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Introduction to ACOPF & formulations 
Conic relaxations and sparsity 
 Valid inequalities for a semidefinite program 
 Valid inequalities in the case of duality gap 
Future research and conclusion 



Minimize single-period ‘costs’ of operating a 
power system under static (steady-state) 
conditions 

 
‘Costs’: Real-power generation (economic 
dispatch), losses, control-shifts,… 
 
Things to model: basic network elements, 
transformer taps, FACTS, phase shifters… 
 

 

 



We explore the question: 
How can one improve a lower bound for ACOPF? 
 
 Second-order cone (SOCP) relaxation with mesh gap 

 Semidefinite (SDP) relaxation with duality gap 

 
Note: We use real power cost minimization and 
take as constraints only the bare bones of ACOPF 
 



P
o

w
e

r 
F

lo
w

 
E

q
u

at
io

n
s 

V
ar

ia
b

le
 

B
o

u
n

d
s 



I.
A

. H
is

ke
n

s 
an

d
 R

.J
. D

av
y,

  '
'E

xp
lo

ri
n

g
 t

h
e 

p
o

w
er

 f
lo

w
 s

o
lu

ti
o

n
 s

p
ac

e 
b

o
u

n
d

ar
y'

', 
 IE

E
E

 
Tr

a
n

sa
ct

io
n

s 
on

 P
ow

er
 S

ys
te

m
s,

  V
o

l. 
16

,  
N

o
. 

3,
  A

u
g

u
st

 2
0

0
1,

  p
p

. 3
8

9
-3

9
5.

 







A relaxation is a special approximation that helps global 
optimality 

 Contains original feasible region (WLOG assume linear objective) 

 Lower (upper) bound on optimal min (max) 
▪ Proof of infeasibility 
▪ Feasible -> Optimal 
 

‘Easy’ relaxations 
 Self-dual convex cones (conic programming) 

▪ Nonnegative Orthant (LP) 
▪ Second-Order (SOCP)  
▪ Positive Semidefinite (SDP) 

 Convex Quadratically  Constrained Quadratic Prog. (QCQP), 
Geometric Programming, etc. 



Can model: binary variables, complementarity constraints, conic 
programming, etc. 

 
Standard tools for generating relaxations 

 Linear Programming 
▪ Outer-Approximation (McCormick , 1982) ,(Al Khayyal & Falk 1983) 
▪ Reformulation-Linearization Technique (RLT) (Sherali & Tuncbilek, 1992) 

 Semidefinite Programming 
▪ Lagrangian Dual via Linear Matrix Inequalities (Shor, 1987) 
▪ Hierarchy of SDP relaxations (Lasserre, 2001) 

 Second-Order Cone Programming 
▪ Relaxations of a positive semidefinite (PSD) constraint                     

(Kim & Kojima, 2001), (Muramatsu & Suzuki, 2003) 



POL REC IV 

RECSDP 

RECLD 

(Bai et al., 2008) 

(Lavaei & Low, 2012) 

(Lavaei & Low, 2012) 

(Jabr, 2006) RECSOCP 
(Farivar & 

Low, 2012) (Sojoudi & Lavaei, 
2012) 

(Subhonmesh,  
Low, Chandy 2012) 

(Sojoudi & Lavaei, 2012) 
(Bose et al., 2012) 
(Zhang & Tse, 2011) 

(Baran & 
Wu, 1989) 

















(Fukuda et al., 2000): from the completion theorem of (Grone et al., 
1984), we can decompose one PSD constraint into PSD constraints on 
principal submatrices corresponding to cliques of a chordal extension 
graph. 

 Reduces number of variables 

▪ Finding a minimal extension is NP-Complete 

▪ An ‘optimal’ extension is not always minimal 

 Can be used to prove RECSOCP = RECSDP for tree networks 

 Finding minimal completions is NP-complete 
ACOPF applications: 
(Bai & Wei, 2011): Hierarchy heuristic 
(Sojoudi & Lavaei, 2012): Cycle basis 
(Jabr, 2012): Cholesky decomposition heuristic 
(Molzahn et al., 2013): Custom greedy heuristic 



A chordal completion is a set of additional 
edges that will make a graph chordal. 
 
   It’s sufficient to consider  
   the cliques {1,2,4} and {1,3,4}. 
   For ACOPF, we could replace 
     with two PSD  
   constraints and discard the 
   lifting variables  
    

1 2 

3 4 



Matrix Variables Usage (Cholesky heuristic) 

Buses 
Connected 
bus pairs 

Additional 
pairs 

% of possible 
variables 

# Cliques 
Avg Clique 

Size 
Max Clique 

Size 

14 20 3 36% 12 2.9 3 

30 41 4 18% 26 3 4 

39 46 21 14% 34 2.8 4 

57 78 59 12% 52 3.4 6 

118 179 84 5% 109 3.3 5 

300 409 255 2% 249 3.2 8 



Hardware: 2.26 GHz dual-core Intel, 4GB RAM 
 
Language: MATLAB r2010a 
 
Modeling: YALMIP (05-April-2013) 
 
Optimization: MOSEK 7.0.0.46, IPOPT 
 
Data: MATPOWER 4.1 
 
 
 



Buses RECSDP 
Sparse 
RECSDP 

RECLD RECSOCP 

Sparse 
RECLD 

(Molzahn et 
al., 2013) 

14 0.9 0.1 2.5 0.1 - 

30 12.6 0.2 0.8 0.1 - 

39 68.8 0.3 1.9 0.1 - 

57 525.8 0.5 2.5 0.1 - 

118 - 1 18.2 0.2 2.1 

300 - - (memory)  363.1 0.6 5.7 

2383 - - - 7.3 730 



Buses 
% of best primal 
solution (IPOPT) 

14 99.9% 

30 99.8% 

39 99.98% 

57 99.9% 

118 99.8% 

300 99.9% 

2383 99.3% 

Zero Duality Gap 



Literature has sought conditions where 
RECSDP/RECSOCP solves REC. 
 
