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U.S. Wind Power Capacity Reaches 60 GW  
(282 GW Globally) 

3 Source: AWEA, 2013 MISO 2012 
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U.S. Solar PV Capacity Reaches 6.4 GW  
(over 100 GW Globally) 

4 Source: SEIA 2012 



Why Stochastic Programming? 

Weather-driven renewables are hard to forecast and increase the uncertainty in the 
electric power grid 
 
 Stochastic programming could serve as a tool to address the increased uncertainty in 

power system and electricity market operations 
 
 Stochastic programming is a powerful tool in dealing with uncertainty, but it has 

advantages and disadvantages 

        + 
• is based on axioms of foundational decision theory 
• considers uncertainty holistically rather than focusing on worst case scenarios  
• can effectively hedge against randomness 

     - 
• requires probabilistic inputs which may be hard to obtain or estimate 
• can be computationally hard to solve stochastic programming models 
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Background: Scenario Generation and Reduction 

We use statistical methods to produce probability density functions for the wind power 
forecast  
– Kernel Density Forecasting (KDF) [Bessa et al. 2012] 
 

 
 Stochastic unit commitment model requires scenario representation of wind power 

forecast → account for the temporal correlation of forecast errors 
– A large number of scenarios generated with Monte-Carlo simulation based on quantile 

distribution (multivariate Gaussian error variable, covariance matrix) [Pinson et al. 09] 

 
 In previous work, we investigated three scenario reduction methods [Botterud et al. 2011] 

– SR1: Random selection 
– SR2: SCENRED in GAMS [Gröwe-Kuska, Heitsch, et. al, 2003] 
– SR3: Scenario clustering approach [Sumaili et al. 2011]  
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A. Probabilistic forecast 
(KDF) 

Scenario Generation and Reduction - Illustration 
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B. Large scenario set 

C. Reduced scenario set 
(scenarios with different 

probabilities) 
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 Random scenario selection performs better than both scenario reduction algorithms 
– Scenario reduction reduces scenario variance and level of hedging in UC strategy 

 Increasing the number of scenarios improves performance 
– Computational burden also increases, 15-20 times longer run-time with 100 scenarios 

SR1 - Random selection 
SR2 - SCENRED (GAMS) 
SR3 - Scenario clustering 

[Botterud et al. 2011] 

Total operating costs from “out-of-sample” simulations: 
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Basic UC Model Formulation 

min�𝑝𝑠
𝑠∈𝑆

�� 𝑔𝑖 𝑥𝑖𝑖𝑠 𝑢𝑖𝑖𝑠 +  ℎ𝑖(𝑢𝑖,𝑖−1𝑠 ,𝑢𝑖𝑖𝑠 )
𝑇

𝑖=1𝑖∈𝐼
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Start-up 
cost 

Probability of 
scenario s 

Subject to: 
 

� 𝑓𝑙𝑖𝑠 +
𝑙∈𝐿𝑛𝑖𝑛

� 𝑥𝑖𝑖𝑠

𝑖∈𝐼𝑛

+ �𝑤𝑗𝑖𝑠 = � 𝑓𝑙𝑖𝑠 +
𝑙∈𝐿𝑛𝑜𝑜𝑜

𝐷𝑖
𝑗∈𝐽𝑛

 ∀𝑡, 𝑠 Load balance 

𝑓𝑙𝑖𝑠 = 𝐵𝑙(𝜃𝑛𝑖𝑠 − 𝜃𝑚𝑖𝑠 )  ∀𝑙 = 𝑚,𝑛 ∈ 𝐿, 𝑡, 𝑠  Flow computation 
−𝐹𝑙 ≤ 𝑓𝑙𝑖𝑠 ≤ 𝐹𝑙  ∀𝑙, 𝑡, 𝑠 Flow limits 
𝑤𝑗𝑖𝑠 ≤ 𝑊𝑗𝑖

