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» Significant breakthroughs in Mixed-Integer Programming (MIP)
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» Significant breakthroughs in Mixed-Integer Programming (MIP)
= Solving MIP 100 million times faster than 20 years ago!

m The time to solve UC is still a critical limitation that restricts its size
and scope

= How to reduce solving times?

= Computer power (e.g., clusters)
= Solving algorithms (e.g., solvers, decomposition techniques)
» Improving the MIP-Based UC formulation = | solving times
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Shaping the linear feasible region to arrive from vertex Zyp to Zy;rp
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Feasible
solutions=e

To prove optimality Zj;;p must become a vertex by:
» Branch and bound (divide and conquer)
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Solving MIP Through The Powerful LP COMILLAS

Shaping the linear feasible region to arrive from vertex Z;p to Zy;1p
y O O o

[ objective
O

cuts

Feasible
solutions=e

To prove optimality Zj;;p must become a vertex by:
» Branch and bound (divide and conquer)

» and/or by adding cuts



An MIP Has Infinite LP Formulations
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An MIP Has Infinite LP Formulations

o O

Feasible
solutions=e

LP1 and LP2 represent the same MIP problem
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Feasible
solutions=e

LP1, LP2 and CH represent the same MIP problem

which one to choose?
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Convex Hull (CH)

Smallest convex feasible region
containing all the feasible integer
points?

Feasible
solutions=e

2L Wolsey, Integer Programming. Wiley-Interscience, 1998
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Convex Hull (CH)

Smallest convex feasible region
containing all the feasible integer
points?

Feasible
solutions=e

m The convex hull problem solves an MIP as an LP

m Each vertex satisfies the integrality constraints
m So an LP optimum is also an MIP optimum

» Unfortunately, the convex hull is typically too difficult to obtain®3

= An enormous (exponential) number of inequalities is needed

2L Wolsey, Integer Programming. Wiley-Interscience, 1998
3H. P. Williams, Model Building in Mathematical Programming, 5th Edition. John Wiley & Sons Inc, Feb. 2013
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Convex Hull (CH)

Smallest convex feasible region
containing all the feasible integer
points?

Feasible
solutions=e

m The convex hull problem solves an MIP as an LP

m Each vertex satisfies the integrality constraints
m So an LP optimum is also an MIP optimum

» Unfortunately, the convex hull is typically too difficult to obtain®3

= An enormous (exponential) number of inequalities is needed
= To solve an MIP is usually easier than trying to find its convex hull

2L Wolsey, Integer Programming. Wiley-Interscience, 1998
3H. P. Williams, Model Building in Mathematical Programming, 5th Edition. John Wiley & Sons Inc, Feb. 2013
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Choosing The Best Formulation
Measuring The Tightness

Integrality Gap (IGap)

Relative distance between MIP
and LP optima

Zap—7Z
IGapy py = =MZ=CLEL
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Measuring The Tightness CoMILLAS

Integrality Gap (IGap) ' Az [ object
- opjective

o o

Relative distance between MIP

and LP optima Feasible

solutions=e

Z —7Z 7 -7 7 _7
[Gapy pi = =22 > [Gapypy = =212 > [Gapoy = 220 =()

As an MIP problem:
LP2 is expected to be solved faster than LP1
CH will be solved way faster than LP2
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solver needs to explore to find the solution

» Compactness (problem size): defines the searching speed (data to
process) that the solver takes to find the solution
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» Tightness: defines the search space (relaxed feasible region) that the
solver needs to explore to find the solution

» Compactness (problem size): defines the searching speed (data to
process) that the solver takes to find the solution

m Convex hull: The tightest formulation = MIP solved as LP



DE

Tightening an MIP Formulation ComiLLa

= The most common strategy is adding cuts

= In fact, this is the most effective strategy of current MIP solvers*
» This may add a huge number of inequalities = 1 Time

4R. Bixby and E. Rothberg, “Progress in computational mixed integer programming—A look back from the other side of the
tipping point,” Annals of Operations Research, vol. 149, no. 1, pp. 37-41, Jan. 2007
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Tightening an MIP Formulation

