	a	network	origin	that	is	not	
described	well.	Although	many	of	the	test	problems	are	used	across	multiple	
studies,	as	denoted	in	the	“Source	Data”	column	a	small	percentage	of	the	test	
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problems	are	readily	available	in	the	public	domain	to	use;	these	test	problems	are	
posted	online	by	the	University	of	Washington	Electrical	Engineering	or	by	
MATPOWER.	The	raw	data	for	test	problems	23	and	39	are	available	in	Biggs	 1977 	
and	Pai	 1989 ,	respectively.	We	list	the	referencing	study	if	the	reader	is	interested	
in	further	information	on	the	test	problem	or	to	contact	the	author	for	the	source	
data.		
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Table	1.	ACOPF	Studies	that	include	Numerical	Analysis	
Year	 Author	 Test	Problems Convergence	 Initial‐ Work‐ Code CPU Iter‐

No. of	Nodes Criteria	 ization station Lang. Time ations
1969	 Sasson	 30	 10^‐5	Opt.	 NR x x x x
1973	 Alsac	 30	 10^‐3	Opt. US x
1974	 Mukherjee	 25	 NR US x x x
1977	 Biggs	 23	 NR US x
1979	 Wu	 11,	136,	333,	1410 NR LFS x x x
1982	 Burchett	 118,	597	 NR NR x x x
1982	 Divi	 9,	10,	11	 10^‐5	Feas. FS x x
1982	 Shoults	 5,	30,	962	 NR US x x x x
1984	 Burchett	 350,	1100,	1600,	1900 NR RS x x x
1984	 Sun	 912	 NR US x x
1985	 Aoki	 14,	135	 NR NR x x x x
1988	 Santos	 118,	129	 NR NR x x x
1989	 Nanda	 14,	30,	89	 10^‐4	Feas.	 LFS x x
1989	 Ponrajah	 6,	10,	30,	118 NR FS x x x x
1990	 Alsac	 1330,	1200,	700 NR HS x x x
1990	 Huneault	 30,	118	 NR US x x
1990	 Salgado	 14,	30,	39,	57,	89,	118 10^‐3	Feas. LFS x x x
1993	 Almeida	 14,	30,	34	 NR FS,LFS x x
1994	 Momoh	 9,	14,	30,	118 NR US x x x x

1994	 Wu	 9,	30,	39,	118,	244 10^‐6	C.G. FS x x x x
1995	 Chebbo	 706	 50^‐5 Opt.,	50^‐4	Feas.	 US x x x
1997	 Lai	 30	 NR US x x
1998	 Torres	 30,	57,	118,	300 10^‐4	Opt. FS,LFS x x
1998	 Wei	 14,	30,	57,	118,	344,	703,	1047 10^‐6	Opt.	 US x x x x
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Year	 Author	 Test	Problems Convergence	 Initial‐ Work‐ Code CPU Iter‐
	 	 No.	of	Nodes Criteria	 ization station Lang. Time ations

