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Zonal models assume 

power is deliverable 

within zones 

Texas electric market: overview and focal points, FERC, Nov. 2011. [Online]  

http://www.ferc.gov/market-oversight/mkt-electric/texas/2011/11-2011-elec-tx-archive.pdf
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Zonal models assume 

power is deliverable 

within zones 

  

ERCOT would adjust the solution to 

manage congestion 
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needs, ERCOT, Dec. 2007. [Online]  

http://www.ercot.com/news/presentations/2008/35171_ERCOT_2007_Transmission_Constraints_Needs_Report.pdf
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Takeaways from zonal energy markets: 
 

1. It can be difficult for zones to characterize 

congestion 

2. Need effective ways to correct invalid zonal 

assumptions 

 

 



• Motivation 

• Day-ahead scheduling process 

• Contributions: 

• Offline 

• Within unit commitment (UC) 

• Ex-post 

• Future work 
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Outline 



Motivation and Background 

Motivation: 

• Improve existing reserve policies 

• Create reserve policies for renewable resources 

 

Background: 

• Reserve requirements ensure backup capacity 

 

• Ensuring deliverable reserves will be increasingly 

difficult with renewables 
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capacity ≠ availability 



Reserve Quantity vs. Deliverability 
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Reserve quantity 
 

 Probabilistic reserves                [7]-[11] 

 Relax expensive requirements1[12]-[17] 

 Iterative schemes                    [18]-[21] 

 Robust optimization                        [22] 

 

 Transfer capabilities                     [1] 

 Congestion management             [2] 

 Reserve zones                       [3]-[4] 

 Reserve disqualification       [5]-[6] 

 

 Stochastic programming2        [23]-[29] 

 Robust optimization2               [30]-[32]     

 Dynamic reserve sharing               [33] 

 Congestion-based reserves 

 

1 By penalizing constraint violations or minimizing a weighted sum of cost and reliability 
2 Reserve deliverability considered in multi-stage models that simulate recourse 

Balance: 

Better deterministic 

methods will improve 

scalability of stochastic 

programming 

(Preferred) 



Path to Reliability 
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Within 

day-ahead 

model 

Day-ahead Ongoing 



Path to Reliability 
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Offline 

determine 

scheduling 

inputs 

Within 

day-ahead 

model 

Ex-post 

uneconomical 

adjustments 

 

Approximations are made for day-ahead 

scheduling and checked ex-post 

Days – months 

in advance 
Day-ahead Ongoing 



Path to Reliability 
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Days – months 

in advance 
Day-ahead Ongoing 

• Transfer capabilities / interface limits / nomograms 

• Reserve requirements (zones and levels) 

• Reliability must run (RMR) units 

Offline 

determine 

scheduling 

inputs 

Within 

day-ahead 

model 

Ex-post 

uneconomical 

adjustments 

 



Path to Reliability 
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Days – months 

in advance 
Day-ahead Ongoing 

• Deterministic UC 

• Reserve sharing 

• Congestion-

based reserves 

Offline 

determine 

scheduling 

inputs 

Within 

day-ahead 

model 

Ex-post 

uneconomical 

adjustments 

 



Path to Reliability 
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Days – months 

in advance 
Day-ahead Ongoing 

Modeling: 

• Contingency analysis 

• Uncertainty modeling 

Actions: 

• Reserve disqualification 

(reserve down flags) 

• RMR, out-of-sequence units 

Offline 

determine 

scheduling 

inputs 

Within 

day-ahead 

model 

Ex-post 

uneconomical 

adjustments 

 



(Offline) 

Daily dynamic reserve zones 
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Offline 

determine 

scheduling 

inputs 

Within 

day-ahead 

model 

Ex-post 

uneconomic 

adjustments 

 



Current Industry Practices:  

Reserve Zones 

• ERCOT: zones defined relative to 

critical transmission bottlenecks [3] 

• Statistical clustering methods 

• Nodes in same zone have a similar 

effects on commercially significant 

constraints 

• Similar approach taken by MISO [4] 

 

Zones are infrequently updated 
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(Area 1 is part of PJM) 

ERCOT 

MISO 



16 

Statistical 

clustering 

Day-ahead 

scheduling 

Identify 

bottlenecks 

(historical info) 

Probabilistic 

power flow 

Statistical 

clustering 

Baseline 

zones 

Uncertainty 

modeling / scenarios 

(e.g., wind) 

(Anticipate bottlenecks by simulating likely 

scenarios) 

Daily Seasonal 

(Traditional) 



Numerical Analysis 

• Day-ahead UC (IEEE 118 test system): 

• Traditional zones 

• Proposed daily zones 

• Two-stage stochastic programming (10 scenarios) 

• Performed contingency analysis on N-1 and 1000 wind 

scenarios across 12 days = 4.5 Million simulations 
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Offline 

determine 

scheduling 

inputs 

 

