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Talk Goals rh) g

Summarize some of the challenges of large-scale transmission and
generation planning.

Overview practical (industrial) and theoretical (academic)
approaches to investment planning.

Describe and illustrate the performance of the Progressive Hedging
decomposition algorithm on the WECC 240-bus test case.
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Approaches in industry ) &

Commercial software used for transmission planning

SIEMENS PSS-E
- ABB GridView
- Ventyx PROMOD

* Simulation packages

Dispatch simulation, not investment
optimization (O’Neill et al. 2012)

 Optimization packages

PSR NXT/NetPlan } Only transmission, not generation

- PLEXOS LT } Transportation network (ignoring loop-
flow effects)

Treatment of uncertainty and hedging strategies

“The “least regrets” approach can be summarized as evaluating a range of plausible scenarios
made up of different generation portfolios, and identifying the transmission reinforcements found
to be necessary in a reasonable number of those scenarios.” (CAISO, 2012)

Potential regret with respect to true stochastic approach: 5-50% of total system cost (Munoz et al, 2013)




...and from academia )

Modeling approaches
e Co-Optimization Models : Weijde and Hobbs (2012), Munoz et al (2013)

e Stochastic Models

Solution approaches

 Tight MILP formulations

 Benders decomposition :Munoz et al (2014)
* Heuristics

* Progressive Hedging

In general, limited by scale:
* Often applied to small test cases

e Usually consider only a few scenarios (often just one)
* Exception: Munoz et al (2014) solved WECC 240-bus system using Benders decomposition.
Considered 8,736 scenarios, 87 hours to attain a 2.4% optimality gap.



Stochastic Planning Model ) &

Objective: minimize present worth of capital plus operation costs

Decision variables

 Transmission investments (binary) * Generation dispatch ~ * Phase angles
« Generation investments (continuous) * Power flows * Load curtailment

Deterministic constraints

*  Transmission build limits (max number of circuits per corridor)

* Generation build limits (max capacity per bus, renewable resource potentials)
* Installed reserves (min firm capacity per region, ELCC for renewables)

* RPS constraint (min generation from renewables, based on average capacity factors)

Scenario-dependent constraints (DC OPF)

e Supply = Demand (KCLs)

* Loop-flow constraints for existing lines (KVLs)

* Loop-flow constraints for candidate lines (disjunctive KVLs)

e Thermal limits

* Max generation limits (use hourly capacity factors from historical data for renewables)



Solution Algorithm: Progressive Hedging [@)&=.

Progressive Hedging (Rockafellar and Wets, 1991)
Sub-problem 1 Sub-problem 2 Sub-problem N

Investments Investments Investments s Used to enforce non-anticipativity
Scenario 1 Scenario 2 Scenario N constraints on transmission and

Operations generation investment variables
Scenario N

Operations Operations
Scenario 1 Scenario 2

Features

* Available in the PySP package of Pyomo (Hart et al, 2012)

e Converges if problem is linear, good heuristic for mixed-integer problems

* Several known techniques to accelerate convergence (Watson and Woodruff, 2011)

* New: Lower bounds to assess solution quality from Gade et al (2013) or Munoz et al (2014)

Experience from large-scale unit commitment problems (ARPA-E)
e WECC-240 and 100 scenarios:

Extensive form on CPLEX = No feasible solution after 1 day of CPU time
Progressive Hedging - 20 iterations / 15 min to attain 1.5% optimality gap



Scenario Reduction Framework rh) e

Constrained k-means clustering

Potential extensions for other types of uncertainties

Group similar hours with similar loads, wind,
solar, and hydro levels

Isolate hours that have high impact on investment

decisions

Reduced problem provides a lower bound on
optima total system cost (Munoz et al, 2014). The
more clusters, the tighter the lower bound.

Wind CF

° e Low-probability and

Oooeogo'.',;;:. @ high-impact scenarios
° °°o° o o¢ included as individual

clusters

Long-term policy and economic uncertainties (capital costs, fuel prices, and renewable targets).
These stochastic parameters are not in the right-hand-side of constraints

Use a combination of constrained k-means with importance sampling:

- Constrained k-means : selection of representative load, wind, solar, and hydro states

- Importance sampling : selection of long-term policy and economic scenarios with high
impact on total system cost (e.g., Papavasiliou and Oren, 2012)




Assessing Solution Quality )

Laboratories

A Upper Bound: Full resolution economic dispatch model
17
o Could also use:
2 - Production cost model (e.g., PLEXOS)
LOU \ - Monte Carlo simulation with component failures
|_

\ Optimality gap of PH solution wrt true operating costs

Optimality gap wrt
global optimum
(upper bound,

Munoz et al (2014))

— Optimality gap wrt LP relaxation of extensive form

Lower Bound: LP relaxation of MILP investment problem with clustered data
LP provides tight lower bound on optimal TC of MILP

>
Number of Clusters




Test Case: WECC 240-bus System ) e

WECC 240-bus system: i%ﬂ

"2 —
(Price & Goodin, 2011) *
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Experiments ) i,

Description

« Dataset of 8,736 historical observations of load, wind, solar, and hydro levels for year 2004
* Results in ~¥15M variables and ~35M constraints

e 257 generation investment variables (continuous)

e 339 variables for transmission backbones (binary)

e 31 variables for interconnections to renewable hubs (integer)

Our Hardware Environments

* Red Sky/Red Mesa HPC: 43,440 cores of Intel Xeon series processors, 64TB of RAM (12 GB per node)
 7-Node Server: 48 cores of Intel Xeon series processors, 48 GB RAM (8 GB per node )

*  Multi-Core SMP Workstation: 64-core AMD, 512 GB RAM (~$17K)

Clustered time-dependent data Trial investment plan
Trial . - :
. . . Economic Economic Economic
Scenario Scenario | ¢ @ @ | Scenario . ! ! ! Upper
orbundle 1 B or bundie 2 or bundle N =>» investment dispatch dispatch | ® ® ® | dispatch -> bound
pIan week 1 week 2 week 2
7-Node Server or Red Mesa HPC

Red Mesa HPC
e



Computational Performance h) i,

Preliminary Results:

Extensive form, 100 scenarios
* CPLEX, no feasible solution after 1 day on a 32-core workstation (Munoz et al, 2014)

Progressive Hedging, 100 scenarios (34 bundles, 7-Node Server)

 ~53 minutes, 97 iterations until full convergence of investment variables

(1) UB from investment cost PH + true operating cost :S$577.3B

Gap = 2.6%
(2) Expected cost from PH : $561.98
Gap LP=2.1%

(3) LB from solving extensive form of LP : $549.7B
Progressive Hedging, 500 scenarios (100 bundles, Red Mesa HPC)
* ~53 minutes, 97 iterations until full convergence of investment variables
To do:
*  Fine tune PH parameters to accelerate convergence (i.e., rho, variable fixing and/or slamming,

etc.).
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Summary ) e,

Stochastic transmission and generation planning on large-scale systems can be used to:

a) Capture the true economic value of time-dependent resources
b) Model different weather scenarios
c) Explicitly represent long-term policy and economic uncertainties

—> Far easier on paper and in academia than in practice!

Commercially available software do not capture a), b) or c) due to both modeling and
algorithmic limitations

Progressive Hedging coupled with our scenario reduction framework can be used to
solve large-scale problems in commodity workstations, not just supercomputers!

Same algorithm could be applied to multi-stage investment problems to account for
optionality (i.e., here-and-now vs wait-and-see investment solutions)
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