1999	 Momoh	 14	 10^‐6	Opt.	 US x x
1999	 Yan	 118,	1062	 10^‐8	Opt.,	Feas.		 US x x x
2000	 Nejdawi	 30,	57,	118,	300 NR FS x
2000	 Torres	 30,	57,	118,	300 10^‐4	Opt.	 US x x x x
2001	 Castronuovo	 118,	352,	750,	1704 10^‐6	Opt.,	Feas.		 NR x x x
2001	 Lima	 810,	2256	 10^‐3	Feas. US x
2001	 Torres	 118,	256,	300,	555,	2098 10^‐4	Opt. US x x x
2001	 Xie	 30,	57,	118	 10^‐5	C.G.,	Feas.		 WS x
2002	 Jabr	 14,	24,	30,	57,	118,	175,	300 10^‐4	Opt.	 US x x x x
2002	 Lin	 118,	244	 10^‐3	Opt.	 US x
2002	 Torres	 30,	57,	118,	256,	30,	555,	2098 10^‐4	Opt.	 US x x x x
2003	 Oliveira	 30,	118,	1564,	1732,	1993 Sqrt	of	machine	eps.	 US x x x x
2004	 Lin	 118,	244	 10^‐3	Opt.	 US x
2005	 Min	 14,	30,	57,	118,	254,	300, 662 10^‐3	Opt.	 LFS x x x
2005	 Tate	 2,	118,	10274 10^‐3	Feas. FS x
2007	 Capitanescu	 60,	118,	300 10^‐6	C.G. RS x x x
2007	 Lin	 9,	14,	30,	57,	118 10^‐4	C.G.,	Feas.		 FS x x x
2007	 Sousa	 30,	57,	118,	300 10^‐4	Opt.	 US x x
2007	 Wang	 30,	57,	118,	300,	2383,	2935 NR FS x x x x
2008	 Bai	 4,	14,	57,	118,	300 10^‐5	Opt. N/A x x x
2008	 Jabr	 9,	14,	30,	39,	57,	118,	300,	2383 10^‐8	Opt. FS,LFS x x x x
2008	 Lin	 9,	14,	30,	57,	118,	300 10^‐4	C.G.,	Feas.		 FS x x x x
2009	 Bedrinana	 2,	14,	57	 NR NR x
2009	 Chiang	 678,	2052,	2383 10^‐6	C.G.,	Feas.		 FS x x x
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Year	 Author	 Test	Problems Convergence	 Initial‐ Work‐ Code CPU Iter‐
	 	 No.	of	Nodes Criteria	 ization station Lang. Time ations

2009	 Jiang	 14,	30,	39,	57,	118,	300,	701,	2052,	
2383,	2736,	2746

10^‐5	C.G.,	Feas.		 FS x x x x

2009	 Sousa	 30,	118,	300,	2256 10^‐3	Feas.	 NR x x x x
2009	 Yang	 30,	118,	300 NR NR x x
2010	 Jiang	 5,	6,	9,	14,	30,	39,	57,	118,	2383 NR FS x x x x
2010	 Jiang	et	al.	 118,	300,	678,	2052,	2383,	2746 NR NR x x x x
2010	 Xie	 57,	118,	300,	2052,	2790 10^‐6	C.G. US x x x x
2011	 Chung	 14,	118	 10^‐4	Feas.	 FS x x x x
2011	 Phan	 6,	9,	14,	30,	39,	57,	118,	300,	2746 10^‐5	Opt.	 US x x x
2011	 Sousa	 30,	57,	118,	300,	1211 10^‐4	Opt.	 FS,LFS,RS x x
2011	 Zimmerman	 9,	30,	36,	118,	300,	2383,	2736,	3120,	

2935,	21000,	42000
NR NR x x x

2012	 Lavaei	 14,	30,	57,	118,	300 NR N/A x
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Table	2.	Test	Problems	used	in	ACOPF	Studies	
Test	Problem	 Network	Origin Source	Data Referencing	Study

14	 Midwestern	US	System UW	Electrical	Eng Multiple	studies
23	 N/A Biggs,	1977 Biggs,	1977
24	 IEEE	Reliability	Test System UW	Electrical	Eng Multiple	studies
25	 N/A N/A	 Mukherjee,	1974
30	 Midwestern	US	System UW	Electrical	Eng Multiple	studies
34	 N/A N/A	 Almeida,	1993
39	 New	England US System Pai,	1989 Phan,	2011
57	 Midwestern	US System UW	Electrical	Eng Multiple	studies
60	 Nordic32	System N/A	 Capitanescu,	2007
89	 N/A N/A	 Salgado,	1990
118	 Midwestern	US System UW	Electrical	Eng Multiple	studies
129	 Companhia	Energetica	de Sao	Paulo N/A	 Santos,	1988
135	 Chugoku	Electric	Power	Co.,	Japan N/A	 Aoki,	1985
136	 N/A N/A	 Wu,	1979
175	 N/A N/A	 Jabr,	2002
244	 N/A N/A	 Wu,	1994	 Initial	study
254	 N/A N/A	 Min,	2005
256	 N/A N/A	 Torres,	2001	and	2002
300	 Midwestern	US System UW	Electrical	Eng Multiple	studies
333	 N/A N/A	 Wu,	1979
344	 Japan	System N/A	 Wei,	1998
350	 Northeastern	US Utility N/A	 Burchett,	1984
352	 South‐Southeastern	Brazil	System N/A	 Castronuovo,	2001
555	 N/A N/A	 Torres,	2001	and	2002
597	 Interconnection	of	Several	Utilities N/A	 Burchett,	1982
662	 N/A N/A	 Min,	2005
678	 N/A N/A	 Chiang,	2009
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Test	Problem	 Network	Origin Source	Data Referencing	Study