𝑠 ∀𝑗, 𝑡, 𝑠 Wind curtailment 

�𝑟𝑖𝑖𝑠
𝐼

𝑖=1

≥ 𝑅𝑖 ∀𝑡, 𝑠 Spinning reserve requirement 

𝑥𝑖𝑖𝑠 + 𝑟𝑖𝑖𝑠 ≤ 𝑄𝑖𝑢𝑖𝑖
𝑠,𝑏 ∀𝑖, 𝑡, 𝑠 Maximum output 

𝑥𝑖𝑖𝑠 ≤ 𝑞𝑖𝑢𝑖𝑖
𝑠,𝑏 ∀𝑖, 𝑡, 𝑠 Minimum output 

𝑥𝑖𝑖𝑠 − 𝑥𝑖,𝑖−1𝑠 + 𝑟𝑖𝑖𝑠     ≤ 𝑢𝑖,𝑖−1
𝑠,𝑏 Δ𝑖 + (1 − 𝑢𝑖,𝑖−1

𝑠,𝑏 )Δ𝑖𝑆𝑆  ∀𝑖, 𝑡 ≥ 2, 𝑠 Ramp-up/Start-up 
𝑥𝑖,𝑖−1𝑠 − 𝑥𝑖𝑖𝑠 ≤ 𝑢𝑖𝑖

𝑠,𝑏Δ𝑖 + (1 − 𝑢𝑖𝑖
𝑠,𝑏)Δ𝑖𝑆𝑆 ∀𝑖, 𝑡 ≥ 2, 𝑠 Ramp-down/Shutdown 

𝑢𝑖𝑖
𝑠,𝑏 − 𝑢𝑖,𝑖−1

𝑠,𝑏 ≤ 𝑢𝑖𝑖
𝑠,𝑏                                                ∀𝑡 ≥ 2, 𝑠, 𝜏 = 𝑡 + 1, … , min 𝑡 + 𝐿𝑖 − 1,𝑇  Minimum up-time 

𝑢𝑖,𝑖−1
𝑠,𝑏 − 𝑢𝑖𝑖

𝑠,𝑏 ≤ 1 − 𝑢𝑖𝑖
𝑠,𝑏 ∀𝑡 ≥ 2, 𝑠, 𝜏 = 𝑡 + 1, … , min 𝑡 + 𝑙𝑖 − 1,𝑇   Minimum down-time 

𝑢𝑖𝑖𝑠 = 𝑢𝑖𝑖 ∀𝑡, 𝑖, 𝑠 Non-anticipativity 
𝑥𝑖𝑖𝑠 , 𝑟𝑖𝑖𝑠 ≥ 0 ∀𝑡, 𝑖, 𝑠 

Non-negativity 𝑤𝑗𝑖𝑠 ≥ 0 ∀𝑡, 𝑗, 𝑠 

𝑢𝑖𝑖𝑠 ,𝑢𝑖𝑖 ∈  0,1  ∀𝑡, 𝑖, 𝑠 Integrality 

Production 
cost 

subject to: 

2-Stage 
Stoch. Prog.: 



Solution Tool 

We use Sandia National Laboratories’ optimization tool Coopr, in particular 

PySP (Python-based Stochastic Programming) modeling and solver 

library (Watson et al. 2012). The tool can solve the problem in two ways: 

– Extensive form 

– Progressive Hedging 

• Scenario-based decomposition scheme 

• Relaxation of non-anticipativity constraints 

• Has been used for unit commitment (e.g. Takriti et al. 1996) 
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Illustrative 6-Bus System 
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Replaced with 
a wind unit 

* The details of the system and parameters are available at: 
http://motor.ece.iit.edu/data/ 

6-Bus system* with  
• 2 thermal generators 
• 3 loads 

Bus 
No. 

Unit Cost Coefficients Pmax 
(MW) 

Pmin 
(MW) 

Ini. 
State 
(h) 

Min 
Off 
(h) 

Min 
On 
(h) 

Ramp 
(MW/h) 

Start 
Up 

(MBtu) 

Fuel 
Price 

($/ 
MBtu) 

U b 
(MBtu/ 
MW) 

c 
(MBtu/
MW2) 

G1 1 176.95 13.51 0.0004 220 100 4 4 4 55 10 1 

G2 2 129.98 32.63 0.001 100 10 3 3 2 50 200 1 



Wind Power Day-Ahead Forecast Scenarios 

14 

• 10 wind scenarios 

• Derived from EWITS 

data with KDF, MC 

sampling, and scenario 

reduction  

• Wind unit capacity is 

set so that it can satisfy 

30% of the daily load 

 



Basic UC Model: Dispatch Results 
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Unit 1 is always on. 

Unit 2 is on when the 
wind generation is low. 

Wind is dispatched 
down (curtailed) early 
morning and late night. 