We focus on the gaps: 

 ‘Mesh gaps’ for RECSOCP 

 Duality gaps for RECSDP 





Any c yields a necessary and hence valid inequality. 
 
We would like to make a cut using c that separates  an 
arbitrary non-PSD solution i.e.  renders it infeasible. 



Consider a relaxed non-PSD solution: 
 
 
Courant-Fischer-Weyl min-max principle: 

 
 

Max violation cut uses most negative eigenvalue:  
 
(linpsd) 
 
  (Sherali & Fraticelli, 2002) 



Setting C = [c1 c2] (n-by-2) results in SOC: 
 

 
 
 
 
 
 
                    (Oskoorouchi, Mitchell, 2006) 
  



For the SOC cuts we observe: 
2x2 approach is a special case (e.g. RECSOCP) 
linear cuts are dominated by these equalities 
 
We propose: 
socpsd: 
 



Negative costs:  
 

Buses Mesh gap 

14 2.1% 

30 2.3% 

39 0.3% 

57 0.7% 

118 1.1% 

300 0.6% 



1. Solve relaxation and obtain near-optimal 
solution 

2. Generate cuts to separate violated constraints 

3. Add cuts (linpsd/socpsd1/socpsd2) to constraint 
set 

4. Purge cuts if optimal objective has improved 

5. GOTO 1 



Iterations 

Total time in solver 
(overhead not 

included) 

Sparse 
RECSDP 
time to 
solve 

Time to solve last 
iteration 

Buses linsdp socsdp linsdp socsdp linsdp socsdp 

14 8 4 0.2 0.1 0.6 0.04 0.04 

30 22 7 10.1 0.6 0.7 0.49 0.4 

118 18 7 12.8 4.4 1.4 1.28 1 

300 9 6 50.2 36.3 - 8 10 



PSD cuts are not ideal for precise solutions 
 Might be competitive with standard interior point with a lot of 

engineering (Mitchell, 2003) 

 
One clear use is when duality gap is significant 

 Quickly establish lower bounds when branching  

▪ Improve if the pruning procedure demands it 

 Fast separation procedures 

▪ Spatial disjunctions 

▪ Integers 



Recall 

Buses Duality gap Mesh gap 

9 <19% 0.02% 

14 <18% 2.1% 

30 <36% 2.3% 

39 ? 0.3% 

57 ? 0.7% 

118 <23% 1.1% 

300 ? 0.6% 



Piecemeal approach to duality gap 
 Add ‘easy’ nonconvex valid inequalities 

▪ ‘Inner approximation’ 

▪ e.g. univariate spatial disjunctions 

 
(Phan, 2010): Zero duality gap, no branching 
 
(Gopalakrishnan et al, 2012): Prove small 
duality gaps on modified IEEE cases (up to 2%) 

 



Selecting a disjunction: 
 
 
 
e.g. find a violated line, add disjunction on 
voltage magnitude/angle 
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Best overestimate of convex function is a 
hyperplane 
 
 
 
Given a convex space bounding the variables, 
we can use extreme point analysis to derive 
coefficients (secant approx) 





We update our secant valid inequality each 
time we branch on voltages 
 
(secvi) 
 
Enables branching on magnitudes or angles 
 
Simple univariate secant if branching only on 
magnitudes due to norm symmetry 



RECSDP     RECSDP+secvi 

18.9% 

18.9% 16.5% 

18.9% 17.8% 

17.6% 

17% 14.7% 

14.3% 17% 



REC 

RECSDP 

RECSOCP 

Copper 
Plate 

Sparse PSD cuts 
get weaker 
relaxations to 
approach the 
Lagrangian Dual 
lower bound 
 

Branching or 
disjunctive cuts 
get any 
relaxation to 
approach the 
true optimal 
value 
 



Selection of disjunctions/branching 
 Can a feasible solution help guide lower bound 

construction? 
 
SDP relaxation + cuts for cliques > 3? 
 
Are there large mesh gaps?  Duality gaps? 
 
Relaxations in the original space of variables 

 Projected RLT, SDP cuts on the IV formulation? 
 



Cuts can help close root (mesh, duality) gaps 
 
We can make arbitrarily effective outer-
approximations of SDP in LP or SOCP form 
 
Secant valid inequalities help global 
convergence in the case of duality gap 



chenchen@berkeley.edu for questions, 
references 

mailto:chenchen@berkeley.edu


Iterations 
Total time in solvers 
(without overhead) 

Sparse 
RECSDP 
time to 
solve 

Time to solve last 
iteration 

Buses linsdp socsdp linsdp socsdp linsdp socsdp 

57 6 3 1.8 1.4 0.5 0.4 0.6 

118 12 5 9.8 6.2 1 1.3 1.8 

300 9 6 50.2 36.3 - 8 10 





Also the dual of Shor’s relaxation! 





Iterations 
Total time in solvers 
(without overhead) 

Sparse 
RECSDP 
time to 
solve 

Time to solve last 
iteration 

Buses linsdp socsdp linsdp socsdp linsdp socsdp 

57 22 8 12.7 5.5 0.5 1.9 0.9 

118 27 9 32.8 12.9 1 1.1 1.8 

300 17 8 118.8 61.2 - 12.4 21 