Within 

day-ahead 

model 

Ex-post 

 
Contingency 

analysis 

Uneconomic 

adjustments 

(solutions reported prior to ex-post adjustments) 
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Average Results Over 12 Days 

Cost  

(millions $)1 

Expected 

Violations2 (MW) 

Solution 

Time (s) 

Traditional  

(3 zones) 0.651 13.5 18 

Daily  

(3 zones) 0.666 10.5 26 

1 Costs do not reflect uneconomical adjustments 
2 Violations only occur when reserve is not deliverable 
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Average Results Over 12 Days 

Cost  

(millions $)1 

Expected 

Violations2 (MW) 

Solution 

Time (s) 

Traditional  

(3 zones) 0.651 13.5 18 

Daily  

(3 zones) 0.666 10.5 26 

Stochastic3  

(1 zone) 0.636 20.4 339 

1 Costs do not reflect uneconomical adjustments 
2 Violations only occur when reserve is not deliverable 
3 Stochastic does not model all scenarios 
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Average Results Over 12 Days 

Cost  

(millions $)1 

Expected 

Violations2 (MW) 

Solution 

Time (s) 

Traditional  

(3 zones) 0.651 13.5 18 

Daily  

(3 zones) 0.666 10.5 26 

Stochastic3  

(1 zone) 0.636 20.4 339 

Stochastic + 

Daily 0.660 9.61 505 

1 Costs do not reflect uneconomical adjustments 
2 Violations only occur when reserve is not deliverable 
3 Stochastic does not model all scenarios 



Average Results Over 12 Days 
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(Within) 

Congestion-based reserves 
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Offline 

determine 

scheduling 

inputs 

Within 

day-ahead 

model 

Ex-post 

uneconomic 

adjustments 

 



Congestion-Based Reserves 

• ISO-NE dynamically predicts ability to share 
reserve between zones [33] 

 

 

 

 

 

• May relate quantity to transmission stress inside 
of zone 
• Option to increase reserve or decrease transmission 

stress is embedded in the model 

• Numerical results in appendix 
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Zone A Zone B 
Import 

capability? 



(Ex-post) 

Reserve disqualification / down 

flag policies 
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Offline 

determine 

scheduling 

inputs 

Within 

day-ahead 

model 

Ex-post 

uneconomic 

adjustments 

 



Reserve Disqualification 

• MISO, ISO-NE manually disqualify reserve located 

behind transmission bottlenecks (reserve disqualification 

and reserve down flags respectively) [5], [6] 

• Ongoing work:  

• Propose a generalized reserve down flag procedure 

• Determined via mathematical programming 

• Applied on a per-scenario basis 

25 

G1 

G2 
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Flow 



Reserve Disqualification 

• MISO, ISO-NE manually disqualify reserve located 

behind transmission bottlenecks (reserve disqualification 

and reserve down flags respectively) [5], [6] 

• Ongoing work:  

• Propose a generalized reserve down flag procedure 

• Determined via mathematical programming 

• Applied on a per-scenario basis 
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Reserve Disqualification 

• MISO, ISO-NE manually disqualify reserve located 

behind transmission bottlenecks (reserve disqualification 

and reserve down flags respectively) [5], [6] 

• Ongoing work:  

• Propose a generalized reserve down flag procedure 

• Determined via mathematical programming 

• Applied on a per-scenario basis 
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Base 

Flow 

Reserve 



Conclusions 

• Renewables will make it 

harder to predict transmission 

bottlenecks 

• Stochastic programming 

cannot capture all uncertainty 

• Reserve zones may not 

perfectly characterize 

congestion 

• Developing a portfolio of 

deterministic methods for 

day-ahead scheduling 
28 



Future Work 

• Create reserve policies to work in tandem with 

stochastic programming to improve scalability 

• Currently testing policies on large-scale 

networks (FERC/PJM 15,000-bus test case) 

• Model refinement based on industry feedback – 

please contact us if you would like further 

information or would like to provide additional 

feedback (kory.hedman@asu.edu) 
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Questions? 

30 

Report on existing and potential electric system constraints and 

needs, ERCOT, Dec. 2007. [Online]  

http://www.ercot.com/news/presentations/2008/35171_ERCOT_2007_Transmission_Constraints_Needs_Report.pdf
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Day-Ahead Dynamic Zones 

• Unit commitment for IEEE 118 bus test system 

• Average results over 12 days 

• E[violation] measures unreliability due to congestion 
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Congestion-Based Reserves 

• Unit commitment for IEEE 73 bus test system 

• Policies tested with different levels of conservatism 

• Pareto dominant solutions attributable to reducing congestion 
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Markets 

• The goal of the ISO is to maximize market 

surplus 

• We do not anticipate the proposed methods will 

require changes to market structure 

• We do anticipate: 

• Market surplus will improve 

• Identification of scarce resources will reduce the 

need for uneconomical adjustments and the 

associated uplifts 

• Uncertainty about zones will make it harder for 

participants to exercise market power 
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