700	 Interconnection	of	Several	Utilities N/A	 Alsac,	1990
701	 Undisclosed	Real	Power	System N/A	 Jiang,	2009
703	 China	System N/A	 Wei,	1998
706	 N/A N/A	 Chebbo,	1995
750	 South‐Southeastern	Brazil	System N/A	 Castronuovo,	2001
810	 South‐Southeastern	Brazil	System N/A	 Lima,	2001
912	 Northeastern	US System N/A	 Sun,	1984
962	 16	Interconnected	Areas N/A	 Shoults,	1982
1047	 Simulation	Power	System N/A	 Wei,	1998
1062	 N/A N/A	 Yan,	1999
1100	 Eastern	United	States	Pool N/A	 Burchett,	1984
1200	 Utility	Company N/A	 Alsac,	1990
1211	 Undisclosed	Real	Power	System N/A	 Sousa,	2011
1330	 Interconnection	of	Several Utilities N/A	 Alsac,	1990
1410	 N/A N/A	 Wu,	1979
1564	 South‐Southeastern	Brazil	System N/A	 Oliveira,	2003
1600	 Western	United	States	Utility N/A	 Burchett,	1984
1704	 South‐Southeastern	Brazil	System N/A	 Castronuovo,	2001
1732	 South‐Southeastern	Brazil	System N/A	 Oliveira,	2003
1900	 Northeastern	US Utility N/A	 Burchett,	1984
1993	 South‐Southeastern	Brazil	System N/A	 Oliveira,	2003
2052	 N/A N/A	 Multiple	studies
2098	 Modified	Brazil	System N/A	 Torres,	2001	and	2002
2256	 South‐Southeastern	Brazil	System N/A	 Lima,	2001
2383	 Polish	System Zimmerman,	2011 Zimmerman,	2011
2736	 Polish	System Zimmerman,	2011 Zimmerman,	2011
2746	 Polish	System Zimmerman,	2011 Zimmerman,	2011
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Test	Problem	 Network	Origin Source	Data Referencing	Study

