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Software System 

 Decision making towards real-time operation: 

 

 Slow time scale: Optimize the operating cost  

 

 Fast time scale:  Regulate the signals 

 

 Robustness: Make the system robust and resilient 
 

 
 

Centralized or distributed  
optimization 

Distributed control 

Constraint identification 
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Constraint Identification: Contingency Analysis 

 Contingency Analysis: 

 Assume a line is disconnected. 

 Many generators cannot change productions quickly. 

 The flows over other lines would increase. 

 This triggers a cascading failure. 

Contingency 

Limited correction  
by a generator 

 N-1 contingency: Design the operating point such that the 

flow limits are satisfied under every single fault. 

 

 Challenge: Number of constraints on the order of l2. 

 Example: Number of contingency constraints for Polish system with ~3300 buses = ~17 millions 



 
3- Constraint for line (i,j) under contingency 2  
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Contingency Analysis 

1- Constraint for line (i,j) under normal conditions  
2- Constraint for line (i,j) under contingency 1  

Contingency 1 

Contingency 2 
Line under study 

 Bad news: There are l2 contingency constraints. 

 Good news: Just n of them would be binding. 

 Strategy: Identify constraints that are implied by others and then remove them. 
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Contingency Analysis 

 Parameters: P1, P2, …,Pn 

 Constraints: l2 linear constraints in terms of P1, P2, …,Pn
. 

 Feasible injection region: 

 Some constraints do not define a face. 

 Observation: A majority of constraints are not important 

because: 

     Normal Rating < Long-term emergency < Short-term emergency 

P1 

P2 

 Main idea behind our geometric approach: 

 Mapping 1: injections ----> flows with no fault 

 Mapping 2: injections ----> flows with one specific fault 

 Transformation from mapping 1 to mapping 2 is not too far from identity. 
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Contingency Analysis 

 Many constraints are always unimportant, independent of the on/off status of generators, production 

levels, and load profiles. 

System Total constraints Important 
constraints 

 Ratio 

Case 14 400 95 0.2375 

Case 30 1681 271 0.1612 

Case 39 2116 253 0.1195 

Case 57 6400 642 0.1003 

Case 118 34596 934  0.0269 

Case 300 168921 2492 0.0148 



Optimization 

 Optimization:  
 Optimal power flow (OPF) 
 Security-constrained OPF 
 State estimation 
 Network reconfiguration 
 Unit commitment 
 Dynamic energy management 

 
 
 
 Issue of non-convexity: 

 Discrete parameters 
 Nonlinearity in continuous variables 

 
 

 Challenge: ~90% of decisions are made 
in day ahead and ~10% are updated 
iteratively during the day so a local 
solution remains throughout the day. 
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Production 

Cost 

local 

global 



Penalized Semidefinite Programming (SDP) Relaxation 
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  Exactness of  SDP relaxation:  
 
 Existence of a rank-1 solution 

 
 Implies finding a global solution 

 
 



Optimal Power Flow 

Cost  

Operation 

Flow 

Balance  
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 Observation: SDP relaxation works for almost all benchmark examples and several data sets 
for US and Europe. 

 
 Theory: Lots of theories to support this observation. 



Penalized SDP Relaxation  
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 Penalized SDP relaxation:  

 What if we get a low-rank but not rank-1 solution? 
 
  
 

 Penalized SDP relaxation aims to find a near-optimal solution. 
 
 It worked for IEEE systems with over 7000 different cost functions. 

 
  Near-optimal solution coincided with the IPM’s solution in 100%, 96.6% and 95.8% 

of cases for IEEE 14, 30 and 57-bus systems. 



Penalized SDP Relaxation  
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 Let λ1 and λ2 denote the two largest eigenvalues of W. 
 

 Correction of active powers is negligible but reactive powers change noticeably. 
 
 There is a wide range of values for ε giving rise to a nearly-global local solution.  

 

  



Penalized SDP Relaxation  

Javad Lavaei, Columbia University 12 



Example with Multiple Solutions 
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 Example borrowed from Bukhsh et al.:  
 
 Modify IEEE 118-bus system has 3 
local solutions with the optimal costs 
129625.03, 177984.32 and 195695.54. 

 
 Our method finds the best one. 



Treewidth 
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 Tree decomposition: 

 We map a given graph G into a tree T such that: 
 Each node of T is a collection of vertices of G 
 Each edge of  G appears in one node of T 
 If a vertex shows up in multiple nodes of T, those nodes should form a subtree 
  

 Width of a tree decomposition: The cardinality of largest node minus one 
 
 Treewidth of graph: The smallest width of all tree decompositions 
 



Power Networks 
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 Treewidth of a tree: 1 
 
 How about the treewidth of IEEE 14-bus system with multiple cycles? 2 



Power Networks 
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Real/complex  
optimization 

 Define G as the sparsity graph 
 

 Theorem: There exists a solution 
with rank at most treewidth of G +1 

 
 We proposed infinitely many 
optimizations to find that solution. 