The Expected Value of Perfect Information (EVPI) 

  Probability Total cost ($) 

Scenario 1 0.10 61,306 

Scenario 2 0.06 64,503 

Scenario 3 0.09 59,321 

Scenario 4 0.07 61,067 

Scenario 5 0.11 61,996 

Scenario 6 0.19 58,074 

Scenario 7 0.13 61,944 

Scenario 8 0.10 59,577 

Scenario 9 0.08 58,850 

Scenario 10 0.07 53,268 

Perfect information solution 59,913 

Stochastic solution 60,427 

The expected value of perfect 
information (EVPI) 515 
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The Value of a Stochastic Solution (VSS) 
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  Load Curtailment Total cost ($) 

Scenario 1 0.00 61,306 

Scenario 2 3.90 77,523 

Scenario 3 0.00 59,321 

Scenario 4 1.72 66,755 

Scenario 5 0.46 62,950 

Scenario 6 0.00 58,074 

Scenario 7 0.00 61,944 

Scenario 8 0.00 59,577 

Scenario 9 0.00 58,850 

Scenario 10 0.00 53,526 

Expected value solution 61,247 

Stochastic solution 60,427 

The value of stochastic solution (VSS) 880 



Alternative Approach with Bundling of Scenarios 

 Stochastic programming models tend to give better results with more scenarios, 

capturing the full range of uncertainty.  

 Unit commitment is a multi-stage decision problem in electricity market 

operations (day-ahead, reliability, real-time). 

 To solve the problem with a large number of scenarios and to capture the multi-

stage decision process we consider bundling. We observe that: 

– the scenarios can be bundled according to their deviation from the average forecast. 

– the bundles might be different across the time horizon. 

 The idea is: 

– to enforce the non-anticipativity constraints for the bundles only 

18 



Alternative Model Formulation with Bundles 

min�𝑝𝑠
𝑠∈𝑆

�� 𝑔𝑖 𝑥𝑖𝑖𝑠 𝑢𝑖𝑖
𝑠,𝑏 +  ℎ𝑖(𝑢𝑖,𝑖−1

𝑠,𝑏 ,𝑢𝑖𝑖
𝑠,𝑏)

𝑇

𝑖=1𝑖∈𝐼
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� 𝑓𝑙𝑖𝑠 +
𝑙∈𝐿𝑛𝑖𝑛

� 𝑥𝑖𝑖𝑠

𝑖∈𝐼𝑛

+ �𝑤𝑗𝑖𝑠 = � 𝑓𝑙𝑖𝑠 +
𝑙∈𝐿𝑛𝑜𝑜𝑜

𝐷𝑖
𝑗∈𝐽𝑛

 ∀𝑡, 𝑠 Load balance 

𝑓𝑙𝑖𝑠 = 𝐵𝑙(𝜃𝑛𝑖𝑠 − 𝜃𝑚𝑖𝑠 )  ∀𝑙 = 𝑚,𝑛 ∈ 𝐿, 𝑡, 𝑠  Flow computation 
−𝐹𝑙 ≤ 𝑓𝑙𝑖𝑠 ≤ 𝐹𝑙  ∀𝑙, 𝑡, 𝑠 Flow limits 
𝑤𝑗𝑖𝑠 ≤ 𝑊𝑗𝑖

𝑠 ∀𝑗, 𝑡, 𝑠 Wind curtailment 

�𝑟𝑖𝑖𝑠
𝐼

𝑖=1

≥ 𝑅𝑖 ∀𝑡, 𝑠 Spinning reserve requirement 

𝑥𝑖𝑖𝑠 + 𝑟𝑖𝑖𝑠 ≤ 𝑄𝑖𝑢𝑖𝑖
𝑠,𝑏 ∀𝑖, 𝑡, 𝑠 Maximum output 

𝑥𝑖𝑖𝑠 ≤ 𝑞𝑖𝑢𝑖𝑖
𝑠,𝑏 ∀𝑖, 𝑡, 𝑠 Minimum output 

𝑥𝑖𝑖𝑠 − 𝑥𝑖,𝑖−1𝑠 + 𝑟𝑖𝑖𝑠     ≤ 𝑢𝑖,𝑖−1
𝑠,𝑏 Δ𝑖 + (1 − 𝑢𝑖,𝑖−1

𝑠,𝑏 )Δ𝑖𝑆𝑆  ∀𝑖, 𝑡 ≥ 2, 𝑠 Ramp-up/Start-up 
𝑥𝑖,𝑖−1𝑠 − 𝑥𝑖𝑖𝑠 ≤ 𝑢𝑖𝑖

𝑠,𝑏Δ𝑖 + (1 − 𝑢𝑖𝑖
𝑠,𝑏)Δ𝑖𝑆𝑆 ∀𝑖, 𝑡 ≥ 2, 𝑠 Ramp-down/Shutdown 

𝑢𝑖𝑖
𝑠,𝑏 − 𝑢𝑖,𝑖−1

𝑠,𝑏 ≤ 𝑢𝑖𝑖
𝑠,𝑏                                                ∀𝑡 ≥ 2, 𝑠, 𝜏 = 𝑡 + 1, … , min 𝑡 + 𝐿𝑖 − 1,𝑇  Minimum up-time 

