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Project Overview:

Wind Power Forecasting and Electricity Markets

Goal: To contribute to efficient large-scale integration of wind power by
developing improved wind forecasting methods and better integration of
advanced wind power forecasts into system and plant operations.

Collaborators: Institute for Systems and Computer Engineering of Porto
(INESC Porto), Portugal

Industry Partners: Horizon Wind Energy and Midwest ISO (MISO)

Sponsor: U.S. Dept. of Energy (Wind and Water Power Program)

The project consists of two main parts:

= Wind power forecasting
— Review and assess existing methodologies
— Develop and test new and improved algorithms

= |ntegration of forecasts into operations (power system and wind power plants)

— Review and assess current practices
— Propose and test new and improved approaches, methods and criteria

http://www.dis.anl.gov/projects/windpowerforecasting.html
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Background and Motivation — U.S. Wind Power Capacity

= Wind power has been rapidly integrated into the current power systems

2010 Year End Wind Power Capacity (MW)
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Background and Motivation - Handling Uncertainties iIn
System/Market Operation

> [MW]
SOUFCte _Oft A Generating A Wind s Wind power
uncertainty capacity Power forecasting
| Increase operating
Operating i ?2?
Reserve Operating Reserves 2" reserves?

(spin and non-spin) ?7?

\ Change commitment
strategy?
- Stochastic UC

= \What are the impacts on the system?

— Reliability (curtailment,..)
— Efficiency (system cost, price..)



Outline

= Wind power forecasting
- Probabilistic density forecasting
- Scenario generation and reduction




Probabilistic forecasting with kernel density estimation

= Conditional wind power probabilistic forecasting

fP(pt+k | X = Xt+k|t):

= Kernel density estimation (KDE)

p=n Y (55

i=1

Joint or multivariate density function
of p and x

-1.0 0.0 1.0 2.0 3.0
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Quantile-Copula Estimator for Conditional KDE

Copula Definition multivariate distribution function separated in:
*marginal functions
Fyy (x, 3’) = C(Fx(x), Fy (3/)) «dependency structure between the marginal,

modeled by the copula

5 copula density function

FO67) = 5= Cu,v) = fx(0) - fr3) - c(w D)

fOIX = x) = DI - £ () - c(w,v)

KDE ESTIMATOR
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KDE ESTIMATOR

£y = % . i hil K (J’h—yy) empirical c}:Jm. dist.
= UFye(X) and VEFR(Y)  RE(e) = % Z 10x; < ©)
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,, R. Bessa, et. al. “Quantile-copula density forecast for wind power uncertainty
S modeling,” Proceedings IEEE Trondheim PowerTech 2011, Trondheim Norway, 2011.



lllustration of Kernel Density Forecast

Forecast the wind power pdf at time step t for each look-ahead time step
t+k of a given time-horizon knowing a set of explanatory variables (NWP

forecasts, wind power measured values, hour of the day)

~ fP X(pt+k’ xt+k|t)
X=x = —
fp(pt_}.kl t+k|t) fX(xt+k|t)

Density

(S/UJ) pasds puipy
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Scenario Generation and Reduction

= Kernel Density Forecast (KDF) methods (e.g. Quantile-copula in the IL case study)
produce pdf forecasts of the wind power generation

= Stochastic unit commitment model requires scenario representation of wind power
forecast — account for the temporal correlation of forecast errors

= A large number of scenarios generated with Monte-Carlo simulation based on gquantile
distribution (multivariate Gaussian error variable, covariance matrix) [Pinson et al. 09]

= Three scenario reduction methods
— Random selection
— Scenario reduction method in GAMS [Growe-Kuska, Heitsch, et. al, 2003] (used in the IL case study)
— Scenario clustering approach [Sumaili et al. 2011]
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Scenario Generation and Reduction - lllustration
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Scenario Reduction Reduces Variance of Scenario Set

10 reduced scenarios: 100 reduced scenarios
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Outline

= System operation with wind power uncertainty
- Two-settlement market
- Stochastic unit commitment
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Steps in U.S. Electricity Market Operations

(based on Midwest ISO)

Day ahead:
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.
A Stochastic Unit Commitment (UC) Model w/Wind Power Uncertainty

= Formulation using wind power forecast scenarios (s) w/probabilities (prob,):

Min z prob, - {z [FCS; + C(RNS$) + C(ENS,E)]} + Z SCy; Saﬁiicé;‘;eei‘:é‘gtég;)(m'”

S ti
Y 9€Nihermarit T 9€Myinar = load, — ENSE, Vt,s Energy balance (hourly)
inning Reserve balan
2 Srtshermal,i,t = gy (ORreg,t + OR\i/iTld,t) - SRNS&S, Y t, S (Shpourly)g eserve ba ance

i

) ST Sermaric = (1 = @) (ORpege + ORSimar) — NSRNSE,V t, ¢ Non-spinning Reserve
— " balance (hourly)

Commitment Constraints (i, t) Unit com.mltment constraints
(ramp, min. up/down)

= A two-stage stochastic mixed integer linear programming (MILP) problem
— First-stage: commitment
— Second-stage: dispatch

Wang J, Botterud A, Bessa R, Keko H, Carvalho L, Issicaba D, Sumaili J, and Miranda V,
Wind power forecasting uncertainty and unit commitment, Applied Energy, in press, 2011.