 Technique:  

 Choose a set of edges E from the sparsity graph through our notion of enriched graph. 

 For every (i,j) in E, add a penalty term tijXij to the objective, where tij is arbitrary (nonzero). 

 All solutions of the penalized problem have rank at most treewidth of G +1. 
 



Examples 
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 Example: Consider the security-constrained unit-commitment OPF problem. 
 
 Use SDP relaxation for this mixed-integer nonlinear program. 

 
 What is the rank of Xopt? 

1. IEEE 300-bus system: rank ≤ 6 

2. Polish 3120-bus system: Rank ≤ 27 

 Use penalization to make them rank-1. 

 

 We have written a solver in Java and MATLAB (using CVX and MOSEK) to find a near-
global solution. 

 
 Computation time for penalized SDP relaxation of ACOPF for Polish System with 
~3300 buses (over 9,000,000 parameters): ~2.4 minutes. 

 
 



Security-Constrained OPF for IEEE 30-Bus System 

 A system with 41 lines and 21 contingencies (red lines) 

 Optimal cost of OPF: 576.89 

 Optimal cost of convex relaxation of SCOPF: 579.09 

 Near-optimal cost of SCOPF for the penalty factor 0.1: 579.10 
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Polynomial Optimization 
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 Vertex Duplication Procedure: 
 

 
 Edge Elimination Procedure:  

 
 
 
 This gives rise to a sparse QCQP with a sparse graph. 

 
  The treewidth can be reduced to 2. 

 
Theorem: Every polynomial optimization has a QCQP formulation whose 
SDP relaxation has a solution with rank 1 or 2. 

 



Distributed Control 

Javad Lavaei, Columbia University 20 

Decentralized control Distributed control 

 Consider the time-varying system: 

 

 The goal is to design a structured controller                               to minimize 

 

 

 Optimal centralized control: Easy (LQR, LQG, etc.) 

 Optimal distributed control (ODC): NP-hard (Witsenhausen’s example) 



Two Quadratic Formulations in Static Case 
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  Formulation in time domain: 

 Stack the free parameters of K in a vector h. 

 Define v as: 

 

 

 

    

 
 Formulation in Lypunov domain: 

 
 Consider the BMI constraint: 

 
 Define v as: 

 
 



Recovery of Near-Optimal Controller 
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 The proposed SDP relaxation was obtained from a big vector. 

 

 Computationally cheap SDP relaxation: Define a relaxation in terms of a small super-vector. 

 

 Strategy in time domain: 

 Solve a computationally cheap SDP relaxation. 

 Recover the state parameters from the SDP matrix. 

 Solve a second optimization to recover the controller. 

 

 Strategy in Lyapunov domain: 

 Solve a computationally cheap “penalized” SDP relaxation.  

 Recover the Lyapunov matrix from the SDP matrix. 

 Solve a second optimization to recover the controller. 

 

 

 

Red stripes: wrong  
information 
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IEEE 39 Bus (New England Power System) 

 Problem: Adjust the mechanical power of each generator based on the angle and frequency 
of neighboring generators in an optimal way (discretization time: 0.05 sec). 
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IEEE 39 Bus (New England Power System) 

 Using Kron reduction, we look at the interaction among 10 generators.  



Decentralized Communication Topology 
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Penalty: 61000 Performance loss: 6.86% 



Localized Communication Topology 
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Penalty: 15000 Performance loss: 6.08% 



Star Communication Topology 
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Penalty: 2300 Performance loss: 0.22% 



Ring Communication Topology 
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Penalty: 670 Performance loss: 0.19% 



Another Communication Topology 
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Penalty: 30 Performance loss: 0.009% 

Complete Graph 
(Point to Point) 
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Bus # 30 31 32 33 34 35 36 37 38 39 

  

30 31 32 33 34 35 36 37 38 39 
30 -0.21 1.04 -1.80 -0.70 3.88 2.17 -0.70 -2.08 -0.29 -1.41 2.20 1.90 -2.64 3.32 -1.97 -1.59 -0.59 0.58 -0.02 -1.75 
31 -1.08 0.86                 -0.24 -0.37                 
32 -0.83   0.63               -0.28   -0.35               
33 -1.52     1.37             -0.49     -0.17             
34 -1.48       1.33           -0.49       -0.14           
35 -0.64         0.43         -0.63         0.05         
36 -0.78           0.64       -0.42           -0.21       
37 -0.93             0.74     -0.28             -0.33     
38 -0.57               0.41   -0.39               -0.19   
39 0.37                 -0.57 -0.46                 -0.10 

Four Communication Topologies 

 Finite horizon problem over 80 samples: 

 Solution for the star communication topology: 



Conclusions 

 

 Focus: Optimization and control 

 Goal: Design efficient algorithms 

 

 

 Three thrusts: 

 Global optimization 

 Distributed control 

 Contingency analysis 

 We have written two solvers to be posted online soon. 
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