2790	 Undisclosed	Real	Power	System N/A	 Xie,	2010
2935	 Polish	System Zimmerman,	2011 Zimmerman,	2011
3120	 Polish	System Zimmerman,	2011 Zimmerman,	2011
10274	 N/A N/A	 Tate,	2005
21000	 N/A N/A	 Zimmerman,	2011
42000	 N/A N/A	 Zimmerman,	2011
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	 Sequential	quadratic	programming	 SQP 	methods	applied	to	the	OPF	were	
either	linear	programming	 LP ‐based	QP	methods	or	QP	methods	based	on	the	
concept	of	an	active‐set	of	linearly	independent	constraints.		The	LP	approaches,	
based	on	Wolfe’s	or	Beale’s	algorithm,	solve	a	linear	program	by	a	revised	simplex	
technique.		Exploiting	many	of	the	strengths	of	linear	programming,	these	
approaches	permit	the	use	of	artificial	variables	to	guide	feasibility,	parametric	
programming,	and	ease	of	equality	constraints	into	the	formulation.		Furthermore,	
some	of	the	successive	quadratic	programs	apply	Newton’s	method	to	the	
subproblem.		In	1984	by	comparison,	Burchett	et	al.	present	a	method	where	the	QP	
subproblems	are	equivalent	to	a	sequence	of	Newton	steps	to	the	optimal	solution.		
	 In	1982	Shoults	and	Sun	decomposed	the	problem	into	active	and	reactive	
subproblems.	In	1984,	Sun	applied	Newton’s	method	to	the	SQP	and	advanced	
sparsity	techniques	to	the	decomposition,	but	the	method	exhibited	problems	in	
initialization	and	ill‐conditioning.	In	1986,	Contaxis	et	al.	and	in	1989,	Nanda	et	al.	
applied	Fletcher’s	method	to	the	decoupled	subproblems.		
	 In	1981,	Giras	et	al.	applied	Powell’s	quasi‐Newton	method	to	the	ACOPF,	
which	performs	a	Broyden‐Fletcher‐Goldfarb‐Shanno	 BFGS 	update	and	shows	
convergence	from	infeasible	starting	points.	In	1982,	Divi	et	al.	applied	Fletcher’s	
quasi‐Newton	method	with	a	shifted	penalty	function,	and	the	Broyden‐Fletcher‐
Shanno	 BFS 	updating	formula	to	numerically	stabilize	the	Hessian	as	a	positive	
definite	matrix	and	promote	global	convergence	by	means	of	a	penalty	function	that	
ensures	sufficient	progress	along	the	line‐search	towards	the	active‐set	of	
constraints.	In	1982,	Burchett	et	al.	and	in	1985	Aoki	et	al.	solve	a	sequence	of	
sparse,	linearly	constrained	subproblems	based	on	MINOS.	In	1988,	Santos	
proposed	the	dual	augmented	Lagrangian	method	that	attempts	to	address	ill‐
conditioning	of	the	Hessian	by	applying	a	quasi‐Newton	method	to	the	dual	
function.	In	1992,	Monticelli	et	al.,	present	an	improvement	upon	Maria	et	al.	 1987 	
in	which	an	adaptive	penalty	strategy	is	used	to	ensure	positive	definiteness	of	the	
Hessian,	without	negatively	affecting	the	quadratic	convergence	characteristic	of	
Newton’s	method.	
	 These	methods	build	upon	Newton’s	method	for	unconstrained	optimization,	
Lagrange’s	method	for	optimization	with	equalities,	and	Fiacco	and	McCormick’s	
barrier	method.	Meliopoulos	and	Xia	 1993 ,	Vargas	et	al.	 1992 ,	Momoh	et	al.	
1994 ,	Momoh	and	Zhu	 1999 ,	and	Nejdawi	et	al.	 2000 	applied	an	interior	point	
algorithm	 IPM 	to	a	LP	or	QP,	where	the	constraints	are	linearized.		Moreover,	
primal‐dual	IPMs	have	been	successful	in	solving	the	ACOPF	by	introducing	a	
logarithmic	barrier	function	in	place	of	the	inequality	constraints.	Wu	et	al.	 1994 ,	
Wei	et	al.	 1998 ,	Torres	and	Quintana	 1998 ,	Yan	and	Quintana	 1999 ,	
Castronuovo	et	al.	 2001 ,	Xie	and	Song	 2001 ,	Wang	et	al.	 2007 ,	Xie	and	Chiang	
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2010	and	2011 ,	Sousa	et	al.	 2011 ,	and	Chung	et	al.	 2011 	present	a	primal‐dual	
interior	point	method	to	solving	the	ACOPF.			
	 In	1994,	Granville	solves	the	primal‐dual	without	Mehrotra’s	predictor‐
corrector	mechanism,	and	notes	that	the	contribution	of	barrier	terms	into	the	
diagonal	of	the	Hessian	matrix	are	very	effective	in	bringing	positive	definiteness	to	
the	problem,	therefore	making	auxiliary	penalty	functions	unnecessary.		In	1998,	
Torres	et	al.	exploit	the	rectangular	formulation	of	the	power	flow	constraints,	
which	is	quadratic,	using	an	interior	point	method.		This	results	in	a	constant	
Hessian	and	a	Taylor	expansion	terminating	at	the	second‐order	term	that	reduces	
the	computational	burden	and	iterations	to	convergence.		Furthermore,	Torres	et	al.	
1998 	perturb	the	boundary	to	deal	with	numerical	ill‐conditioning	that	may	occur	