𝑢𝑖,𝑖−1
𝑠,𝑏 − 𝑢𝑖𝑖

𝑠,𝑏 ≤ 1 − 𝑢𝑖𝑖
𝑠,𝑏 ∀𝑡 ≥ 2, 𝑠, 𝜏 = 𝑡 + 1, … , min 𝑡 + 𝑙𝑖 − 1,𝑇   Minimum down-time 

𝑢𝑖𝑖
𝑠,𝑏 = 𝑢𝑖𝑖𝑏  ∀𝑡, 𝑖, 𝑠 Non-anticipativity 

𝑥𝑖𝑖𝑠 , 𝑟𝑖𝑖𝑠 ≥ 0 ∀𝑡, 𝑖, 𝑠 
Non-negativity 𝑤𝑗𝑖𝑠 ≥ 0 ∀𝑡, 𝑗, 𝑠 

𝑢𝑖𝑖𝑠 ,𝑢𝑖𝑖 ∈  0,1  ∀𝑡, 𝑖, 𝑠 Integrality 

Add bundle 
indices to the unit 

commitment  
decision 

What if we divide the time horizon into time blocks, and 
enforce the non-anticipativity constraints across bundles only?  
  If the scenarios in the bundles behave similarly, we 
could get the same solution with LESS non-anticipativity 
constraints by enforcing them at the end of the blocks only. 

  

subject to: 



Bundling Approach 

 Tradeoff 
– More variables versus ability to capture uncertainty 

 Advantages of bundling 
– Captures multi-stage decision process 

• no need to enforce formal tree structure 

– Reduces the need for scenario reduction 

• can take into account extreme scenarios 

– May reduce computational burden 

• relaxation of traditional 2-stage formulation 

 Three approaches 
– Non-anticipativity constraints across scenarios 

– Non-anticipativity constraints across bundles 

– Non-anticipativity constraints across bundles at the end of the blocks 
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Bundles for 50 Scenarios (Day-Ahead Forecast) 

Bundling 
– According to the deviations from the average forecast 

• < 25% quantile  -> Bundle 1 
• < 50% quantile  -> Bundle 2 
• < 75% quantile  -> Bundle 3 
• < 100% quantile -> Bundle 4 
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Bundle UC Model: Dispatch Result Comparison 

 Unit 1 is always on for the three approaches. 
 Unit 2 decision may change depending on the scenario. 

22 

“Across bundles at the end of time blocks” “Across bundles” 

“Across all  
scenarios” 



Bundle UC Model: Objective Function and Run-time 

Extensive Form “Across 
scenarios” 

“Across 
bundles” 

“Across bundles at the end of 
time blocks” 

Objective 62,401 62,162 61,860 

Execution time 
(sec) 18.15 23.37 23.29 

23 

Progressive 
Hedging* 

“Across 
scenarios” 

“Across 
bundles” 

“Across bundles at the end of 
time blocks” 

Objective 62,401 62,162 61,846 

Execution time 
(sec) 635.29 400.56 399.19 

Number of PH 
iterations 50 26 29 

*rho = 200 The bundling approach gives 
– Lower expected operating cost 
– Improved run-time and fewer iterations (under PH) 
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Conclusions and Future Work 

 

 Stochastic programming is a powerful tool in solving problems with uncertainty 
– Has the potential to address uncertainty from renewables in operational decisions 

 Computational effort is a challenge 
– We propose addressing this by bundling forecast scenarios and reducing the number of non-

anticipativity constraints within a progressive hedging framework 

– The formulation also captures some of the multi-stage nature of the unit commitment problem 

 

 Future work includes 
– Developing methods for more effective bundling of scenarios 

– Solving larger problems with more scenarios and stochastic variables 

– Investigate potential for improved pricing and financial incentives under stochastic scheduling 
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