= The most common strategy is adding cuts

= In fact, this is the most effective strategy of current MIP solvers*
» This may add a huge number of inequalities = 1 Time
m Trade-off: Tightness vs. Compactness

= Improving the MIP formulation

m Provide the convex hull for some set of constraints
m If available, use the convex hull for some set of constraints

4R. Bixby and E. Rothberg, “Progress in computational mixed integer programming—A look back from the other side of the

tipping point,” Annals of Operations Research, vol. 149, no. 1, pp. 37-41, Jan. 2007
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Tight and Compact (TC) Formulation

» The whole formulation can be found in the paper TC-UC®

5G. Morales-Espana, J. M. Latorre, and A. Ramos, “Tight and compact MILP formulation for the thermal unit commitment
problem,” |EEE Transactions on Power Systems, 2013, Special Section on Analysis and Simulation of Very Large Power
Systems. In Press
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Tight and Compact (TC) Formulation COMILLAS

» The whole formulation can be found in the paper TC-UC®
m Let's focus on the core of UC formulations:

= Min/max outputs
m SU & SD capabilities
= Minimum up/down (TU /T D) times, convex hull already available®

5G. Morales-Espana, J. M. Latorre, and A. Ramos, “Tight and compact MILP formulation for the thermal unit commitment
problem,” |EEE Transactions on Power Systems, 2013, Special Section on Analysis and Simulation of Very Large Power
Systems. In Press

5p. Rajan and S. Takriti, “Minimum Up/Down polytopes of the unit commitment problem with start-up costs,” |IBM,
Research Report RC23628, Jun. 2005
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= Generation limits taking into account: maximum P and minimum P
output, as well as maximum SU and SD capabilities:

p < (P=P)u— (P=SD) w1 — max (SD-SU,0) v vt (1)
pr < (1_3 — B) Up — (F — SU) vy —max (SU—-SD,0) w1Vt (2)

Total generation = P - u; + p;.
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m Logical relationship: commitment w,, startup v; and shutdown w;:

Ut — Ut—1 = V¢ — Wt Vit (3)
v <uy Yt (4)

where (4) and (5) avoid the simultaneous startup and shutdown.

» Variable bounds

pe>0 Vit (6)
0 S Ut, Vg, Wt S 1 WVt (7)
iir
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Let's study the polytope (1)-(7) using PORTA':

m PORTA enumerates all vertices of a convex feasible region

7T. Christof and A. Lébel, “PORTA: POlyhedron representation transformation algorithm, version 1.4.1,”
Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, Germany, 2009



Tightness of the Formulation

Let's study the polytope (1)-(7) using PORTA':
m PORTA enumerates all vertices of a convex feasible region
= Example: 3 periods and P = 200, P = SU = SD = 100 for:

mCasel: TU=TD =1
w Case2: TU=TD =2

m For the complete and detailed formulation and a comprehensive study,
see paper Tight LP-UC®

7T. Christof and A. Lébel, “PORTA: POlyhedron representation transformation algorithm, version 1.4.1,”
Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, Germany, 2009

8G. Morales Espafia, C. Gentile, and A. Ramos, “Tight LP formulation of the unit commitment problem presenting integer
solutions,” |EEE Transactions on Power Systems, 2013, Under Review
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Formulation: PORTA results for (TU=TD=1)

pe < (F—B) Up — (ﬁ— S’D) W1
— max (SD—SU, 0) v; (1)
pt < (ﬁ—E)Ut — (?—SU)fut
—max (SU=SD,0) wer1 (2)