with	binding	constraints.		In	1998,	Wei	et	al.	use	an	interior‐point	method	based	on	
applying	Newton’s	method	to	the	nonlinear	system	of	perturbed	KKT	conditions,	
which	is	similar	to	the	approach	by	Torres	and	Quintana	 2001 ;	this	method	
promotes	global	convergence.	In	1998,	Wei	et	al.	present	a	data	structure	that	
further	reduces	the	nodal	block	fill‐in	elements.		In	comparison	to	storing	the	
augmented	system	in	compact	blocks,	as	noted	by	Sun	et	al.	 1984 	and	Wei	et	al.	
1998 ,	Castronuovo	et	al.	 2001 	propose	a	vectorization	technique	that	only	
considers	nonzero	terms	in	order	to	decrease	computational	cost	per	operation.	In	
1999,	Yan	and	Quintana	 1999 	present	a	dynamic	adjustment	of	the	step	size	and	
tolerance	to	improve	convergence	speed.	
	 Wu	et	al.	 1994 ,	Torres	and	Quintana	 1998 ,	Yan	and	Quintana	 1999 ,	
Castronuovo	et	al.	 2001 ,	Lin	et	al.	 2007 ,	Wang	et	al.	 2007 ,	Lin	et	al.	 2008 ,	Xie	
and	Chiang	 2010	and	2011 ,	Sousa	et	al.	 2011 	and	Chung	et	al.	 2011 	use	
Mehrotra’s	predictor‐corrector.		In	2009,	Sousa	et	al.	present	a	predictor‐corrector	
modified	barrier	approach,	based	on	Polyak’s	modified	barrier	method,	to	address	
ill‐conditioning.	However,	the	corrector	step	can	lead	to	very	slow	convergence	or	
failure.	In	2001,	Torres	and	Quintana	apply	Gondzio’s	multiple	centrality	corrections	
strategy.	Furthermore,	Xie	and	Song	 2001 	and	Chung	et	al.	 2011 	leverage	a	
nodal	block	data	structure	within	the	interior	point	method	iterates	in	order	to	
reduce	the	correction	equation.	
	 	Due	to	the	nonlinearities	and	ill‐conditioning	of	the	ACOPF,	recent	research	
has	focused	on	applying	methods	with	particularly	robust	global	convergence	
properties.	Jabr	et	al.	 2002 	present	a	primal‐dual	interior	point	method	that	
replaces	the	Hessian	with	a	“2‐norm	positive	approximant”	with	a	“watch‐dog”	
strategy.	Chiang	et	al.	 2009 	present	a	two‐stage	solution	algorithm	where	an	
active‐set	quotient	gradient	method	is	applied	in	stage	one	to	induce	global	
convergence,	and	an	interior‐point	method	is	applied	in	stage	two	to	obtain	a	local	
optimal	solution.	Min	and	Shengsong	 2005 ,	Pajic	and	Clements	 2005 ,	Zhou	et	al.	
2005 ,	Sousa	and	Torres	 2007 ,	Wang	et	al.	 2007 ,	Chiang	et	al.	 2009 ,	and	
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Sousa	et	al.	 2011 	apply	a	trust	region	method.	Similar	to	Torres	and	Quintana	
2001 ,	Min	and	Shengsong	 2005 	also	apply	Gondzio’s	multiple	centrality	
corrections	strategy	to	the	primal‐dual	IPM,	but	instead	incorporate	the	trust‐region	
method	in	solving	the	subproblems.		The	infinity	norm,	which	forms	a	closed,	
compact,	convex	hypercube	in	n‐dimensional	space,	is	used	to	define	the	trust	
region,	and	a	merit	function	is	used	to	determine	whether	to	accept	or	reject	a	trial	
step	to	the	trust	region	subproblem.		The	authors	also	introduce	a	feasibility	
restoration	variable,	which	controls	the	feasibility	requirements	of	the	trust	region	
subproblem.			
	 Also	known	as	parametric	continuation	methods,	homotopy	methods	are	
path‐following	approaches	which	explicitly	progress	towards	a	solution	to	the	
original	nonlinear	problem.	In	doing	so	these	methods	construct	and	solve	a	new	
simpler	problem	compared	to	the	original	one	and	then	gradually	reconstruct	the	
original	system	of	equations	in	order	to	solve	for	the	unknown	solution.	Ponrajah	
and	Galiana	 1989 ,	Huneault	and	Galiana	 1990 ,	Almeida	et	al.	 1993 ,	Lima	et	al.	
2001 ,	and	Jiang	et	al.	 2010 	apply	homotopy	methods	to	solve	the	ACOPF.	
	 Most	recently,	convex	optimization	techniques	have	been	applied	to	the	
ACOPF.	In	2007,	Jabr	reformulated	the	ACOPF	as	a	second‐order	conic	program	and	
applied	an	interior	point	method	in	MOSEK	that	is	specific	to	conic	quadratic	
optimization	that	has	polynomial	convergence.	In	2012,	Lavaei	and	Low	apply	
semidefinite	programming	optimization	to	solve	the	ACOPF,	and	prove	global	
optimality	under	a	sufficient	zero‐duality	gap	condition.	
	 Another	class	of	optimization,	derivative	free	optimization,	is	typically	
applied	when	first‐	and	second‐derivatives	are	not	available	or	are	expensive	to	
compute.	Lai	et	al.	 1997 ,	Iba	 1994 ,	Abido	 2002 	and	many	others	apply	
derivative	free	approaches	to	solve	the	OPF.	
	