Z. Zhou, A. Botterud, J. Wang, R.J. Bessa, H. Keko, J. Sumaili, V. Miranda, “Application of
S Probabilistic Wind Power Forecasting in Electricity Markets”, submitted



Operating Reserves VS. Stochastic UC
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Outline

= Test Case
- IL Power System
- System operation analysis
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Case Study Assumptions

= 210 thermal units: 41,380 MW
— Base, intermediate, peak units

= Wind power: 14,000 MW

— 2006 wind series from 15 sites in lllinois
(NREL EWITS dataset)

— 20% of load

= Peak load: 37,419 MW
— 2006 load series from lllinois

= No transmission network

= 120 days simulation period (July 18t to
October 31st, 2006)

— Day-ahead unit commitment w/wind power
point forecast

— Real-time reliability assessment commitment
a v/ wind power scenarios
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Case study focus is to compare:
-Operating reserves vs. stochastic UC
-Probabilistic forecasting methods
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Market Simulation Set-Up

Day-ahead
point forecast

l Commitment l

schedule

A/

Day-ahead
schedule and price

UC |——| ED |orrmnm RAC — ED

4hr-ahead Actual
probabilistic forecast wind power
l Commitment l
schedule

!

Real-time
dispatch and price
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UC Case Study: Deterministic and Stochastic Cases

UC strategy at RAC

Add’l Reserve: OR,inq +* Forecast stage
None Perfect in both DA and RT Deterministic
None 50% quantile Deterministic
Deterministic
Fixed: avg. 50-10% quantile 50% quantile
Fixed: avg. 50-5% quantile 50% quantile Deterministic
Fixed: avg. 50-1% quantile 50% quantile Deterministic
Dynamic: 50-10% quantile 50% quantile Deterministic
Dynamic: 50-5% quantile 50% quantile Deterministic
Dynamic: 50-1% quantile 50% quantile Deterministic
None 10 Scenarios Stochastic
10% of wind scenario 10 Scenarios Stochastic
20% of wind scenario 10 Scenarios Stochastic

* This additional reserve is applied at the RAC stage only to handle wind power uncertainty. All cases use
aregular reserve, OR,4 ;, €qual to the largest contingency ( 1146 MW).

N ——
6_ 21



5
Overview of total cost (4-months period )

Costs
1600 -
m Unserved load
1400 - m Unserved nonspinning reserve
m Unserved spinning reserve
1200 - m Start-up
Fuel
_1000 -
&+
>
+~ 800 -
8 EEEE
© 600 | p
400 -
200 -
0

P1 PF-FO PF-F1 PF-F2 PF-F3 PF-D1 PF-D2 PF-D3 SF-S0 SF-S1 SF-S2
Cases

= Point forecast with no additional reserve too risky

= Stochastic unit commitment has the lowest total costs

= Dynamic reserves perform slightly better than fixed reserves

= Overall, more operating reserves lead to lower costs within the same categories

° 22
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Overview of generation cost (4-months period)

Total Generation Costs
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| m Start-up
= Fuel
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(o2}
o
o

)
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Generation Costs (M$)
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= Stochastic UC model has slightly higher generation costs
= Additional generation costs are more than offset by the reduced curtailment costs

\
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Total curtailment on load and reserve (4-months period

)
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Cases Cases

= Same trend on curtailment of load and spinning reserve.

= More load curtailments in cases with fixed reserve strategies

= More spinning reserve curtailment in cases with dynamic reserve strategies

= | east curtailment on both load and spinning reserve in cases with stochastic UC
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Selected Over-forecasted Day (October 19t 2006)
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Selected Under-forecasted Day (September 22nd, 2006)
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Conclusions

=" Probabilistic wind power forecasts can contribute to efficiently schedule
energy and operating reserves under uncertainty in wind power generation

=" Dynamic operating reserves (derived from forecast quantiles)
+ Well aligned with current operating procedures
+ Lower computational burden
+ Lower cost and increased reliability
- Does not capture inter-temporal events
- Uncertainty not represented in objective function

» Stochastic unit commitment (with forecast scenarios)
+ Captures inter-temporal events through scenarios
+ Explicit representation of uncertainty in objective function
+ Lower cost and increased reliability
- More radical departure from current operating procedures
- High computational burden

28




Conclusions

= Others

— Dynamic operating reserves and stochastic UC give similar results in the IL Test Case
— Inaccurate forecasts can lead to large implications for system efficiency and reliability.

o. 29



Comments and Questions.

Contacts:
Zhi Zhou*, Audun Botterud*, Jianhui Wang
Argonne National Laboratory, USA

zzhou@anl.gov; abotterud@anl.gov

Ricardo Bessa, Hrvoje Keko, Jean Sumaili, Vladimiro Miranda
INESC Porto, Portugal

Project website:
http://www.dis.anl.qov/projects/windpowerforecasting.html
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