Ut — Ut—1 = V¢ — Wt (3)
vy < Ut (4)
wy <1 —ug (5)
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Formulation: PORTA results for (TU=TD=1)
ui,u2,u3,v2,v3, w2, w3, p1,p2, P3:
pe < (P=P)u— (P— SD) wia DIM = 10
— max (SD—SU, 0) vy 1) CONV_SECTION
- - ( 10000000 O O O
< (P = — _ ( 220010100 0 0 O
pt_(P E)ut (P SU)Ut (31000010 0 0 O
— max (SU—SD,0) wi11 (2) ( 4990101001 0 0 O
(80111000 0 0 O
_ (60111000 0 0 100
Ut = Ug—1 = Ut — Wy B (1100001 0 o0 o
v < ug (4) ( 81100001100 0 O
- (91110000 0 0 O
we <1 —uy (5) (1001110000 0 0100
(11) 1110000 0100 O
(12) 1110000 0 100 100
(13) 1110000100 0 O
(14) 1110000 100 0 100
(15) 1110000 100 100 O
(16) 111000 0 100 100 100
(171010110 0 0 O
END
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Case 1: Providing The Convex Hull CoMiLLAS
M A D R I D
Formulation: PORTA results for (TU=TD=1)
ui,u2,us,v2,v3, w2, w3, p1,p2, P3:
pe < (P=P)u— (P— SD) wia DIM = 10
_ _ CONV_SECTION
_maX(SD S[fo)vt @) 0000000 0 o o
<(P-Plu, — (P—SU ( 220010100 0 0 O
pt_( —)ut ( )Ut (31000010 0 0 O
—max (SU=SD,0) wer1 (2) ( 4990101001 0 0 0
( 550111000 0 0 O
_ ( 60111000 0 0 100
Ut = Ug—1 = Ut — Wy B (1100001 0 o0 o
v < up (4) ( 81100001100 0 O
- (991110000 0 0 O
we <1 —ug (5) (10) 1110000 0 0 100
(11) 1110000 0100 O
(12) 1110000 0 100 100
All vertices are integer (131110000100 0 0
(14) 1110000 100 0 100
() (15) 1110000 100 100 0O
(16) 11100 0 0 100 100 100
Convex Hull (17) 1010110 0 0 0
END
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Formulation + TU /T D Convex hull:
< (ﬁ—P) — (ﬁ—SD) Wit1
—max (SD—-SU,0) v, (1)
<(P-P)u—(P-8U)w
— max (SU—SD,O) Wi+1 (2)

PORTA results for (TU =T D =2)

Ut — Ut—1 = UVt — Wt (3)
t
Z ’UiS Ut (4)
i=t—TU+1
t
Z wi< 1l —uy (5)
i=t—TD+1
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Case 2: Providing and Using Convex Hulls (I) CoMILLAS

Formulation + T'U/TD Convex hull: PORTA results for (TU =TD=2)

e— e— Uul,uU2,U3,v2,0U3, W2, W, N
S (P _ P) s — (P _ SD) Wi 1,u2,u3,v2,vs3, w2, w3, pP1, P2, P3
DIM = 10
— max (SD—5U,0) v, M conv_srerron
_ (1) 00 0 000 O O O O
<(P-P)u—(P-SU)w ( 2)1/211/21/2001/2 0 5 0
—max (SU-SD,0) w41 (2) ¢ 3 1/211/21/2001/2 0 50 50
( 4)1/211/21/200 1/2 50 50 0
( 5)1/211/21/2 00 1/2 50 50 50
Ut — Ut—1 = V¢ — Wt (3) ( 6 00 1 010 O O O O
(7 10 0 001 0 O O O
t (8 01 1 100 0 O 0 O
Z i< Uy (4 (9 01 1 100 0 0 0100
= (10) 11 0 000 1 0 0 O
i=t-TU+1 (11) 11 0 000 1100 0 O
¢ (12) 11 1 000 O O O O
<1_ 5 (13) 11 1 000 0 O 0 100
wi< Ut () (18 11 1 000 0 0100 0
i—t—TD+1 (1) 11 1 000 0O 0 100 100
(16) 11 1 000 0100 O O
. (17) 11 1 000 0100 0 100
How to remove the fractional (18) 11 1 000 0100 100 O
Lo (199 11 1 000 0 100 100 100
vertices? END i
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Reformulating (1) and (2) for TU > 2:

P!__GHW_@_S'B%FF PORTA results for (TU=TD=2)

ui, u2,u3, v2,v3, W2, W3, P1, P2, P3:

—max (SD—SU 0} v, (1) DIM = 10

Pr= (i £ ) T (i & ) vT CONV_SECTION

2 ¢ 10000000 0 0 0
e Sihauar ( 20010100 0 0 0
_ _ ( 31000010 0 0 0
pt < (P = P)us— (P—SU) v ( 90111000 0 0 0
_ ( 50111000 0 0 100
— (P - SD) wits (8 ( 61100001 0 0 0
( 791100001100 0 0
_ ( 891110000 0 0 O
Up = U1 = Vg — Wt B (H1110000 0 0100
¢ (10) 1110000 0100 0
A (11) 1110000 0 100 100
Z vi S ut ) (12)1110000100 0 0
=t —TU+1 (13) 1110000 100 0 100
. (14) 1110000 100 100 0
(15) 1110000 100 100 100
Z w; <1 —uy (5)  Exp
i=t—TD+1
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Case 2: Providing and Using Convex Hulls (II) COMILLAS

Reformulating (1) and (2) for TU > 2:

Pr_ée_a—P')'ﬂ'z—H_a—S'B}wﬁrr PORTA results for (TU=TD=2)

ui, u2,u3, v2,v3, W2, W3, P1, P2, P3:

E AL @ DIM = 10
Pr= (i £ ) T (i & ) vT CONV_SECTION

2 ¢ 10000000 0 0 0
e Sihauar ( 220010100 0 0 0
_ _ ( 31000010 0 0 0
pt < (P = P)us— (P—SU) v ( 90111000 0 0 0
_ ( 50111000 0 0 100
— (P - SD) wits (8 ( 61100001 0 0 0
( 791100001100 0 0
_ ( 891110000 0 0 0
Up = U1 = Vg — Wt B (H1110000 0 0100
¢ (10) 1110000 0100 0
A (11) 1110000 0 100 100
Z vi S ut ) (1) 111000010 0 0
=t —TU+1 (13) 1110000 100 0 100
. (14) 1110000 100 100 0
(15) 1110000 100 100 100
Z w; <1 —uy (5)  Exp
i=t—TD+1

= Convex Hull
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Generation levels are usually considered as energy blocks.
Example: P = 300MW; P = 100MW; Up/Down ramp rate: 100 MW /h
Traditional UC
P [MW]
300
200
100
|t
1 2 3 T4 1l
iir
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Generation levels are usually considered as energy blocks.
Example: P = 300MW; P = 100MW; Up/Down ramp rate: 100 MW /h

Traditional UC Feasible energy profile

1) MW =
0 (MW 0 MV
300 300
-
SOMW
200 200 100MW
somwl /T~
100 100
| t | t
1 2 3 4 Ih] 1 2 13 4 Il
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Generation levels are usually considered as energy blocks.
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Traditional UC Feasible energy profile
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300
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Infeasible energy delivery®
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Energy vs Power CoMILLAS
M A D R 1 D

Generation levels are usually considered as energy blocks.
Example: P = 300MW; P = 100MW; Up/Down ramp rate: 100 MW /h

Traditional UC Feasible energy profile

1) [MW =
() MW 0 M)
300 300
=
SONTW
200 200 100MW
somwl /T~
100 100-—=
Lt,
1 2 3 4 Ih]

Infeasible energy delivery®
Overestimated ramp availability

A clear difference between power and energy is required in an UC

9X. Guan, F. Gao, and A. Svoboda, “Energy delivery capacity and generation scheduling in the deregulated electric powel

=
market,” |EEE Transactions on Power Systems, vol. 15, no. 4, pp. 1275-1280, Nov. 2000
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TC P-Based UC: Providing The Convex Hull COMILLAS
Zc[)}lVir:gBDaszeciB:LJC formulation for PORTA results for (TU=TD =2)

pt <(P=P) (us —werr)  (9)

Up — Up—1 = Vp — Wy 3)
[’
Z v < ug (4)
i=t—TU+1
t
Z w; <1 —uy (5)
i=t—TD+1

p; =power over P at the end of period ¢
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Power-Based UC formulation for
SU=SD=P:

PORTA results for (TU=TD= 2)
ui,u2,u3, v2,v3, w2, W3, p17p21p3

P S(TJ - B) (ur — wit1) ©) DM =10

CONV_SECTION

Ut — U1 = Vg — Wi (3 (1ooo0oo0000 0 0 O
. ( 220010100 0 0 0
( 30010100 0 0 100
Z v < ug () (a1o000010 0 0 O
i Tom ( 590111000 0 0 O
= ( 60111000 0 0 100
t ( 770111000 0100 O
_ ( 80111000 0 100 100
Zw’<1 ut ®) ¢ 991100001 0 0 o
i=t—TD+1 (10) 1100001100 0 O
(11) 1110000 0 0 O
p, =power over P at the end of period ¢ (12) 1110000 0 0 100
(13) 1110000 0100 0
(14) 1110000 0 100 100
(15) 1110000100 0 O
(16) 1110000 100 0 100
(17) 11100 0 0 100 100 ©
(18) 11100 0 0 100 100 100

END
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M A D R I D

gc[)}lvzr:gBDaszec;_D:LJC formulation for PORTA results for (TU=TD =2)

/ / /.
ul, u2,u3, v2, V3, W2, W3, Py, Py, P3'

pt <(P—P) (us —wen)  (9) DPIM =10
CONV_SECTION

Ut — Ug—1 = Vt — Wy (3 ¢ 1ooo00000 0 0 0
. ( 220010100 0 0 0
( 30010100 0 0 100
Zvl<ut () (a1o000010 0 0 O
Tl ( 590111000 0 0 0
= ( 60111000 0 0 100
t ( 770111000 0100 0
_ ( 80111000 0 100 100
Zw’<1 v G) ¢ 91100001 0 0 o
i=t—TD+1 (10) 1100001100 0 0
(11) 1110000 0 0 0
p, =power over P at the end of period ¢ (12) 1110000 0 0 100
(13) 1110000 0100 0
(14) 1110000 0 100 100
i i (15) 1110000100 0 O
All vertices are integer (1811100089109 o100
U (17) 11100 0 0 100 100 0
18) 11100 0 0 100 100 100

Convex Hull o8
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lgnoring SU and SD Power Trajectories

Generation output below minimum output is usually ignored in UCs
m SU & SD ramps are deterministic events in day-ahead UCs
u Ignoring them change commitment decisions and increase costs®:11

m This energy must be optimally allocated by day-ahead UCs

106, Morales-Espana, J. M. Latorre, and A. Ramos, “Tight and compact MILP formulation of start-up and shut-down
ramping in unit commitment,” |EEE Transactions on Power Systems, vol. 28, no. 2, pp. 1288-1296, 2013

g, Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, “An MIP formulation for joint market-clearing of energy and reserves
based on ramp scheduling,” [EEE Transactions on Power Systems, 2013, Special Section on Electricity Markets Operation. In
Press
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Total unit's production including SU & SD power trajectories!?:
suP sDP 41
P = Z PiSUU(t_i+SUD+2) + ZHSDw(t—i+2) + P (us + vep1) + pe
—_——

i=1 i=2 Traditional Output

-~

SU trajectory SD trajectory

m Key aspects to not destroy the convex hull:

» Output above and below P are managed independently
» Overlapping is avoided by using the min up/down constraints

12, Morales-Espana, J. M. Latorre, and A. Ramos, “Tight and compact MILP formulation of start-up and shut-down
ramping in unit commitment,” |EEE Transactions on Power Systems, vol. 28, no. 2, pp. 1288-1296, 2013
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Modeling SU and SD Power Trajectories CoMiLLAS

Total unit's production including SU & SD power trajectories!?:

suP sDP 41
Py = Z PiSUU(t_i+SUD+2) + ZHSDw(t—H—z) + P (u¢ + vig1) + pe
— - —_——
= 2 Traditional Output
SU trajectory SD trajectory

m Key aspects to not destroy the convex hull:

» Output above and below P are managed independently

» Overlapping is avoided by using the min up/down constraints

B = P} can be expressed as a linear combination of other variables
m = The whole formulation remains as a convex hull