8.	Summary	and	Conclusions	
	
	 For	the	last	fifty	years,	the	latest	developments	in	nonlinear	optimization	
have	been	applied	to	the	ACOPF	in	hopes	of	better	solution	techniques	for	large‐
scale,	practical	network	operations	and	planning.	Until	recently,	the	dominant	
formulation	has	been	in	polar	coordinates.	Although	the	research	to‐date	presents	a	
relatively	positive	picture,	clearly	the	published	experimental	results	have	been	
limited.	The	lack	of	reported	metrics	and	available	test	problems	makes	it	difficult	to	
perform	a	comparative	assessment	of	proposed	solution	techniques	to‐date.	
Furthermore,	there	is	a	significant	lack	of	independent	studies	that	compare	the	
numerous	approaches	in	a	systematic	manner;	for	example,	refer	to	the	
benchmarking	study	completed	by	Mittelman	 2012 	where	he	reports	on	solver	
performance	for	optimizing	general	nonlinear	problems.	In	a	companion	study	
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Castillo	and	O’Neill	 2013 	report	numerical	results	from	testing	CONOPT,	IPOPT,	
KNITRO,	MINOS,	and	SNOPT	on	various	sized	test	problems	in	which	we	apply	
various	mathematically	equivalent	AC‐OPF	formulations	with	numerous	starting	
points.		
	 Although	an	approximation	of	the	ACOPF	is	solved	in	practice,	current	
market	operations	and	planning	do	not	co‐optimize	real	power	dispatch	with	
voltage	and	reactive	power	management.	A	recent	white	paper	by	Stott	and	Alsac	
2012 	argue	that	the	ACOPF	is	still	very	much	a	‘work	in	progress.’	In	fact,	the	
authors	contend	that	most	of	the	work	completed	on	ACOPF	solution	techniques	to‐
date	is	not	adaptable	to	real	world	applications.	The	ACOPF	would	often	be	
embedded	within	bigger	calculations	that	make	convergence	and	computational	
effort	even	more	difficult.	Therefore	in	developing	and	testing	future	solution	
techniques,	it	is	important	to	understand	how	market	operations	and	planning	
would	leverage	the	ACOPF	in	real	world	applications.	
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