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Outline 

• SCOPF models 
 

• Sparse solution and 𝑙1-regularization 
 

• Decomposition algorithms 
 

• Computation 



Security-Constrained OPF 

• Preventive model: 
 
 
 
– {0}: Base case, no contingency 
– 𝐶: Contingency index set 
– 𝑥0: Base-case state variables (nodal voltages) 
– 𝑥𝑐: Contingency-𝑐 state variable 
– 𝑢0: Control variables (generator power output) 
– Exactly a static robust optimization model 



Security-Constrained OPF  

• Advantages of preventive model: 
– Robust: Control solution 𝑢0 feasible for 

all contingencies 
– Easy to implement 

 
• Disadvantages: 

– Conservative: High operational cost 
– Could be infeasible 



Security-Constrained OPF 

• Corrective Model: 
 
 
 
 
– 𝑢𝑐: Control variable for contingency-𝑐 
– Ramping constraints: 𝑢𝑐 − 𝑢0 ≤ 𝑢�𝑐max 
– Almost a two-stage robust optimization model 



Security-Constrained OPF 
• Advantages of corrective model: 

– Controls adaptive to contingencies 
– Achieve lower operational cost 

 
• Disadvantage of corrective model: 

– Larger scale formulation 
– May require a large number of reschedules 

• Undesirable for system operation 
• Can we keep the flexibility of corrective model 

but reduce rescheduling? 



Sparse SCOPF 

• Want to obtain a corrective solution 
with a small number of rescheduling 

   Sparse solution 
 
• Still want to keep 

– similar computational complexity as the 
original corrective SCOPF 

– and similar cost 
 



Security-Constrained OPF 

• Recent proposal [Marano-Marcolini et al. 12’] 

 
 
 
 
– 𝑠𝑐,𝑖: Binary variable control sparsity. 
– Mixed-integer formulation: harder to solve. 



SCOPF with 𝑙1-regularization 
• Our proposal: 

 
 
 
 
 

 
– 𝑙1-regularization ∑ 𝑝𝑐 − 𝑝0 1𝑐∈𝐶  induces 
   sparsity in (𝑝𝑐−𝑝0). 
 



SCOPF with 𝑙1-regularization 
• Reformulated 𝑙1-model: 

 
 
 
 

• Simplified model: 
 

 
 



SCOPF with 𝑙1-regularization 
• Introduce auxiliary variables: 

–  𝑝0,𝑐 = 𝑝0   for all 𝑐 ∈ 𝐶 
 

• Modified 𝑙1-model: 
 



Decomposition Method – I  
• Augmented Lagrangian: 
 

 
 
 

– Define 𝑥 = (𝑝0,𝜃0), 𝑧 = (𝑧𝑐 ,∀𝑐 ∈ 𝐶), where 
𝑧𝑐 = (𝑝𝑐 ,𝜃𝑐 ,𝑤𝑐 ,𝑝0,𝑐) 

– Dual variables: 𝑦 = (𝜆𝑐 ,∀𝑐 ∈ 𝐶) 
– Therefore, 𝐿𝛽 = 𝐿𝛽(𝑥, 𝑧,𝑦) 
– Augmented Lagrangian method has favorable 

convergence property. However, quadratic terms 
not decomposable. 

 



Decomposition Method – II  
• Alternating Direction Method of 

Multiplier (ADMM) 
– ADMM enjoys a resurgence of interest: 

• Wide applications & robust convergence 
• Deep connection to proximal algorithm & 

splitting principle 

• ADMM: 
 

 
 



Decomposition Method – III  
• ADMM solving 𝑙1-model: 

– Solve base case, get 
 
 
 

– Solve each contingency 𝑐 ∈ 𝐶 (in parallel):  
 
 
 
 

– Update multipliers 𝑐 ∈ 𝐶: 
 

  



Decomposition Method – IV  
• Accelerated ADMM [Goldstein et al. 12’] 
 𝑥𝑡+1 = arg min

𝑥∈𝑋
𝐿𝛽(𝑥, �̂�𝑡,𝑦�𝑡) 

 𝑧𝑡+1 = arg min
𝑧∈𝑍

𝐿𝛽(𝑥𝑡+1, 𝑧,𝑦�𝑡) 

 𝑦𝑡+1 = 𝑦�𝑡 + 𝛽(𝐴𝑥𝑡+1 + 𝐵𝑧𝑡+1 − ℎ) 

• Acceleration step: 
– When some residue condition is satisfied: 

• let 𝛼𝑡+1 =
1+ 1+4𝛼𝑡2

2
 

• �̂�𝑡+1 = 𝑧𝑡+1 + 𝛼𝑡−1
𝛼𝑡+1 

𝑧𝑡+1 − 𝑧𝑡  

• 𝑦�𝑡+1 = 𝑦𝑡+1 + 𝛼𝑡−1
𝛼𝑡+1 

𝑦𝑡+1 − 𝑦𝑡  



Decomposition Method – V  
• Residue: 

– Primal residue:  
 
 
– Dual residue: 

 
 

• If residue is reduced, i.e. 
max 𝑑𝑡+1, 𝑟𝑡+1 < max(𝑑𝑡 , 𝑟𝑡) 

Take acceleration step 



Computation Experiment – I  
• Illustration on NE39:  

– 39 buses 
– 10 generators 
– 46 lines 
– 30 contingencies 

 
• Compare traditional corrective model 

and 𝑙1-model 



Computation Experiment – II  
• NE39 Traditional corrective model: 

 
 
 
 

• NE39 𝑙1-regularized corrective model: 



Computation Experiment – III  
• Test systems: 

 
 

• Preventive vs Corrective vs 𝑙1-Model 



Computation Experiment – IV  
• Test systems with more contingencies: 

 
 
 

• Algorithms running times: 
 
 
 
– Reported are Alg 1,2 serial run time 



Conclusion 
• We propose a new SCOPF model 

which induces sparse corrective actions 
• We study decomposition methods that 

work well for large scale problems 
• Computation shows promising 

performance  
 
   THANKS! 
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