12, Morales-Espana, J. M. Latorre, and A. Ramos, “Tight and compact MILP formulation of start-up and shut-down
ramping in unit commitment,” |EEE Transactions on Power Systems, vol. 28, no. 2, pp. 1288-1296, 2013
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Modeling SU and SD Power Trajectories CoMiLLAS

Total unit's production including SU & SD power trajectories!?:

suP sDP 41
]3\; = Z PiSUU(t_i+SUD+2) + ZPiSDw(t—i+2) +£(Ut + vt+1) + pe
— - —_——
= 2 Traditional Output
SU trajectory SD trajectory

m Key aspects to not destroy the convex hull:

» Output above and below P are managed independently

» Overlapping is avoided by using the min up/down constraints

B = P} can be expressed as a linear combination of other variables
m = The whole formulation remains as a convex hull

m Different SU ramps can be easily included in a similar way, for either
energy- or power-based formulations'?

126, Morales-Espana, J. M. Latorre, and A. Ramos, “Tight and compact MILP formulation of start-up and shut-down
ramping in unit commitment,” |EEE Transactions on Power Systems, vol. 28, no. 2, pp. 1288-1296, 2013
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= Formulations tested —modeling the same MIP problem:
m TC'3: Proposed Tight & Compact
= 1bin'*: 1-binary variable (u)
= 3bin'®: 3-binary variable version (u,v,w) + TU/TD convex hull

136, Morales-Espana, J. M. Latorre, and A. Ramos, “Tight and compact MILP formulation for the thermal unit commitment
problem,” |EEE Transactions on Power Systems, 2013, Special Section on Analysis and Simulation of Very Large Power
Systems. In Press

14M. Carrion and J. Arroyo, “A computationally efficient mixed-integer linear formulation for the thermal unit commitment
problem,” |EEE Transactions on Power Systems, vol. 21, no. 3, pp. 1371-1378, 2006

15 Ostrowski, M. F Anjos, and A. Vannelli, “Tight mixed integer linear programming formulations for the unit commitment
problem,” IEEE Transactions on Power Systems, vol. 27, no. 1, pp. 39-46, Feb. 2012
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m TC'3: Proposed Tight & Compact
= 1bin'*: 1-binary variable (u)
= 3bin'®: 3-binary variable version (u,v,w) + TU/TD convex hull

m Case Study A: Self-UC for 10-units, for 32-512 days time span
» Basic constraints: max/min, SU/SD and TU/TD
u Case Study B: UC for 40 power system mixes, from 28 to 1870 units'3

= Including demand, ramps, reserves, variable SU costs
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Case Studies COMILLAS

= Formulations tested —modeling the same MIP problem:

m TC'3: Proposed Tight & Compact
= 1bin'*: 1-binary variable (u)
= 3bin'®: 3-binary variable version (u,v,w) + TU/TD convex hull

m Case Study A: Self-UC for 10-units, for 32-512 days time span
» Basic constraints: max/min, SU/SD and TU/TD
u Case Study B: UC for 40 power system mixes, from 28 to 1870 units'3

= Including demand, ramps, reserves, variable SU costs

All results are expressed as percentages of 1bin results

136, Morales-Espana, J. M. Latorre, and A. Ramos, “Tight and compact MILP formulation for the thermal unit commitment
problem,” |EEE Transactions on Power Systems, 2013, Special Section on Analysis and Simulation of Very Large Power
Systems. In Press

14M. Carrion and J. Arroyo, “A computationally efficient mixed-integer linear formulation for the thermal unit commitment
problem,” |EEE Transactions on Power Systems, vol. 21, no. 3, pp. 1371-1378, 2006
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Case Study A: Self-UC (1) COMILLAS

Results presented as percentages of 1bin:

3bin (%) TC (%)

Constraints <78 <48
Nonzeros 89 72

Real Vars 333 33.3

Bin Vars =300 =300
Integrality Gap 34 =0

MIP Sol. Time 6.3 0.192

MIP Sol.Time (best-worst) 0.46 - 87 0.001 - 3.3
LP Sol.Time 80 49.8
3

TCis Tighter and Simultaneously more Compact



Case Study A: Self-UC (II)

Performance of the Energy-Based formulations:

3bin (%) TC (%) _ TC SU&SD

Constraints <78 <48 <59
Nonzeros 89 72 95

Real Vars 33.3 33.3 66.7

Bin Vars =300 =300 =300
Integrality Gap 34 =0 =0

MIP Sol. Time 6.3 0.192 0.196

MIP Sol.Time (best-worst) 0.46 - 87 0.001-3.3 0.001- 3.3

LP Sol.Time 30 49.8 54.1




Case Study A: Self-UC (I1) Commirg

Performance of the Energy-Based formulations:

3bin (%) TC (%) _ TC SU&SD

Constraints <78 <48 <59
Nonzeros 89 72 95

Real Vars 33.3 33.3 66.7

Bin Vars =300 =300 =300
Integrality Gap 34 =0 =0

MIP Sol. Time 6.3 0.192 0.196

MIP Sol.Time (best-worst) 0.46 - 87 0.001-3.3 0.001- 3.3
LP Sol.Time 30 49.8 54.1
3

The Energy-Based TC formulations describe the convex hull
then solving MIP (non-convex) as LP (convex)
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Performance of the Power-Based formulations P-TC:

3bin (%) P-TC (%) P-TC SU&SD

Constraints <78 <45 <56
Nonzeros 89 67 92

Real Vars 33.3 33.3 66.7

Bin Vars =300 =300 =300
Integrality Gap 34 =0 =0

MIP Sol.Time 6.3 0.18 0.191

MIP Sol. Time (best-worst) 0.46 - 87 0.001 - 3.2 0.001 - 3.2

LP Sol.Time 80 43.3 45.9




Case Study A: Self-UC (I1) Commirg

Performance of the Power-Based formulations P-TC:

3bin (%) P-TC (%) P-TC SU&SD

Constraints <78 <45 <56
Nonzeros 89 67 92

Real Vars 33.3 33.3 66.7

Bin Vars =300 =300 =300
Integrality Gap 34 =0 =0

MIP Sol.Time 6.3 0.18 0.191

MIP Sol. Time (best-worst) 0.46 - 87 0.001 - 3.2 0.001 - 3.2
LP Sol.Time 80 43.3 45.9
3

The Power-Based TC formulations describe the convex hull
then solving MIP (non-convex) as LP (convex)
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Case Study B: UC for 40 power system mixes CoMILLAS

Results presented as percentages of 1bin:

3bin (%) TC (%)

Constraints <99 <40

Nonzeros ~100 <35
Real Vars 75 50

Bin Vars =300 <500
Integrality Gap 72 40
Total Average Sol. Time 71 7

Sol.Time (best-worst) 11 -269 2 —57

4

TCis Tighter and Simultaneously more Compact
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Case Study B: UC for 40 power system mixes CoMILLAS

Results presented as percentages of 1bin:

3bin (%) TC (%)

Constraints <99 <40
Nonzeros ~100 <35
Real Vars 75 50
Bin Vars =300 <500
Integrality Gap 72 40
Total Average Sol. Time 71 7
Sol.Time (best-worst) 11 -269 2 —57
Sol. Time Small Cases 67 11
Sol. Time Large Cases 77 4.5
\

TCis Tighter and Simultaneously more Compact
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m 10 generating units for a time span of 4 days
= 10 to 200 scenarios in demand
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16T Liand M. Shahidehpour, “Price-based unit commitment: a case of lagrangian relaxation versus mixed integer
programming,” |EEE Transactions on Power Systems, vol. 20, no. 4, pp. 2015-2025, Nov. 2005
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Stochastic UC: Case Study CoMmiLLAS

10 generating units for a time span of 4 days

10 to 200 scenarios in demand

=
=
= New formulation included: Sh®
m

Different Solvers

m Cplex 12.5.1
w Gurobi 5.5
» XPRESS 24.01.04

16T Liand M. Shahidehpour, “Price-based unit commitment: a case of lagrangian relaxation versus mixed integer
programming,” |EEE Transactions on Power Systems, vol. 20, no. 4, pp. 2015-2025, Nov. 2005
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Stochastic UC: Case Study CoMILLAS

m 10 generating units for a time span of 4 days
= 10 to 200 scenarios in demand

» New formulation included: Sh'®

u Different Solvers

m Cplex 12.5.1
w Gurobi 5.5
» XPRESS 24.01.04

m Stop criteria:

= Time limit: 5 hours or
= Optimality tolerance: 0.01

16T Liand M. Shahidehpour, “Price-based unit commitment: a case of lagrangian relaxation versus mixed integer
programming,” |EEE Transactions on Power Systems, vol. 20, no. 4, pp. 2015-2025, Nov. 2005
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Stochastic: CoMmiLLAS
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TC deals with 200 scenarios within the time that others deal with 80
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Demand Scenarios

TC deals with 200 scenarios within the time that others deal with 60
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TC deals with 200 scenarios within the time that others deal with 50
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» Some drawbacks of current UC formulations were identified’

= Then the TC-UC was reformulated for better scheduling (| costs)!8,
mainly by introducing new features, e.g.,

= Linear piece-wise power scheduling
m SU & SD power trajectories

17G. Morales-Espana, J. Garcia-Gonzalez, and A. Ramos, “Impact on reserves and energy delivery of current UC-based
market-clearing formulations,” in European Energy Market (EEM), 2012 9th International Conference on the, Florence, ltaly,
May 2012, pp. 1-7

18G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, “An MIP formulation for joint market-clearing of energy and reserves
based on ramp scheduling,” [EEE Transactions on Power Systems, 2013, Special Section on Electricity Markets Operation. In
Press
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= Then the TC-UC was reformulated for better scheduling (| costs)!8,
mainly by introducing new features, e.g.,

= Linear piece-wise power scheduling
m SU & SD power trajectories

m The challenge:
u Trade-off: Model detail vs. Computation burden
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Ramp-Based Scheduling Approach COMILLAS

» Some drawbacks of current UC formulations were identified'”
= Then the TC-UC was reformulated for better scheduling (| costs)!8,
mainly by introducing new features, e.g.,
= Linear piece-wise power scheduling
m SU & SD power trajectories
m The challenge:

u Trade-off: Model detail vs. Computation burden
m SU & SD power trajectories was the main challenge
m So, a Tight & Compact MIP formulation for SU & SD trajectories was

proposed®®

176, Morales-Espana, J. Garcia-Gonzalez, and A. Ramos, “Impact on reserves and energy delivery of current UC-based
market-clearing formulations,” in European Energy Market (EEM), 2012 9th International Conference on the, Florence, ltaly,
May 2012, pp. 1-7

18¢. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, “An MIP formulation for joint market-clearing of energy and reserves
based on ramp scheduling,” [EEE Transactions on Power Systems, 2013, Special Section on Electricity Markets Operation. In
Press

196, Morales-Espana, J. M. Latorre, and A. Ramos, “Tight and compact MILP formulation of start-up and shut-down
ramping in unit commitment,” |EEE Transactions on Power Systems, vol. 28, no. 2, pp. 1288-1296, 2013
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1bin  Ramp-Based

Co-optimization No Yes
SU costs 3 types 3 types
SU ramps - 3 types
Operating Ramps 2 types 6 types
Online reserves 1 4
Offline reserves - 2
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100 units for a time span of 24 hours

1bin  Ramp-Based | Increase (%)

Constraints 40449 43271 6.97
Nonzeros 208445 217661 4.42

Real Vars 9624 15840 64.6

Bin Vars 2400 13650 468.8
Integrality Gap (%)  1.76 0.333 -81.1
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Conclusions CoMILLAS
M A D R I D

m Beware of what matters in good MIP formulations

Tightness: defines the search space

Compactness (problem size): defines the searching speed
1 Binaries = 1 Solving time False myth

Provide the convex hull for some set of constraints

If available, use the convex hull for some set of constraints

m Boosting solving time was achieved by simultaneously tightening
and compacting UC formulations

m The convex hulls for different UCs were provided
m TC variable-SU-costs reformulation, introducing new “binary” variables

m Better UC core = critical solving time reductions in further UC
extensions
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